### $^{101}$ Y $\beta^-$ decay 1995Lh01,1983Wo10

| History         |              |          |                        |  |  |  |  |  |  |
|-----------------|--------------|----------|------------------------|--|--|--|--|--|--|
| Туре            | Author       | Citation | Literature Cutoff Date |  |  |  |  |  |  |
| Full Evaluation | Jean Blachot | ENSDF    | 1-Jul-2006             |  |  |  |  |  |  |

Parent: <sup>101</sup>Y: E=0.0;  $J^{\pi}=(5/2^+)$ ;  $T_{1/2}=0.45$  s 2;  $Q(\beta^-)=8545$  90;  $\%\beta^-$  decay=100.0 Activity: on-line ms TRISTAN (1983Wo10), JOSEF (1987Oh01), ISOLDE (1995Lh01). Measured:  $\gamma$ ,  $\gamma\gamma$ ,  $\gamma(t)$ ,  $\beta\gamma(t)$ .

Level scheme is from 1995Lh01.

1995Lh01 have derived an inertial parameter of 19.4 keV for the 3/2 g.s. band and 15.3 keV for the 5/2<sup>-</sup> band. 1983Wo10 previously assigned this band as the [422] Nilsson state, now 1995Lh01 assign it as the [532].

### <sup>101</sup>Zr Levels

| E(level)              | $J^{\pi}$           | T <sub>1/2</sub> | Comments                                                                                   |
|-----------------------|---------------------|------------------|--------------------------------------------------------------------------------------------|
| 0                     | $(3/2^+)$           | 2.3 s 1          | $T_{1/2}$ : from Adopted Levels.                                                           |
| 98.16 <sup>†</sup> 4  | $(5/2^+)$           | 0.6 ns 2         | $T_{1/2}$ : Average of 0.9 ns 3 (1987Oh01) and 0.39 ns 18 (1995Lh01).                      |
| 216.67 <sup>‡</sup> 5 | $(5/2^{-})$         |                  |                                                                                            |
| 231.79 <sup>†</sup> 6 | $(7/2^+)$           |                  |                                                                                            |
| 321.10 <sup>‡</sup> 6 | $(7/2^{-})$         | 0.3 ns 1         | T <sub>1/2</sub> : From $\beta\gamma(t)$ coincidence in <sup>101</sup> Y decay (1995Lh01). |
| 408.25 <sup>†</sup> 8 | $(9/2^+)$           |                  |                                                                                            |
| 467.77 <sup>‡</sup> 9 | (9/2 <sup>-</sup> ) |                  |                                                                                            |
| 673.52 16             | (3/2,5/2)           |                  | $J^{\pi}$ : Possible [532]5/2 Nilsson state.                                               |
| 744.01 10             | (3/2, 5/2)          |                  | $J^{\pi}$ : Possible [541]3/2 Nilsson state.                                               |
| 759.49 6              | $(3/2^+)$           |                  | $J^{\pi}$ : Possible [422]3/2 Nilsson state.                                               |
| 786.66 11             | (5/2,7/2)           |                  |                                                                                            |
| 808.46 11             | (5/2,7/2)           |                  |                                                                                            |
| 827.78 10             |                     |                  |                                                                                            |
| 845.19 20             | $(7/2^{-})$         |                  | $J^{\pi}$ : Possible [523]7/2 Nilsson state.                                               |
| 880.37 10             |                     |                  |                                                                                            |
| 902.48 19             |                     |                  |                                                                                            |
| 958.76 <i>25</i>      |                     |                  |                                                                                            |
| 1038.4 <i>3</i>       |                     |                  |                                                                                            |
| 1297.90 11            |                     |                  |                                                                                            |
| 1398.55 13            | $(3/2,5/2)^+$       |                  | $J^{\pi}$ : Possible [402]3/2 Nilsson state.                                               |
| 1529.93 14            |                     |                  |                                                                                            |
| 2023.17 16            | $(3/2,5/2)^+$       |                  |                                                                                            |
| 2082.8 4              |                     |                  |                                                                                            |

<sup>†</sup> Band(A): the  $K^{\pi}=3/2^+$  g.s. band could Be the 3/2 [411] Nilsson state.

<sup> $\ddagger$ </sup> Band(B): the K<sup> $\pi$ </sup>=5/2<sup>-</sup> band could Be the 5/2 [532] Nilsson state.

 $\beta^-$  radiations

| E(decay)                 | E(level) | $I\beta^{-\dagger}$ | Log ft  |                    | Comments |
|--------------------------|----------|---------------------|---------|--------------------|----------|
| $(6.46 \times 10^3 \ 9)$ | 2082.8   | 1.3 5               | 6.24 18 | av E $\beta$ =2924 |          |
| $(6.52 \times 10^3 \ 9)$ | 2023.17  | 4.9 14              | 5.68 14 | av E $\beta$ =2953 |          |
| $(7.02 \times 10^3 \ 9)$ | 1529.93  | 3.3 11              | 6.00 16 | av E $\beta$ =3190 |          |
| $(7.15 \times 10^3 \ 9)$ | 1398.55  | 12 4                | 5.48 16 | av E $\beta$ =3253 |          |
| $(7.25 \times 10^3 \ 9)$ | 1297.90  | 2.3 14              | 6.2 3   | av E $\beta$ =3302 |          |
| $(7.51 \times 10^3 \ 9)$ | 1038.4   | 0.8 4               | 6.75 23 | av E $\beta$ =3426 |          |
| $(7.59 \times 10^3 \ 9)$ | 958.76   | 1.2 5               | 6.59 19 | av E $\beta$ =3465 |          |
| $(7.64 \times 10^3 \ 9)$ | 902.48   | 1.1 4               | 6.65 17 | av E $\beta$ =3492 |          |

Continued on next page (footnotes at end of table)

# $^{101}$ Y $\beta^-$ decay **1995Lh01,1983Wo10** (continued)

| $\beta^-$ radiations (continued) |          |               |                               |                    |          |  |  |
|----------------------------------|----------|---------------|-------------------------------|--------------------|----------|--|--|
| E(decay)                         | E(level) | Iβ−†          | Log <i>ft</i>                 |                    | Comments |  |  |
| $(7.66 \times 10^3 \ 9)$         | 880.37   | 5.2 15        | 5.98 14                       | av Eβ=3502         |          |  |  |
| $(7.70 \times 10^3 \ 9)$         | 845.19   | 0.9 4         | 6.75 20                       | av E $\beta$ =3519 |          |  |  |
| $(7.72 \times 10^3 \ 9)$         | 827.78   | 2.9 9         | 6.24 15                       | av E $\beta$ =3528 |          |  |  |
| $(7.74 \times 10^3 \ 9)$         | 808.46   | 3.0 9         | 6.24 14                       | av E $\beta$ =3537 |          |  |  |
| $(7.76 \times 10^3 \ 9)$         | 786.66   | 4.7 14        | 6.05 14                       | av E $\beta$ =3548 |          |  |  |
| $(7.79 \times 10^3 \ 9)$         | 759.49   | 13 4          | 5.61 15                       | av Eβ=3561         |          |  |  |
| $(7.80 \times 10^3 \ 9)$         | 744.01   | 3.1 10        | 6.24 15                       | av E $\beta$ =3568 |          |  |  |
| $(7.87 \times 10^3 \ 9)$         | 673.52   | 2.9 11        | 6.28 18                       | av Eβ=3602         |          |  |  |
| $(8.08 \times 10^3 \ 9)$         | 467.77   | 1.1 4         | 6.76 <sup>1</sup> <i>u</i> 17 | av Eβ=3701         |          |  |  |
| $(8.22 \times 10^3 \ 9)$         | 321.10   | 2.5 9         | 6.44 17                       | av Eβ=3771         |          |  |  |
| (8.31×10 <sup>3</sup> 9)         | 231.79   | 1.9 <i>13</i> | 6.6 3                         | av Eβ=3814         |          |  |  |
| (8.33×10 <sup>3</sup> 9)         | 216.67   | 8 <i>3</i>    | 5.96 17                       | av Eβ=3821         |          |  |  |
| $(8.45 \times 10^3 \ 9)$         | 98.16    | 33            | >5.9                          | av E $\beta$ =3878 |          |  |  |
| $(8.55 \times 10^3 \ 9)$         | 0        | 20 20         | >5.3                          | av E $\beta$ =3925 |          |  |  |

<sup>†</sup> Absolute intensity per 100 decays.

# $\gamma(^{101}\mathrm{Zr})$

I $\gamma$  normalization: from I $\gamma$ (98.2)=30% 8 with I $\gamma$ /I $\gamma$ (205.6 $\gamma$ ) in <sup>101</sup>Zr decay and with I $\gamma$ (205.6 $\gamma$ ) taken as 6.1% 15.

| $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger @}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_f$  | $\mathbf{J}_{f}^{\pi}$ | Mult.   | δ        | α <b>&amp;</b> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------|--------------------------|---------------|----------------------|--------|------------------------|---------|----------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 87.44 <sup>‡</sup> 19  | 45 14                    | 408.25        | (9/2+)               | 321.10 | (7/2 <sup>-</sup> )    | [E1]    |          | 0.168 3        | $\alpha(K)=0.1480\ 23;\ \alpha(L)=0.0168\ 3;\alpha(M)=0.00290\ 5;\alpha(N+)=0.000427\ 7\alpha(N)=0.000402\ 7;\alpha(O)=2.51\times10^{-5}\ 4$                                                                                                                                                                                                                                                                                                                                                                            |
| 89.35 <sup>‡</sup> 11  | 14 6                     | 321.10        | (7/2 <sup>-</sup> )  | 231.79 | (7/2 <sup>+</sup> )    | [E1]    |          | 0.158          | $\begin{aligned} &\alpha(\mathbf{K}) = 0.1389 \ 20; \ \alpha(\mathbf{L}) = 0.01579 \\ &23; \ \alpha(\mathbf{M}) = 0.00272 \ 4; \\ &\alpha(\mathbf{N}+) = 0.000401 \ 6 \\ &\alpha(\mathbf{N}) = 0.000377 \ 6; \\ &\alpha(\mathbf{O}) = 2.36 \times 10^{-5} \ 4 \\ &\alpha = 0.158; \ \alpha(\mathbf{K}) = 0.1396; \\ &\alpha(\mathbf{L}) = 0.01573; \ \alpha(\mathbf{M}) = 0.00271; \\ &\alpha(\mathbf{N}+) = 0.00046 \\ &\mathbf{B}(\mathbf{E}1)(\mathbf{W}.\mathbf{u}.) = 0.00011 \ 6 \end{aligned}$                   |
| 98.21 6                | 100                      | 98.16         | (5/2+)               | 0      | (3/2 <sup>+</sup> )    | M1(+E2) | 0.3 +2-3 | 0.30 10        | $\alpha(K)=0.25\ 10;\ \alpha(L)=0.034\ 18; \alpha(M)=0.006\ 4;\ \alpha(N+)=0.0009\ 5$<br>$\alpha(N)=0.0008\ 4;\ \alpha(O)=4.7\times10^{-5}\ 15$<br>$\alpha(K)\exp=0.24\ 6$<br>$\alpha=0.30\ 10;\ \alpha(K)=0.25\ 10;$<br>$\alpha(L)=0.035\ 18;\ \alpha(M)=0.006\ 4;$<br>$\alpha(N+)=0.0010\ 5$<br>B(M1)(W.u.)=(0.036\ 13);<br>B(E2)(W.u.)=(3.E+2\ +4-3)<br>Mult.: from the intensity ratio<br>I(K $\alpha$ x ray)/I $\gamma$ (98) averaged<br>over the gates on the<br>134,223,310,661,688,575 and<br>1300 transitions. |

### Continued on next page (footnotes at end of table)

 $^{101}_{40}{\rm Zr}_{61}{\rm -3}$ 

|                                            |                              |                        |                                            | $^{101}\mathbf{Y}\beta^{-}\mathbf{d}$ | lecay                                      | 1995Lh01, | ,1983Wo10 ( | continued)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------|------------------------------|------------------------|--------------------------------------------|---------------------------------------|--------------------------------------------|-----------|-------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\gamma(^{101}$ Zr) (continued)            |                              |                        |                                            |                                       |                                            |           |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $E_{\gamma}^{\dagger}$                     | $I_{\gamma}^{\dagger @}$     | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                       | $\mathbf{E}_{f}$                      | $\mathbf{J}_f^{\pi}$                       | Mult.     | δ           | α <b>&amp;</b> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 104.43 7                                   | 100 5                        | 321.10                 | (7/2 <sup>-</sup> )                        | 216.67                                | (5/2-)                                     | M1+E2     | 0.4 +2-3    | 0.29 10        | $\begin{aligned} &\alpha(\text{K})=0.24 \; 8; \; \alpha(\text{L})=0.035 \; 15; \\ &\alpha(\text{M})=0.006 \; 3; \; \alpha(\text{N}+)=0.0009 \; 4 \\ &\alpha(\text{N})=0.0008 \; 4; \; \alpha(\text{O})=4.4\times10^{-5} \; 13 \\ &\alpha(\text{exp})=0.38 \; 20 \; (1995\text{Lh}01); \\ &\alpha(\text{K})\text{exp}=0.25 \; 10 \\ &\text{B}(\text{M}1)(\text{W.u.})=(0.029 \; 11); \\ &\text{B}(\text{E2})(\text{W.u.})=(4.\text{E}+2 \; 4) \\ &\text{Mult.: from the ratio I(K$\alpha$ $x$ ray)/I$\gamma(104) in the 217 gate. \\ &\text{E}_{\gamma}: \; \gamma \; \text{not reported by 1987Oh01,} \\ &\text{but could be obscured by contamination.} \end{aligned}$ |
| 118.56 <sup>‡</sup> 12                     | 12.1 8                       | 216.67                 | (5/2 <sup>-</sup> )                        | 98.16                                 | (5/2+)                                     | [E1]      |             | 0.0691         | $\alpha(K)=0.0608 \ 9; \ \alpha(L)=0.00684 \ 10; \\ \alpha(M)=0.001180 \ 17; \\ \alpha(N+)=0.000175 \ 3 \\ \alpha(N)=0.0001646 \ 24; \\ \alpha(O)=1.061\times10^{-5} \ 16 \\ \alpha=0.0691; \ \alpha(K)=0.0610; \\ \alpha(L)=0.00682; \ \alpha(M)=0.00117; \\ \alpha(N+.)=0.00020 $                                                                                                                                                                                                                                                                                                                                                                                     |
| 133.67 6                                   | 100 4                        | 231.79                 | (7/2+)                                     | 98.16                                 | (5/2+)                                     | M1        |             | 0.0913         | $\alpha(K)=0.0802 \ 12; \ \alpha(L)=0.00927$ $13; \ \alpha(M)=0.001614 \ 23; \ \alpha(N+)=0.000244 \ 4$ $\alpha(N)=0.000228 \ 4; \ \alpha(O)=1.579\times10^{-5} \ 23$ $\alpha(exp)=0.00 \ 14$ Mult.: from the intensity balance,                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 146.64 7                                   | 100 5                        | 467.77                 | (9/2 <sup>-</sup> )                        | 321.10                                | (7/2 <sup>-</sup> )                        | [M1]      |             | 0.0711         | Itotal(98)=Itotal(133) in the gate.<br>$\alpha(K)=0.0624 \ 9; \ \alpha(L)=0.00720 \ 11;$<br>$\alpha(M)=0.001253 \ 18;$<br>$\alpha(N+)=0.000190 \ 3$<br>$\alpha(N)=0.0001774 \ 25;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 176.44 9                                   | 92 5                         | 408.25                 | (9/2+)                                     | 231.79                                | (7/2+)                                     | [M1]      |             | 0.0434         | $\alpha(O)=1.229\times10^{-5}18$<br>$\alpha(K)=0.0381 \ 6; \ \alpha(L)=0.00438 \ 7;$<br>$\alpha(M)=0.000761 \ 11;$<br>$\alpha(N+)=0.0001153 \ 17$<br>$\alpha(N)=0.0001078 \ 16;$<br>$\alpha(O)=7.40 \ 10^{-6} \ 11$                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 216.68 7                                   | 100 4                        | 216.67                 | (5/2 <sup>-</sup> )                        | 0                                     | (3/2+)                                     | [E1]      |             | 0.01203        | $\alpha(O) = 7.49 \times 10^{-6} \ T$<br>$\alpha(K) = 0.01061 \ I5; \ \alpha(L) = 0.001180$<br>$I7; \ \alpha(M) = 0.000204 \ 3;$<br>$\alpha(N+) = 3.06 \times 10^{-5} \ 5$<br>$\alpha(N) = 2.87 \times 10^{-5} \ 4;$<br>$\alpha(O) = 1.02 \times 10^{-6} \ 2$                                                                                                                                                                                                                                                                                                                                                                                                           |
| 222.97 7                                   | 6.1 5                        | 321.10                 | (7/2 <sup>-</sup> )                        | 98.16                                 | (5/2+)                                     | [E1]      |             | 0.0112         | $\alpha(0)=1.53\times10^{-5}$<br>$\alpha=0.0112; \ \alpha(K)=0.00978;$<br>$\alpha(L)=0.00108$<br>$B(E1)(Wu)=3.8\times10^{-5}$ 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 231.91 15                                  | 45 3                         | 231.79                 | (7/2+)                                     | 0                                     | (3/2+)                                     | [E2]      |             | 0.0530         | $\begin{array}{l} \alpha(\text{K}) = 0.0459 \ 7; \ \alpha(\text{L}) = 0.00595 \ 9; \\ \alpha(\text{M}) = 0.001035 \ 15; \\ \alpha(\text{N}+) = 0.0001502 \ 22 \\ \alpha(\text{N}) = 0.0001420 \ 21; \\ \alpha(\text{O}) = 8.15 \times 10^{-6} \ 12 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                         |
| 236.20 <sup>‡</sup> 23                     | 1.0 4                        | 467.77                 | (9/2-)                                     | 231.79                                | $(7/2^+)$                                  |           |             |                | . /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 251.18 <sup>‡</sup> 24<br>309.98 <i>12</i> | 0.9 <i>3</i><br>2.6 <i>3</i> | 467.77<br>408.25       | (9/2 <sup>-</sup> )<br>(9/2 <sup>+</sup> ) | 216.67<br>98.16                       | (5/2 <sup>-</sup> )<br>(5/2 <sup>+</sup> ) | [E2]      |             | 0.019          | $\alpha$ =0.019; $\alpha$ (K)=0.01692;<br>$\alpha$ (L)=0.00208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Continued on next page (footnotes at end of table)

|                             |                               |                        | $^{101}\mathbf{Y} \not\in$ | <sup>-</sup> decay | 1995Lh01,1983Wo10 (continued    |
|-----------------------------|-------------------------------|------------------------|----------------------------|--------------------|---------------------------------|
|                             |                               |                        |                            |                    | $\gamma(^{101}$ Zr) (continued) |
| $E_{\gamma}^{\dagger}$      | $I_{\gamma}^{\dagger @}$      | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$       | $E_f$              | $J_f^{\pi}$                     |
| 377.49 <sup>‡</sup> 22      | 0.8 <i>3</i>                  | 845.19                 | $(7/2^{-})$                | 467.77             | $(9/2^{-})$                     |
| 378.1 <sup>‡</sup> 7        | 0.5 3                         | 786.66                 | (5/2,7/2)                  | 408.25             | $(9/2^+)$                       |
| 423.0 <sup>‡</sup> 7        | 0.6 3                         | 744.01                 | (3/2,5/2)                  | 321.10             | $(7/2^{-})$                     |
| 487.44 19                   | 3.6 5                         | 808.46                 | (5/2,7/2)                  | 321.10             | $(7/2^{-})$                     |
| 494.2 <sup>‡</sup> <i>3</i> | 1.2 5                         | 902.48                 |                            | 408.25             | (9/2+)                          |
| 524.0 4                     | 0.9 4                         | 845.19                 | $(7/2^{-})$                | 321.10             | $(7/2^{-})$                     |
| 527.32 12<br>×551 7 3       | 6.5 <i>I</i> 5<br>1 2 6       | 744.01                 | (3/2,5/2)                  | 216.67             | (5/2-)                          |
| 554.92 14                   | 6.1 12                        | 786.66                 | (5/2,7/2)                  | 231.79             | $(7/2^{+})$                     |
| 571.1 6                     | 1.2 6                         | 786.66                 | (5/2,7/2)                  | 216.67             | (5/2-)                          |
| 575.47 18                   | 5.0 7                         | 673.52                 | (3/2,5/2)                  | 98.16              | $(5/2^+)$                       |
| 577.2 <sup>‡</sup> 5        | 1.2 5                         | 808.46                 | (5/2,7/2)                  | 231.79             | $(7/2^+)$                       |
| 592.1 <sup>‡</sup> 3        | 2.4 8                         | 808.46                 | (5/2,7/2)                  | 216.67             | (5/2 <sup>-</sup> )             |
| 596.4 <sup>‡</sup> 4        | 0.9 5                         | 827.78                 |                            | 231.79             | $(7/2^+)$                       |
| $x_{611.93}$                | 1.6 3                         |                        |                            |                    |                                 |
| $645.0^{\pm}.5$             | 1.2.5                         | 744.01                 | (2 2,5 2)                  | 09.16              | $(5/2^{+})$                     |
| 648.59 16                   | 0.9 <i>4</i><br>8.1 <i>14</i> | 744.01<br>880.37       | (3/2,3/2)                  | 231.79             | (3/2)<br>$(7/2^+)$              |
| 661.39 12                   | 14.4 11                       | 759.49                 | $(3/2^+)$                  | 98.16              | $(5/2^+)$                       |
| 670.67 24                   | 1.4 5                         | 902.48                 |                            | 231.79             | $(7/2^+)$                       |
| 673.2 3                     | 4.5 23                        | 673.52                 | (3/2, 5/2)                 | 0                  | $(3/2^+)$                       |
| 688.40 I/                   | 0.28                          | /80.00                 | (5/2, 7/2)                 | 98.16              | $(5/2^+)$                       |
| 710.1* 0                    | 0.64                          | 808.46<br>958 76       | (5/2,7/2)                  | 98.16              | $(3/2^{+})$<br>$(7/2^{+})$      |
| 729.57 16                   | 6.2 7                         | 827.78                 |                            | 98.16              | $(5/2^+)$                       |
| 744.02 14                   | 2.2 5                         | 744.01                 | (3/2,5/2)                  | 0                  | $(3/2^+)$                       |
| 746.7 6                     | 1.4 4                         | 845.19                 | $(7/2^{-})$                | 98.16              | $(5/2^+)$                       |
| /39.45 /                    | 30.3                          | /59.49                 | $(3/2^{+})$                | 0                  | $(3/2^{+})$                     |
| 782.2* 4<br>786 5 3         | 1.4.5                         | 880.37<br>786.66       | $(5/2 \ 7/2)$              | 98.16              | $(3/2^+)$<br>$(3/2^+)$          |
| 804.5 5                     | 1.1 5                         | 902.48                 | (3/2,7/2)                  | 98.16              | $(5/2^{+})$<br>$(5/2^{+})$      |
| 808.29 <sup>#</sup> 15      | 2.2 6                         | 808.46                 | (5/2,7/2)                  | 0                  | $(3/2^+)$                       |
| 827.77 13                   | 2.6 6                         | 827.78                 |                            | 0                  | $(3/2^+)$                       |
| $x^{x}846.7 3$              | 1.5 4                         |                        |                            |                    |                                 |
| 860 8 7                     | 1.5 5                         | 958 76                 |                            | 98 16              | $(5/2^+)$                       |
| 880.36 13                   | 7.8 11                        | 880.37                 |                            | 0                  | $(3/2^+)$                       |
| 940.2 <sup>‡</sup> 3        | 2.7 8                         | 1038.4                 |                            | 98.16              | (5/2+)                          |
| <sup>x</sup> 954.4 3        | 1.0 5                         |                        |                            |                    |                                 |
| 958.6 <sup>#</sup> 3        | 1.4 8                         | 958.76                 |                            | 0                  | (3/2+)                          |
| 1081.3 <sup>‡</sup> 6       | 1.7 8                         | 1297.90                |                            | 216.67             | (5/2 <sup>-</sup> )             |
| 1167.0 3                    | 4.6 7                         | 1398.55                | $(3/2,5/2)^+$              | 231.79             | $(7/2^+)$                       |
| 1248.1 4                    | 5.1 16                        | 1529.93                |                            | 231.79             | $(7/2^{+})$                     |
| 1297.89 11                  | 6 4                           | 1297.90                |                            | 0                  | $(3/2^+)$                       |
| 1300.26 17                  | 29.7 23                       | 1398.55                | $(3/2, 5/2)^+$             | 98.16              | $(5/2^+)$                       |
| 1398.60 20                  | 5.8 12                        | 1398.55                | $(3/2,5/2)^+$              | 0                  | $(3/2^+)$                       |
| 1432.8 9<br>1529.95 15      | 1.5 0                         | 1529.93                |                            | 98.16              | $(3/2^{+})$<br>$(3/2^{+})$      |
| 1925.5 4                    | 4.9 11                        | 2023.17                | $(3/2, 5/2)^+$             | 98.16              | $(5/2^+)$                       |
| 1984.7 5                    | 3.0 6                         | 2082.8                 | · · · · /                  | 98.16              | $(5/2^+)$                       |

#### $^{101}$ Y $\beta^-$ decay 1995Lh01,1983Wo10 (continued)

 $\gamma(^{101}\text{Zr})$  (continued)

| $E_{\gamma}^{\dagger}$  | $I_{\gamma}^{\dagger @}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$ | $\mathrm{J}_f^\pi$ |
|-------------------------|--------------------------|------------------------|----------------------|-------|--------------------|
| 2023.06 <sup>‡</sup> 17 | 11.3 10                  | 2023.17                | (3/2,5/2)+           | 0     | $(3/2^+)$          |
| 2082.8 <sup>#</sup> 5   | 1.3 5                    | 2082.8                 |                      | 0     | $(3/2^+)$          |

<sup>†</sup> From 1995Lh01. <sup>‡</sup> Seen only in coincidences.

<sup>#</sup> Not seen in the projection of coincidence events.
<sup>@</sup> For absolute intensity per 100 decays, multiply by 0.30 8.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$  ray not placed in level scheme.

### <sup>101</sup>Y $\beta^-$ decay 1995Lh01,1983Wo10



 $^{101}_{40}\mathrm{Zr}_{61}$ 

6

## <sup>101</sup>Y $\beta^-$ decay 1995Lh01,1983Wo10

### Decay Scheme (continued)



## <sup>101</sup>Y $\beta^-$ decay 1995Lh01,1983Wo10



 $^{101}_{40}\mathrm{Zr}_{61}$