101 Sr β^- decay 1988Pe11,1983Wo10

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Jean Blachot	ENSDF	1-Jul-2006				

¹⁰¹Y Levels

Parent: ¹⁰¹Sr: E=0.0; $J^{\pi}=(5/2^{-})$; $T_{1/2}=118$ ms 3; $Q(\beta^{-})=9505$ 80; $\%\beta^{-}$ decay=100.0 Activity: on-line mass separation (TRISTAN). Measured: γ , $\gamma\gamma$, $\gamma(t)$.

E(level) [‡]	J^{π}	T _{1/2}	E(level) [‡]	$J^{\pi \dagger}$	E(level) [‡]	J^{π}
0.0#	$(5/2^+)$	500 ms 50	1012.97 ^{&} 13	$(9/2^{-})$	1517.96 <i>16</i>	$(5/2^+)$
128.31 [#] 4	$(7/2^+)$		1027.31 ^a 9	$(5/2^{-})$	1685.35 7	$(3/2^+)$
291.66 [#] 5	$(9/2^+)$		1124.85 8	$(5/2^+)$	1762.33 8	$(5/2^+)$
494.29 [#] 11	$(11/2^+)$		1191.38 7		1871.91 <i>21</i>	
510.75 [@] 5	$(3/2^{-})$		1211.30 7	$(3/2^+)$	2259.3 <i>3</i>	
590.45 [@] 5	$(5/2^{-})$		1217.31 ^b 19	$(1/2^+)$	2660.95 20	$(5/2^+)$
666.61 ^{&} 7	$(5/2^{-})$		1233.77 10	$(3/2^+)$	2675.11 17	
714.44 [@] 6	$(7/2^{-})$		1258.79 18	$(7/2^+)$	2680.1 5	
822.48 ^{&} 10	$(7/2^{-})$		1297.59 8	$(5/2^+)$	2693.66 20	$(5/2^+)$
872.87 [@] 11	(9/2-)		1410.82 16	$(7/2^+)$	2695.93 18	
890.64 ^{<i>a</i>} 10	$(1/2^{-})$		1418.21 20	$(5/2^+)$		
996.82 ^{<i>a</i>} 9	$(3/2^{-})$		1479.06 12			

[†] As given by 1988Pe11 from log *ft* values and assuming only M1, E1 or E2 γ decays. They also use model considerations. [‡] From a least-squares fit to the γ data.

[#] Band(A): 5/2[422] band. $\alpha = 18.3$ keV.

[@] Band(B): 3/2[301] band. $\alpha = 16.0$ keV.

& Band(C): 5/2[303] band. α =22.3 keV. The bandhead was previously assigned to 590 level (1983Wo10) because of contamination problem (511).

^{*a*} Band(D): 1/2[301] band. $\alpha = 20.8$.

^b Band(E): 1/2[431] band. Only the bandhead is tentatively assigned.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft		Comments
$(6.81 \times 10^3 8)$	2693.66	8.9 24	4.93 13	av Eβ=3170 44	
$(6.84 \times 10^3 8)$	2660.95	5.2 14	5.17 13	av Eβ=3186 44	
$(7.74 \times 10^3 8)$	1762.33	4.1 11	5.51 12	av Eβ=3619 44	
$(7.82 \times 10^3 8)$	1685.35	93	5.17 12	av Eβ=3656 44	
$(8.03 \times 10^3 8)$	1479.06	1.1 11	6.2 5	av Eβ=3755 44	
$(8.29 \times 10^3 8)$	1211.30	1.1 11	6.2 5	av Eβ=3884 44	
$(8.31 \times 10^3 8)$	1191.38	1.2 12	6.2 5	av Eβ=3893 44	
$(8.38 \times 10^3 8)$	1124.85	13 4	5.16 14	av Eβ=3925 44	
$(8.48 \times 10^3 8)$	1027.31	1.2 12	6.2 5	av Eβ=3972 44	
$(8.68 \times 10^3 8)$	822.48	11	6.3 5	av Eβ=4071 44	
$(8.79 \times 10^3 8)$	714.44	1.9 <i>19</i>	6.1 5	av E β =4122 44	
$(8.84 \times 10^3 8)$	666.61	22	6.1 5	av Eβ=4145 44	
$(8.91 \times 10^3 8)$	590.45	3.5 23	6.0 5	av Eβ=4182 44	

¹⁰¹Sr β^- decay **1988Pe11,1983Wo10** (continued)

β^{-} radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
$(9.51 \times 10^3 8)$	0.0	36 20	4.98 22	av E β =4465 44 I β ⁻ : 1995Lh04 has deduced I β =-20 29 which suggests only a weak β branch.

[†] Due to the large Q value and the incompleteness of the decay scheme, only branches >1% are included.

[‡] Absolute intensity per 100 decays.

$\gamma(^{101}\mathrm{Y})$

Iγ normalization: Authors give only Iβ(g.s.)=35% 17 based on Iγ(128γ)/Iγ(192γ) in ¹⁰¹Mo β⁻ decay taken as 19.6% 4. The evaluator adopts 18.21% 21 which leads to Iγ(128γ)=17% 5.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E_i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	$\alpha^{\#}$	Comments
79.70 5	82 4	590.45	(5/2 ⁻)	510.75 (3	3/2-)	[M1+E2]	<1.8	1.1 8	α(K)=0.9 7; α(L)=0.17 14; α(M)=0.029 24; α(N+)=0.004 3 α(N)=0.004 3; α(O)=0.00014 9 Mult.: from an intensity balance at the 510 level, from: Δπ=no.
123.97 7	66 5	714.44	$(7/2^{-})$	590.45 (5	5/2-)	[M1+E2]		0.29 20	
128.34 5	1000 50	128.31	$(7/2^+)$	0.0 (5	5/2+)	[M1+E2]		0.26 17	
155.99 [@] 6	38 [@] 4	666.61	$(5/2^{-})$	510.75 (3	3/2-)	[M1+E2]		0.13 8	
155.99 [@] 6	5.8 [@] 19	822.48	$(7/2^{-})$	666.61 (5	$5/2^{-}$)	[M1+E2]		0.13 8	
158.43 9	18.2 <i>18</i>	872.87	(9/2-)	714.44 (7	7/2-)	[M1+E2]		0.13 8	$\begin{aligned} &\alpha(\mathbf{K}) = 0.11 \ 7; \ \alpha(\mathbf{L}) = 0.014 \ 10; \\ &\alpha(\mathbf{M}) = 0.0025 \ 16; \\ &\alpha(\mathbf{N}+) = 0.00034 \ 21 \\ &\alpha(\mathbf{N}) = 0.00032 \ 20; \\ &\alpha(\mathbf{O}) = 1.7 \times 10^{-5} \ 10 \end{aligned}$
163.35 5	191 <i>10</i>	291.66	(9/2+)	128.31 (7	7/2+)	[M1+E2]		0.11 7	$\alpha(\mathbf{K})=0.10 \ 6; \ \alpha(\mathbf{L})=0.013 \ 9; \\ \alpha(\mathbf{M})=0.0022 \ 14; \\ \alpha(\mathbf{N}+)=0.00030 \ 19 \\ \alpha(\mathbf{N})=0.00029 \ 18; \\ \alpha(\mathbf{O})=1.6\times10^{-5} \ 9$
202.63 11	18.2 21	494.29	$(11/2^+)$	291.66 (9	$\theta/2^{+})$				
203.92 20	5.6 10	714.44	$(7/2^{-})$	510.75 (3	$3/2^{-})$				
231.89 6	9.5 15	822.48	$(7/2^{-})$	590.45 (5	5/2-)				
282.73 19	5.0 10	872.87	$(9/2^{-})$	590.45 (5	5/2-)				
291.72 9	33 2	291.66	$(9/2^+)$	0.0 (5	5/2+)				
298.52 12	9.1 21	1012.97	$(9/2^{-})$	714.44 (7	7/2-)				
312.87 10	15.8 15	1027.31	$(5/2^{-})$	714.44 (7	7/2-)				
351.68 8	39 <i>3</i>	1762.33	$(5/2^+)$	1410.82 (7	7/2+)				
360.57 19	7.5 16	1027.31	$(5/2^{-})$	666.61 (5	5/2-)				
365.97 24	5.7 13	494.29	$(11/2^+)$	128.31 (7	7/2+)				
379.89 8	56 3	890.64	$(1/2^{-})$	510.75 (3	3/2-)				
387.77 8	73 4	1685.35	$(3/2^+)$	1297.59 (5	5/2+)				
406.37 12	18.0 21	996.82	$(3/2^{-})$	590.45 (5	5/2-)				
422.84 9	31.8 24	714.44	$(7/2^{-})$	291.66 (9	$\theta/2^{+})$				
436.98 9	32.2 23	1027.31	$(5/2^{-})$	590.45 (5	$5/2^{-})$				
451.58 7	10.4 15	1685.35	$(3/2^{+})$	1233.77 (3	3/2+)				
462.14 8	145 8	590.45	$(5/2^{-})$	128.31 (7	7/2+)				

Continued on next page (footnotes at end of table)

101 Sr β^- decay	1988Pe11,1983Wo10	(continued)
-----------------------------	-------------------	-------------

$\gamma(^{101}Y)$ (continued

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$
464 77 10	39.3	1762.33	$(5/2^+)$	$1297.59(5/2^+)$
474 07 7	209 11	1685 35	$(3/2^+)$	$121130(3/2^+)$
485 85 10	28 7 24	996.82	$(3/2^{-})$	$510.75 (3/2^{-})$
510 73 8	470 30	510.75	$(3/2^{-})$	$0.0 (5/2^+)$
516 36 20	10 3 21	1027 31	$(5/2^{-})$	$510.75 (3/2^{-})$
538 39 10	10.1 14	666.61	$(5/2^{-})$	$128 31 (7/2^+)$
551.01.8	71 4	1762.33	$(5/2^+)$	$1211 \ 30 \ (3/2^+)$
574 1 3	93	1871.91	(3/2)	$1297.59(5/2^+)$
586 13 15	14 6 21	714 44	$(7/2^{-})$	1297.39(3/2) 128.31(7/2)
590.40 8	180 10	590.45	$(5/2^{-})$	$0.0 (5/2^+)$
666.60.8	144 8	666.61	$(5/2^{-})$	$0.0 (5/2^+)$
681.03.14	13 1 22	1191 38	(0/2)	$510.75 (3/2^{-})$
688.50 10	16.5	1685.35	$(3/2^+)$	$996.82 (3/2^{-})$
694.33 12	24.4.25	822.48	$(7/2^{-})$	$128.31 (7/2^+)$
700.51 24	12.9 23	1211.30	$(3/2^+)$	$510.75 (3/2^{-})$
706.55.18	13.8.22	1217.31	$(1/2^+)$	$510.75 (3/2^{-})$
714.25 11	31.3	714.44	$(7/2^{-})$	$0.0 (5/2^+)$
744.09 17	4.0 16	872.87	$(9/2^{-})$	$128.31 (7/2^+)$
795.1 4	8.6 24	1685.35	$(3/2^+)$	$890.64 (1/2^{-})$
812.59 20	17 3	1479.06	(-1)	$666.61 (5/2^{-})$
822.39 17	20 <i>3</i>	822.48	$(7/2^{-})$	$0.0 (5/2^+)$
833.24 18	23 3	1124.85	$(5/2^+)$	$291.66 (9/2^+)$
884.8 5	5.4 16	1012.97	$(9/2^{-})$	$128.31 (7/2^+)$
888.58 14	37 <i>3</i>	1479.06		590.45 (5/2-)
967.1 <i>3</i>	13 4	1258.79	$(7/2^+)$	$291.66 (9/2^+)$
968.0 <i>3</i>	7.0 23	1479.06		510.75 (3/2-)
996.53 10	209 11	1124.85	$(5/2^+)$	$128.31 (7/2^+)$
1005.4 4	9 <i>3</i>	1297.59	$(5/2^+)$	291.66 (9/2+)
1010.55 18	13.4 24	2695.93		1685.35 (3/2+)
1062.9 <i>3</i>	28 8	1191.38		128.31 (7/2 ⁺)
1094.97 20	29 4	1685.35	$(3/2^+)$	590.45 (5/2-)
1119.39 <i>21</i>	25 4	1410.82	$(7/2^+)$	291.66 (9/2+)
1124.82 11	605 <i>30</i>	1124.85	$(5/2^+)$	$0.0 (5/2^+)$
1130.49 21	23 4	1258.79	$(7/2^+)$	128.31 (7/2 ⁺)
1169.57 <i>16</i>	97 11	1297.59	$(5/2^+)$	$128.31 (7/2^+)$
1174.44 <i>13</i>	64 5	1685.35	$(3/2^+)$	$510.75 (3/2^{-})$
1191.37 7	23.4 15	1191.38		$0.0 (5/2^+)$
1205.1 6	8.4 19	1871.91		$666.61 (5/2^{-})$
1211.28 11	339 18	1211.30	$(3/2^+)$	$0.0 (5/2^+)$
1233.45 14	32 4	1233.77	$(3/2^+)$	$0.0 (5/2^+)$
1251.31 12	19 <i>3</i>	1762.33	$(5/2^+)$	$510.75 (3/2^{-})$
1282.69 18	43 5	1410.82	$(7/2^+)$	$128.31 (7/2^+)$
1289.92 22	12.0 23	1418.21	$(5/2^+)$	$128.31 (7/2^+)$
1297.61 13	86 16	1297.59	$(5/2^+)$	$0.0 (5/2^+)$
1389.48 22	14 3	1517.96	$(5/2^{+})$	$128.31 (7/2^+)$
1396.0 5	29 10	2693.66	$(5/2^{+})$	$1297.59(5/2^+)$
1411.1 3	7.6 16	1410.82	$(1/2^{+})$	$0.0 (5/2^+)$
1418.1 4	4.19	1418.21	$(5/2^+)$	$0.0 (5/2^+)$
1454.00 12	21.4	2093.00	(5/2')	$1238.79 (7/2^{+})$
1463.81 20	8.8 19	2675.11	(5/0+)	$1211.30 (3/2^+)$
1518.12.23	8.7 14	151/.96	$(5/2^{+})$	$0.0 (5/2^{+})$
1555.5 4	15 4	2660.95	$(5/2^+)$	$1124.85 (5/2^+)$
1508.39 1/	180	2093.00	(5/2')	$1124.83 (3/2^{+})$
1380.3 3	5.2 12 50 4	18/1.91	(5/2+)	$291.00 (9/2^{\circ})$ 128.21 (7/2 ⁺)
1668.8.3	25 4	2259 3	(3/2)	$590.45 (5/2^{-})$
1000.0 5	20 T			(J_{2})

Continued on next page (footnotes at end of table)

			1	01 Sr β^- d	ecay	1988Pe11,1983Wo10 (continued)
					<u>γ(</u>	¹⁰¹ Y) (continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	
1685.32 16	133 9	1685.35	$(3/2^+)$	0.0	$(5/2^+)$	-
1762.1 4	13 <i>3</i>	1762.33	$(5/2^+)$	0.0	$(5/2^+)$	
1994.4 <i>10</i>	15 4	2660.95	$(5/2^+)$	666.61	$(5/2^{-})$	
2008.4 3	11.6 <i>17</i>	2675.11		666.61	$(5/2^{-})$	
2028.1 3	14 <i>3</i>	2693.66	$(5/2^+)$	666.61	$(5/2^{-})$	
2102.8 9	20 9	2693.66	$(5/2^+)$	590.45	$(5/2^{-})$	
2105.6 5	38 9	2695.93		590.45	$(5/2^{-})$	
2369.1 9	11 5	2660.95	$(5/2^+)$	291.66	$(9/2^+)$	
2387.7 12	38 8	2680.1		291.66	$(9/2^+)$	
2401.8 4	6.0 10	2693.66	$(5/2^+)$	291.66	$(9/2^+)$	
2532.7 <i>3</i>	94 8	2660.95	$(5/2^+)$	128.31	$(7/2^+)$	
2551.9 5	8.5 20	2680.1		128.31	$(7/2^+)$	
2565.4 <i>3</i>	91 8	2693.66	$(5/2^+)$	128.31	$(7/2^+)$	
2660.9 <i>3</i>	154 11	2660.95	$(5/2^+)$	0.0	$(5/2^+)$	
2675.4 6	6.1 17	2675.11		0.0	$(5/2^+)$	
2693.8 <i>3</i>	237 13	2693.66	$(5/2^+)$	0.0	$(5/2^+)$	

[†] From 1988Pe11, more complete data than 1983Wo10 (same group). [‡] For absolute intensity per 100 decays, multiply by 0.017 5.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Multiply placed with intensity suitably divided.

(5/2-)

 $^{101}_{38}{
m Sr}_{63}$

 $I\beta^{-}$

8.9

101 Sr β^- decay 1988Pe11,1983Wo10

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays Legend 0.0 118 ms 3 $\begin{array}{c|c} \bullet & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ \bullet & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \bullet & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ $Q_{\beta} = 9505 \ 80$ $\%\beta^{-}=100$ Log ft 2695.93 (5/2+) 4.93 2693.66 2680.1 2675.11 $(5/2^+)$ 2660.95 + 1668.8 0.43 2259.3 1580. 1205.00 1281.00 1341.014 1871.91 (5/2+) 1762.33 (3/2+) 1685.35 $(7/2^+)$ 1410.82 $(5/2^+)$ 1297.59 1258.79 1211.30 1

Decay Scheme

5

101 Sr β^- decay 1988Pe11,1983Wo10

Decay Scheme (continued)

 $^{101}_{\ 39} Y_{62}$

6

101 Sr β^- decay 1988Pe11,1983Wo10

Decay Scheme (continued)

101 Sr β^- decay 1988Pe11,1983Wo10

Decay Scheme (continued)

¹⁰¹Sr β^- decay 1988Pe11,1983Wo10

Band(E): 1/2[431] band

(1/2⁺) 1217.31

