101 Rb β^- decay 1995Lh04,1992Ba28

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Jean Blachot	ENSDF	1-Jul-2006							

Parent: ¹⁰¹Rb: E=0.0; $J^{\pi}=(3/2^+)$; $T_{1/2}=0.032$ s 4; $Q(\beta^-)=11.81\times10^3$ 11; % β^- decay=100.0 Mass separated from fission products at ISOLDE (CERN) (1995Lh04,1992Ba28). Measured: γ , $\gamma\gamma$, pn branching (1995Lh04), $\beta\gamma$ coin (1992Ba28). The level scheme is as given by 1995Lh04.

1995Lh04 adopt a Pn of 28% 4 and a β branching of 72%.

¹⁰¹Sr Levels

E(level)	$J^{\pi \dagger}$	T _{1/2} ‡	Comments
0.0	$(5/2^{-})$	118 ms 3	
111.6 8	$(7/2^{-})$	0.2 ns 3	
271.1 7	$(3/2^+)$	0.1 ns 2	
363.2 7	$(5/2^+)$	0.4 ns 4	
363.9 <i>13</i>	$(1/2^+)$	1.4 ns 9	
487.8?	$(7/2^+)$		J^{π} : Assuming similar moment of inertia for ⁹⁹ Sr and ¹⁰¹ Sr, possible member of a rotational band.
			E(level): This questionable level was not adopted.
595.9 <i>13</i>			
648.3? 1362.9 8	(9/2 ⁺) (3/2 ⁺)		J^{π} ,E(level): see 487.8 level.

[†] From log ft and syst. The authors suggest also assignment to Nilsson orbitals and strong deformation.

[‡] From 1995Lh04, except for the g.s.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments				
(1.045×10 ⁴ 11)	1362.9	17	4.9	av E β =4848 53				
(1.121×10 ⁴ 11)	595.9	3	5.8	av E β =5216 53				
$(1.145 \times 10^4 \ 11)$	363.9	4	5.7	av E β =5327 53				
(1.145×10 ⁴ 11)	363.2	18	5.0	av Eβ=5327 <i>53</i>				
$(1.154 \times 10^4 \ 11)$	271.1	26	4.8	av Eβ=5371 <i>53</i>				
$(1.181 \times 10^4 \ II)$	0.0	<3	>5.9	I β^- : from assumption that the transition is first forbidden and thus log $ft > 5.9$.				

 † For absolute intensity per 100 decays, multiply by 1.438.

$$\gamma(^{101}\mathrm{Sr})$$

I γ normalization: from $\Sigma TI(\gamma' s \text{ to } gs)=72\%$ 4 and I β to g.s.=0.

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	α^{\ddagger}	Comments
92.2 2	3.5 12	363.2	(5/2+)	271.1	(3/2+)	[M1]	0.203	$\alpha(K)=0.179 \ 3; \ \alpha(L)=0.0205 \ 4; \ \alpha(M)=0.00345 \ 6; \ \alpha(N+)=0.000458 \ 7$
92.8 2	7.8 16	363.9	(1/2+)	271.1	(3/2+)	[M1]	0.200	$\begin{aligned} &\alpha(N) = 0.000431 \ 7; \ \alpha(O) = 2.73 \times 10^{-5} \ 5 \\ &B(M1)(W.u.) = 0.005 \ +6 - 5 \\ &\alpha(K) = 0.176 \ 3; \ \alpha(L) = 0.0201 \ 3; \ \alpha(M) = 0.00339 \ 6; \\ &\alpha(N+) = 0.000450 \ 7 \end{aligned}$

Continued on next page (footnotes at end of table)

				101 Rb β	- decay	1995Lh	04,1992	Ba28 (continu	ued)			
$\gamma(^{101}\mathrm{Sr})$ (continued)												
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.	δ	α^{\ddagger}	Comments			
111.6 2	28 3	111.6	(7/2 ⁻)	0.0	(5/2 ⁻)	M1+E2	0.22	0.1458 22	$\begin{aligned} \alpha(N) = 0.000423 \ 7; \ \alpha(O) = 2.69 \times 10^{-5} \ 4 \\ ce(K)/(\gamma + ce) = 0.147; \\ ce(L)/(\gamma + ce) = 0.0167; \\ ce(M)/(\gamma + ce) = 0.00283; \\ ce(N)/(\gamma + ce) = 0.00045 \\ B(M1)(W.u.) = 0.016 \ 11 \\ \alpha(K) = 0.1273 \ 19; \ \alpha(L) = 0.01556 \ 24; \\ \alpha(M) = 0.00262 \ 4; \ \alpha(N +) = 0.000340 \\ 6 \\ \alpha(N) = 0.000322 \ 5; \ \alpha(O) = 1.88 \times 10^{-5} \ 3 \\ B(M1)(W.u.) = 0.07 \ + 11 - 7 \\ \delta: \ Assumed \ for \ energy \ balance \\ (19951.b04). \end{aligned}$			
124.7 5	≈3 6 4	487.8?	$(7/2^+)$	363.2	$(5/2^+)$							
160.4 5	≈3 3.8.16	648.3?	$(9/2^+)$	487.8?	$(7/2^+)$							
216.5 <i>5</i> 232.7 <i>4</i>	≈3 7.6 24	487.8? 595.9	$(7/2^+)$	271.1 363.2	(3/2 ⁺) (5/2 ⁺)							
251.6 2 271.2 <i>I</i>	31 <i>3</i> 100	363.2 271.1	$(5/2^+)$ $(3/2^+)$	111.6 0.0	(7/2 ⁻) (5/2 ⁻)	[E1]		0.00562	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00498 \ 7; \ \alpha(\mathrm{L}) = 0.000541 \ 8; \\ &\alpha(\mathrm{M}) = 9.06 \times 10^{-5} \ 13; \\ &\alpha(\mathrm{N}+) = 1.200 \times 10^{-5} \ 17 \\ &\alpha(\mathrm{N}) = 1.129 \times 10^{-5} \ 16; \\ &\alpha(\mathrm{O}) = 7.14 \times 10^{-7} \ 10 \end{aligned}$			
363.1 <i>3</i> 1091.8 <i>5</i> 1362.9 <i>4</i>	13.4 <i>21</i> 26 8 14 <i>3</i>	363.2 1362.9 1362.9	$(5/2^+)$ $(3/2^+)$ $(3/2^+)$	$0.0 \\ 271.1 \\ 0.0$	$(5/2^{-})$ $(3/2^{+})$ $(5/2^{-})$				B(E1)(W.u.)=0.0002 +4-2			

 [†] For absolute intensity per 100 decays, multiply by 0.45.
[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

¹⁰¹Rb β^- decay 1995Lh04,1992Ba28

Decay Scheme

 $^{101}_{38}\mathrm{Sr}_{63}$