98 Mo(6 Li,3n γ) 1982Ka15

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Jean Blachot	ENSDF	1-Jul-2006							

E=18- 34 MeV.

Additional information 1.

Measured: γ , $n\gamma$, $\gamma\gamma$, $\gamma(\theta)$, enriched target (97%). A₂ and A₄ can be found in 1982Ka15.

¹⁰¹Rh Levels

E(level)	$J^{\pi \ddagger}$	T _{1/2} †	Comments		
0.0#	1/2-	3.3 v 3			
$157.3^{@}$	9/2+	4 34 d 1			
181.8	7/2	1.51 0 1			
305.0 [#]	3/2-				
354.8 [#]	$5/2^{-}$		J^{π} : $\gamma(\theta)$ for the 355 γ to $1/2^{-1}$ gives $5/2^{-1}$.		
478.1	5/2+				
747.4 10	7/2+				
747.7 [@]	$11/2^+$		J^{π} : $\gamma(\theta)$ for the 146 γ from the 893 level give J=11/2.		
850.4 [#]	7/2-,9/2-		J^{π} : see Adopted Levels.		
893.3 [@]	$13/2^{+}$		J^{π} : excit and $\gamma(\theta)$ for the 736 γ give 13/2 ⁺ .		
898.9 [#]	9/2-		J^{π} : excit and $\gamma(\theta)$ for the 544 γ to the 355 level give $9/2^{-}$.		
977.8	$(9/2^+)$				
1576.5					
1604.1 [#]	$13/2^{-}$		J^{π} : excit and $\gamma(\theta)$ for the 705 γ to the 899 level give 13/2 ⁻ .		
1607.3					
1609.1 [@]	$15/2^{+}$		J^{π} : $\gamma(\theta)$ for the 170 γ from 17/2 ⁺ and for the 716 γ to 13/2 ⁺ give 15/2 ⁺ .		
1778.6	$17/2^{+}$		J^{π} : excit and $\gamma(\theta)$ for the 885 γ to the 893 level give $17/2^+$.		
2386.3 [#]	$17/2^{-}$		J^{π} : excit and $\gamma(\theta)$ for the 782 γ to the 1604 level give $17/2^{-}$.		
2586.1					
2653.6	17/2-		I^{π} , excit and $v(\theta)$ for the 1067 u suggest I=15/2 or 17/2 π =_ from nearly nurs O for this G		
2071.3	1/2		J : excit and $\gamma(0)$ for the 1007y suggest $J=15/2$ of $17/2$. $\pi=-$ from hearly pure Q for this Q.		
2784.6	21/2		J : excit and $\gamma(\theta)$ for the 1002 γ to the 1779 level give 21/2 .		
2930.9					
3236.9?			E(level): The order of the 189-306 cascade from the 3425.9 is not established.		
3247.3					
3425.9?					
3874.0 [@]	$25/2^+$		J^{π} : excit and $\gamma(\theta)$ for the 1093 γ to the 2781 level give 25/2 ⁺ .		

[†] From Adopted Levels.
[‡] From Adopted Levels, Values from this data set are given in comments.
[#] Band(A): Negative parity sequence.
[@] Band(B): Positive parity sequence.

98 Mo(6 Li,3n γ) 1982Ka15 (continued)

 $\gamma(^{101}\text{Rh})$

 ΔE : Uncertainty not given by the authors. Assumed to be 0.3 keV.

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.	δ	Comments
145.9 ^{&} 3	17.5 ^{&} 8	893.3	$13/2^{+}$	747.7	$11/2^{+}$	D		
145.9 <mark>&</mark> 3	17.5 <mark>&</mark> 8	2930.9	- /	2784.6	,			
169.9 3	3.1 5	1778.6	$17/2^{+}$	1609.1	$15/2^{+}$	D		
189 <i>1</i>	10.7 5	3425.9?		3236.9?				E_{γ} : coincidence with all members of the
								$1/2^{-}$ g.s. cascade.
230.1 3	$2.0^{\ddagger} 5$	977.8	$(9/2^+)$	747.7	$11/2^{+}$			
259.4 <i>3</i>	4.6 5	2930.9		2671.5	17/2-			
270.0 3	3.0 [‡] 5	747.7	$11/2^{+}$	478.1	$5/2^{+}$			
285.2 3	2.5 2	2671.5	$17/2^{-}$	2386.3	$17/2^{-}$			
296.0 3	10.3 5	478.1	5/2+	181.8		D+Q	+0.06 + 3 - 2	
305.0 3	14 2	305.0	3/2-	0.0	$1/2^{-}$			I_{γ} : for doublet with intense 306.8 γ from 101 Ru.
306 1		3236.9?		2930.9				E_{γ} : coincidence with all members of the $1/2^{-}$ g.s. cascade.
354.8 <i>3</i>	75.6 10	354.8	$5/2^{-}$	0.0	$1/2^{-}$	Q		
398.3 <i>3</i>	3.2 5	2784.6		2386.3	$17/2^{-}$			
495.6 <i>3</i>	8.4 5	850.4	7/2-,9/2-	354.8	$5/2^{-}$	D		
544.1 <i>3</i>	<82 #	898.9	9/2-	354.8	$5/2^{-}$	Q		
544.6 <i>3</i>	<82 [#]	2930.9		2386.3	$17/2^{-}$			
590.4 <i>3</i>	50.2 10	747.4	7/2+	157.3	$9/2^{+}$	D+Q	-0.68 + 12 - 14	
677.6 3		1576.5		898.9	9/2-			Very weak transition, seen only in $\gamma\gamma$.
705.2 3	49.2 10	1604.1	13/2-	898.9	9/2-	Q	0.50 15 14	
715.8 3	19.4 8	1609.1	15/2+	893.3	$13/2^{+}$	D+Q	-0.59 + 17 - 14	
730.0 3	100	893.3	$\frac{13}{2^{-1}}$	157.3	$9/2^{-1}$	Q		
807 5 3	655	2580.5	17/2	1778.6	15/2 $17/2^+$	Q		
850.6.2	<20.5 [@]	1607.2		1770.0 7777	$11/2^+$			
859.0 5	<29.5 (20.5 [@])	2247.2		747.7	11/2			
801.0.5	<29.5	5247.5		2380.3	1//2			
861.1 3	<29.5	1609.1	15/2+	747.7	11/2+			
875.0 <i>3</i>	5.0+ 5	2653.6		1778.6	17/2+	-		
885.3 3	50.8 10	1778.6	$17/2^+$	893.3	$13/2^+$	Q		
1002.2.3	16.5 8	2/80.8	21/2	1//8.6	1/2'	Q		
1007.2.3	8.4 J 2 5 15	20/1.3 3874.0	$\frac{1}{25}$	1004.1 2780.8	$\frac{13}{2}$	Q O		
1075.2 5	2.5 15	5074.0	25/2	2100.0	∠1/ <i>∠</i>	Y		

 † Uncertainty not given by the authors. Assumed to be ~0.3~keV.

[‡] Upper limit. [‡] I γ =78 3 for the 544.1+544.6 γ 's. [@] I γ =27.5 20 for the 859.6+861.0+861.1 γ 's. [&] Multiply placed with undivided intensity.

⁹⁸Mo(⁶Li,3nγ) 1982Ka15

⁹⁸Mo(⁶Li,3nγ) 1982Ka15

 $^{101}_{\ 45} \rm Rh_{56}$

⁹⁸Mo(⁶Li,3nγ) 1982Ka15

 $^{101}_{\ 45} \rm Rh_{56}$