	His	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jean Blachot	ENSDF	1-Jul-2006

Parent: ¹⁰¹Cd: E=0; $J^{\pi}=(5/2^+)$; $T_{1/2}=1.36 \text{ min } 5$; $Q(\varepsilon)=5.48\times10^3 \ 11$; $\%\varepsilon+\%\beta^+$ decay=100.0

Activity: Sn(p,3pxn) on-line isotopic separation (1980Ka05,1970Hn03).

 J^{π} from log *ft* for levels >1859 have not been adopted by the evaluator.

Measured: γ , $\gamma\gamma$, $\gamma\gamma$, $\gamma\gamma$ (t), ce, Ge(Li), Si(Li) detectors. 1980Ka05 supersedes 1970Hn03 which was done at the same facility (ISOLDE).

E(level)	$\mathrm{J}^{\pi}^{\dagger}$	T _{1/2}	E(level)	$J^{\pi \dagger}$
0	9/2+	11.1 min 3	2130.0 3	$(5/2^+, 7/2^+)$
98.1 2	7/2+		2153.5 6	
274.0 2	$1/2^{-}$	3.10 s	2154.9 <i>4</i>	
750.4 3	$(3/2^{-})$		2243.5 4	
797.4 <i>3</i>	$(5/2^{-})$		2269.9 6	
961.0 4	$(3/2,5/2)^{-}$		2308.0 6	
1022.6 2	$(5/2,7/2)^+$		2386.7 6	
1196.0 4	$(5/2^+, 7/2)$		2391.2 3	$(5/2^+, 7/2^+)$
1285.2 3	$(3/2^+)$		2429.7 <i>3</i>	$(3/2^+, 5/2^+, 7/2^+)$
1301.1 2	$(5/2^+, 7/2^+)$		2455.0 5	$(3/2^+, 5/2^+, 7/2^+)$
1324.6 4	$(5/2^+, 7/2)$		2679.6 4	$(3/2^+, 5/2^+, 7/2^+)$
1357.4 3	$(3/2^+, 5/2^+, 7/2^+)$		2787.7 4	$(3/2^+, 5/2^+, 7/2^+)$
1417.5 2	$(5/2^+, 7/2^+)$		2875.7 <i>3</i>	$(5/2^+, 7/2^+)$
1473.8 5	(3/2, 5/2, 7/2)		2909.1 6	$(3/2^+, 5/2^+, 7/2^+)$
1502.6 5			2940.4 <i>4</i>	$(5/2^+)$
1599.1 6	$(1/2 \text{ to } 7/2)^+$		2943.5 5	$(3/2^+, 5/2^+, 7/2^+)$
1690.9 <i>3</i>	$(5/2,7/2)^+$		3006.1 6	$(3/2^+, 5/2^+, 7/2^+)$
1783.4 4	$(5/2^+, 7/2^+)$		3162.4 4	$(3/2^+, 5/2^+, 7/2^+)$
1794.8 <i>3</i>	$(3/2^+, 5/2^+, 7/2^+)$		3229.2 6	$(3/2^+, 5/2^+, 7/2^+)$
1820.6 3	$(5/2^+, 7/2^+)$		3259.1 6	$(3/2^+, 5/2^+, 7/2^+)$
1859.7 4	$(5/2^+, 7/2^+)$		3380.0 6	$(3/2^+, 5/2^+, 7/2^+)$
1894.7 6	$(3/2^+, 5/2^+, 7/2^+)$		3400.7 8	$(3/2^+, 5/2^+, 7/2^+)$
1990.2 <i>3</i>	$(5/2^+, 7/2^+)$		3430.0 6	$(3/2^+, 5/2^+, 7/2^+)$
2059.0 3	$(5/2^+, 7/2^+)$			

[†] From Adopted Levels for levels below 1820.6. From log *ft* and γ decay for the rest.

 ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\beta^+$ [†]	Ιε	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
$(2.05 \times 10^3 \ 11)$	3430.0		0.4 5	5.3 6	0.4 5	
$(2.08 \times 10^3 \ 11)$	3400.7	0.087 15	0.51 9	5.14 8	0.6 1	av $E\beta$ = 435.4 4; ε K= 0.7388; ε L= 0.09368; ε M+=0.023175
$(2.10 \times 10^3 \ 11)$	3380.0	0.061 16	0.34 9	5.33 11	0.4 1	av E β = 444.5 3; ε K= 0.7310; ε L= 0.09267; ε M+=0.022925
$(2.22 \times 10^3 \ 11)$	3259.1	0.105 21	0.39 8	5.31 9	0.5 1	av E β = 497.8 3; ε K= 0.6820; ε L= 0.08635; ε M+=0.021357
$(2.25 \times 10^3 \ 11)$	3229.2	0.045 23	0.15 8	5.73 22	0.2 1	av E β = 511.0 3; ε K= 0.6691; ε L= 0.08469; ε M+=0.020945
$(2.32 \times 10^3 \ 11)$	3162.4	0.16 3	0.44 8	5.30 8	0.6 1	av E β = 540.68 <i>18</i> ; ε K= 0.6394; ε L= 0.08089; ε M+=0.020003

¹⁰¹Cd ε decay **1980Ka05** (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^+$	$\mathrm{I}\varepsilon^{\dagger}$	Log <i>ft</i>	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(2.47×10 ³ 11)	3006.1	0.14 4	0.26 7	5.59 11	0.4 1	av $E\beta = 610.4 \ 3; \ \varepsilon K = 0.5678; \ \varepsilon L = 0.07173; \ \varepsilon M + = 0.017736$
(2.54×10 ³ 11)	2943.5	0.68 4	1.12 7	4.98 <i>3</i>	1.8 <i>1</i>	av $E\beta$ = 638.39 23; ε K= 0.5390; ε L= 0.06807; ε M+=0.016830
(2.54×10 ³ 11)	2940.4	0.79 19	1.3 4	4.91 11	2.1 5	av $E\beta$ = 639.78 18; ε K= 0.5376; ε L= 0.06789; ε M \pm =0.016785
(2.57×10 ³ 11)	2909.1	0.20 4	0.30 6	5.56 9	0.5 1	av $E\beta = 0.053.8 \ 3; \ \varepsilon K = 0.5234; \ \varepsilon L = 0.06608;$
(2.60×10 ³ 11)	2875.7	0.62 21	0.9 3	5.11 15	1.5 5	av $E\beta = 668.84 \ 14; \ \varepsilon K = 0.5084; \ \varepsilon L = 0.06417;$
(2.69×10 ³ 11)	2787.7	1.19 23	1.4 3	4.93 9	2.6 5	av $E\beta$ = 7.08.47 18; ε K= 0.4698; ε L= 0.05926; ε M = 0.014640
(2.80×10 ³ 11)	2679.6	0.36 5	0.34 5	5.58 7	0.7 1	av $E\beta$ = 757.34 19; ε K= 0.4247; ε L= 0.05354;
(3.03×10 ³ 11)	2455.0	0.79 6	0.51 4	5.48 4	1.3 1	av $E\beta$ = 859.46 23; ε K= 0.3417; ε L= 0.04302; ε M_=0.010633
(3.05×10 ³ 11)	2429.7	2.76 19	1.74 12	4.96 4	4.5 3	av $E\beta$ = 871.01 <i>14</i> ; ε K= 0.3333; ε L= 0.04196; ε M \pm =0.010370
(3.09×10 ³ 11)	2391.2	1.1 4	0.67 19	5.38 13	1.8 5	av $E\beta$ = 888.60 <i>14</i> ; ε K= 0.3209; ε L= 0.04039; ε M _± =0.009082
(3.09×10 ³ 11)	2386.7	0.25 7	0.15 4	6.04 11	0.4 1	av $E\beta = 890.7 \ 3; \ \varepsilon K = 0.3195; \ \varepsilon L = 0.04021;$ sM+=0.00938
(3.17×10 ³ 11)	2308.0	0.39 7	0.21 4	5.92 8	0.6 1	av $E\beta$ = 926.7 3; ε K= 0.2957; ε L= 0.03720; ε M _± =0.009192
(3.21×10 ³ 11)	2269.9	0.27 7	0.13 4	6.12 11	0.4 1	av $E\beta = 944.2 \ 3; \ \varepsilon K = 0.2848; \ \varepsilon L = 0.03582;$ sM+=0.008852
(3.24×10 ³ 11)	2243.5	0.41 7	0.19 4	5.96 8	0.6 1	av $E\beta$ = 956.29 19; ε K= 0.2775; ε L= 0.03490; ε M \pm =0.008624
(3.33×10 ³ 11)	2154.9	0.5 4	0.21 15	6.0 4	0.7 5	av $E\beta$ = 997.04 <i>19</i> ; ε K= 0.2544; ε L= 0.03198; ε M \pm =0.007003
(3.33×10 ³ 11)	2153.5	0.42 5	0.176 18	6.03 5	0.6	av $E\beta = 997.7 \ 3; \ \varepsilon K = 0.2540; \ \varepsilon L = 0.03194;$ sM+=0.007802
(3.35×10 ³ 11)	2130.0	5.6 3	2.27 12	4.92 3	7.9 4	av $E\beta$ = 1008.51 14; ε K= 0.24826; ε L= 0.03121; ε M \pm =0.007712
(3.42×10 ³ 11)	2059.0	1.83 22	0.67 8	5.47 6	2.5 3	av $E\beta$ = 1041.25 14; ε K= 0.23170; ε L= 0.02912; ε M \pm =0.007195
(3.49×10 ³ 11)	1990.2	1.5 3	0.50 10	5.62 9	2.0 4	av $E\beta = 1073.04 \ I4$; $\varepsilon K = 0.21683$; $\varepsilon L = 0.02724$; $\varepsilon M \pm -0.006731$
(3.59×10 ³ 11)	1894.7	1.4 4	0.41 12	5.72 13	1.8 5	av $E\beta$ = 1117.3 3; ε K= 0.19795; ε L=0.024863; ε M \pm =0.006143
(3.62×10 ³ 11)	1859.7	4.1 4	1.17 12	5.28 5	5.3 5	av $E\beta$ = 1133.48 <i>19</i> ; ε K= 0.19151; ε L=0.024052; ε M+=0.005942
(3.66×10 ³ 11)	1820.6	6.21 24	1.69 7	5.131 23	7.9 3	av $E\beta$ = 1151.63 14; ε K= 0.18461; ε L=0.023182; ε M+=0.005777
(3.69×10 ³ 11)	1794.8	3.2 4	0.83 11	5.44 6	4.0 5	av $E\beta$ = 1163.61 <i>14</i> ; ε K= 0.18021; ε L=0.022628; ε M \pm =0.005590
$(3.70 \times 10^3 \ 11)$	1783.4	0.79 8	0.206 21	6.05 5	1.0 1	av $E\beta$ = 1168.91 <i>19</i> ; ϵ K= 0.17831; ϵ L=0.022388; ϵ M+=0.005531
(3.79×10 ³ 11)	1690.9	4.5 4	1.04 10	5.37 5	5.5 5	av $E\beta$ = 1211.95 14; ε K= 0.16372; ε L=0.020551; ε M \pm =0.005077
(3.88×10 ³ 11)	1599.1	1.5 5	0.31 9	5.91 <i>13</i>	1.8 5	av $E\beta$ = 1254.7 3; ε K= 0.15064; ε L=0.018904; ε M \pm =0.004670
(3.98×10 ³ 11)	1502.6	0.4 4		6.6 5	0.4 4	av E β = 1299.81 24; ε K= 0.13824; ε L=0.017342; sM+-0.004284
(4.01×10 ³ 11)	1473.8	0.4 5		6.6 6	0.4 5	av E β = 1313.28 24; ε K= 0.13479; ε L=0.016907;
			Co	ontinued on r	next page (fo	otnotes at end of table)

¹⁰¹Cd ε decay **1980Ka05** (continued)

$I\beta^+$ Ιε† E(decay) E(level) $I(\varepsilon + \beta^+)^{\dagger}$ Comments Log *ft ε*M+=0.004176 (4.06×10³ 11) 1417.5 0.96 5 5.47 3 av Eβ= 1339.63 10; εK= 0.12833; εL=0.016095; 5.5 3 6.5 3 εM +=0.003976 $(4.12 \times 10^3 \ 11)$ 1357.4 0.49 7 5.77 7 av E β = 1367.80 *14*; ε K= 0.12186; ε L=0.015281; 3.0 5 3.5 5 $\varepsilon M += 0.003774$ $(4.16 \times 10^3 \ 11)$ 1324.6 2.0 3 0.32 5 5.97 6 2.3 3 av Eβ= 1383.18 19; εK= 0.11850; εL=0.014859; €M+=0.003670 $(4.18 \times 10^3 \ 11)$ 1301.1 2.6 5 0.40 7 5.87 8 3.0 5 av Eβ= 1394.21 10; εK= 0.11616; εL=0.014565; €M+=0.003597 $(4.19 \times 10^3 II)$ 1285.2 0.24 7 6.10 13 av Eβ= 1401.67 14; εK= 0.11462; εL=0.014370; 1.6 5 1.8 5 €M+=0.003549 (4.28×10³ 11) 1196.0 6.20 14 av E β = 1443.58 19; ε K= 0.10640; ε L=0.013336; 1.6 5 1.6 5 $\varepsilon M += 0.003294$ (4.46×10³ 11) 1022.6 3.9 4 0.47 5 5.86 5 4.4 4 av $E\beta = 1525.25 \ 10$; $\varepsilon K = 0.09244$; $\varepsilon L = 0.011582$; $\varepsilon M += 0.002860$ $(4.52 \times 10^3 \ II)$ 961.0 1.4 3 0.16 3 6.33 9 1.6 3 av E\u03c6= 1554.31 19; \varepsilon K= 0.08805; \varepsilon L=0.011030; €M+=0.002724 $(4.68 \times 10^3 \ II)$ 797.4 1.09 11 0.108 11 6.55 5 1.2 av Eβ= 1631.64 15; εK= 0.07761; εL=0.009719 $(5.21 \times 10^3 \ 11)$ $(5.38 \times 10^3 \ 11)$ 274.0 0.4 8 7.3 9 0.4 8 av E\u03c6= 1880.25 10; \varepsilonK= 0.05335; \varepsilonL=0.006675 98.1 8.6 9 0.50 5 6.00 5 9.1 av Eβ= 1964.17 10; εK= 0.04746; εL=0.005936

[†] Absolute intensity per 100 decays.

ϵ, β^+ radiations (continued)

 $\gamma(^{101}\text{Ag})$

I γ normalization: from $\Sigma I\gamma$ to g.s.=100, and assumed no I β to g.s.

4

${\rm E_{\gamma}}^{\ddagger}$	Ι _γ ‡#	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [†]	δ	α [@]	Comments
46.1 2	0.9	797.4	(5/2 ⁻)	750.4	(3/2 ⁻)	D			Mult.: From intensity balance at the 750 level, $\alpha \le 1.8$, Compared with theory of 1.44 for E1, 3.44 for M1, this suggests E1, The author suggest $\pi(750)=-$, which requires mult=M1,so d is adopted.
98.1 2	100	98.1	7/2+	0	9/2+	M1+E2	0.52 18	0.68 13	$\alpha(K)$ exp=0.56 9
163.3 5	0.3	961.0	$(3/2, 5/2)^{-}$	797.4	$(5/2^{-})$				
176.2 2	12.0	274.0	1/2-	98.1	7/2+	E3		1.11	$\begin{aligned} &\alpha(\mathbf{K}) = \ 0.776; \ \alpha(\mathbf{L}) = \ 0.274; \ \alpha(\mathbf{M}) = \ 0.0543; \\ &\alpha(\mathbf{N}+) = 0.00992 \\ &\alpha(\mathbf{K}) \exp[=0.805 \ 12; \ \mathbf{K/L} = 2.4 \ 2 \\ &\mathbf{B}(\mathbf{E3})(\mathbf{W}.\mathbf{u}.) = 0.0581 \ 11 \end{aligned}$
210.4 5	0.3	961.0	$(3/2, 5/2)^{-}$	750.4	$(3/2^{-})$				
234.6 5	0.3	1196.0	$(5/2^+, 7/2)$	961.0	$(3/2, 5/2)^{-}$				
278.2 5	0.9	1301.1	$(5/2^+, 7/2^+)$	1022.6	$(5/2,7/2)^+$				
308.9 5	4.3	2130.0	$(5/2^+, 7/2^+)$	1820.6	$(5/2^+, 7/2^+)$				
334.7 5	1.3	2130.0	$(5/2^+, 7/2^+)$	1794.8	$(3/2^+, 5/2^+, 7/2^+)$				
366.3 5	0.3	1690.9	$(5/2,7/2)^+$	1324.6	$(5/2^+, 7/2)$				
394.6 5	0.8	1417.5	$(5/2^+, 7/2^+)$	1022.6	$(5/2,7/2)^+$				
403.5 5	0.4	1820.6	$(5/2^+, 7/2^+)$	1417.5	$(5/2^+,7/2^+)$				
405.2 5	1.3	1690.9	$(5/2, 7/2)^+$	1285.2	$(3/2^+)$				
446.3 7	0.7	2875.7	$(5/2^+, 7/2^+)$	2429.7	$(3/2^+, 5/2^+, 7/2^+)$				
476.5 2	3.8	750.4	(3/2)	274.0	1/2				
487.75	0.3	1285.2	$(3/2^+)$	/9/.4	(5/2)				
493.8 5	0.9	1/94.8	$(3/2^+, 5/2^+, 1/2^+)$	1301.1	$(5/2^+, 1/2^+)$	50			
523.4 2	10.7	/9/.4	(5/2)	274.0	1/2	E2			$\alpha(K)=0.004797; \alpha(L)=0.0006139; \alpha(M)=0.0001167$ $17; \alpha(N+)=2.08\times10^{-5} 3$ $\alpha(N)=2.00\times10^{-5} 3; \alpha(O)=8.42\times10^{-7} 12$ $\alpha(K)=0.0060 8$
535.0 5	0.4	1285.2	$(3/2^+)$	750.4	$(3/2^{-})$				
570.7 5	0.5	2391.2	$(5/2^+, 7/2^+)$	1820.6	$(5/2^+, 7/2^+)$				
609.1 5	3.9	2429.7	$(3/2^+, 5/2^+, 7/2^+)$	1820.6	$(5/2^+, 7/2^+)$	M1,E2			α (K)=0.00333; α (L)=0.00039 α (K)exp=0.0031 7
635.0 5	1.0	2429.7	$(3/2^+, 5/2^+, 7/2^+)$	1794.8	$(3/2^+, 5/2^+, 7/2^+)$				
637.9 2	5.1	1599.1	$(1/2 \text{ to } 7/2)^+$	961.0	(3/2,5/2) ⁻	E1			$\alpha(K)=0.00100; \ \alpha(L)=0.00012$ $\alpha(K)\exp=0.0018 \ 7$
652.8 7	0.7	2154.9		1502.6					-
677.4 5	1.6	1473.8	(3/2,5/2,7/2)	797.4	$(5/2^{-})$				
682.0 7	0.8	2154.9		1473.8	(3/2,5/2,7/2)				
686.9 2	9.1	961.0	(3/2,5/2)-	274.0	1/2-	M1,E2			α (K)=0.00240 <i>12</i> ; α (L)=0.000289 <i>7</i> ; α (M)=5.49×10 ⁻⁵ <i>13</i> ; α (N+)=9.9×10 ⁻⁶ <i>3</i>

 $^{101}_{47}\mathrm{Ag}_{54}\text{-}4$

					101 Cd $arepsilon$ decay	7 1980F	Ka05 (continued)
					$\gamma(^{10}$	¹ Ag) (con	tinued)
E_{γ} ‡	Ι _γ ‡#	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [†]	Comments
							$\alpha(N)=9.5\times10^{-6}$ 3; $\alpha(O)=4.4\times10^{-7}$ 3
690.0.7	1.0	2679.6	$(3/2^+ 5/2^+ 7/2^+)$	1990.2	$(5/2^+ 7/2^+)$		α (K)exp=0.0022 3
700.5 8	1.3	2059.0	$(5/2^+, 7/2^+)$	1357.4	$(3/2^+, 5/2^+, 7/2^+)$		
705.8 <mark>&</mark> 7	2.6 <mark>&</mark>	1502.6		797.4	$(5/2^{-})$		
705.8 ^{&} 2	2.6 <mark>&</mark>	1990.2	$(5/2^+, 7/2^+)$	1285.2	$(3/2^+)$		
728.8 5	1.7	2787.7	$(3/2^+, 5/2^+, 7/2^+)$	2059.0	$(5/2^+, 7/2^+)$	M1,E2	$\alpha(K)=0.00220; \ \alpha(L)=0.00026$ $\alpha(K)\exp=0.0028 \ 7$
757.7 5	0.6	2059.0	$(5/2^+, 7/2^+)$	1301.1	$(5/2^+, 7/2^+)$		
772.4 5	1.8	2130.0	$(5/2^+, 7/2^+)$	1357.4	$(3/2^+, 5/2^+, 7/2^+)$		
796.0 5	0.4	2153.5	(5/2+7/2+)	1357.4	$(3/2^+, 5/2^+, 7/2^+)$		
798.0 J	0.4	1022.6	$(3/2^{+}, 1/2^{+})$ $(5/2, 7/2)^{+}$	1022.0	$(3/2, 7/2)^{+}$	M1 E2	$\alpha(\mathbf{K}) = 0.00120.0; \ \alpha(\mathbf{L}) = 0.000141.9; \ \alpha(\mathbf{M}) = 2.68 \times 10^{-5}.15;$
924.7 2	14.0	1022.0	(3/2,7/2)	98.1	1/2	WI1,E2	$\alpha(N)=0.00120$ 9, $\alpha(L)=0.000141$ 8, $\alpha(M)=2.08\times10^{-1}$ 13, $\alpha(N+)=4.9\times10^{-6}$ 3
							$\alpha(N) = 4.6 \times 10^{-6} 3; \ \alpha(O) = 2.18 \times 10^{-7} 18$ $\alpha(K) \exp = 0.00112 14$
950.3 5	0.9	3380.0	$(3/2^+, 5/2^+, 7/2^+)$	2429.7	$(3/2^+, 5/2^+, 7/2^+)$		
969.6 5	0.8	2386.7		1417.5	$(5/2^+, 7/2^+)$		
974.1 5	2.6	2391.2	$(5/2^+,7/2^+)$	1417.5	$(5/2^+, 7/2^+)$		
1011.4 5	0.8	1285.2	$(3/2^{+})$	274.0	1/2		
1022.6 5	4.6	1022.6	$(3/2, 1/2)^{-1}$ (3/2+5/2+7/2+)	1357 /	$9/2^{-1}$ (3/2+ 5/2+ 7/2+)		
1072.0.5 1098.0 ^{<i>a</i>} 5	1.0^{a}	1196.0	(5/2, 5/2, 7/2)	98.1	(3/2, 3/2, 7/2) $7/2^+$		
1098.0^{a} 5	0.8^{a}	2455.0	$(3/2^+, 7/2)$ $(3/2^+, 5/2^+, 7/2^+)$	1357.4	$(3/2^+ 5/2^+ 7/2^+)$		
1108.6 7	0.9	2130.0	$(5/2^+, 7/2^+)$	1022.6	$(5/2,7/2)^+$		
1130.0 7	1.0	2429.7	$(3/2^+, 5/2^+, 7/2^+)$	1301.1	$(5/2^+, 7/2^+)$		
1153.8 5	1.0	2455.0	$(3/2^+, 5/2^+, 7/2^+)$	1301.1	$(5/2^+, 7/2^+)$		
1187.3 5	5.9	1285.2	$(3/2^+)$	98.1	7/2+	(E2)	$\alpha(K)=0.00064$
							$\alpha(K) \exp = 0.00082 \ 18$
1196 / 5	15	1106.0	$(5/2^+ 7/2)$	0	9/2+		munt.: From Adopted Levels, gammas.
1203.0.2	10.3	1301 1	$(5/2^+,7/2^+)$	98.1	7/2+		
1203.0 2	1.5	1324.6	$(5/2^+,7/2)$	98.1	$7/2^+$		
1258.9 2	17.4	1357.4	$(3/2^+, 5/2^+, 7/2^+)$	98.1	7/2+	M1,E2	$\alpha(K)=0.00057$ $\alpha(K)=xn=0.00062.8$
1285.4 5	1.4	2308.0		1022.6	$(5/2,7/2)^+$		a()r
1301.1 5	0.6	1301.1	$(5/2^+, 7/2^+)$	0	9/2+		
1308.7 7	0.8	2269.9		961.0	$(3/2, 5/2)^{-}$		
1319.5 5	4.1	1417.5	$(5/2^+, 7/2^+)$	98.1	7/2+		
1324.6 2	3.8	1324.6	$(5/2^+, 7/2)$	0	9/2+		
1331.8 6	5.3	2130.0	$(5/2^+, 7/2^+)$	797.4	$(5/2^{-})$		
1408.4 /	0.8	2429.7	$(3/2^{\circ}, 5/2^{\circ}, 1/2^{\circ})$	1022.6	$(3/2, 1/2)^{-1}$		

S

From ENSDF

 $^{101}_{47}\mathrm{Ag}_{54}$ -5

L

$\gamma(^{101}\text{Ag})$ (continued)

E_{γ}^{\ddagger}	I_{γ} ^{‡#}	E_i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	Mult. [†]	Comments
1417.1.2	12.3	1417.5	$(5/2^+, 7/2^+)$	0	$9/2^{+}$	M1.E2	$\alpha(K) \exp = 0.00060.8$
1430.7.5	1.1	2787.7	$(3/2^+, 5/2^+, 7/2^+)$	1357.4	$(3/2^+, 5/2^+, 7/2^+)$,	
1491.6.5	1.2	2909.1	$(3/2^+, 5/2^+, 7/2^+)$	1417.5	$(5/2^+, 7/2^+)$		
1586.8.5	2.4	2943.5	$(3/2^+, 5/2^+, 7/2^+)$	1357.4	$(3/2^+, 5/2^+, 7/2^+)$		
1592.6.2	3.9	1690.9	$(5/2,7/2)^+$	98.1	7/2+		
1631.4.5	5.3	2429.7	$(3/2^+, 5/2^+, 7/2^+)$	797.4	$(5/2^{-})$		
1642.4.5	1.6	2943.5	$(3/2^+, 5/2^+, 7/2^+)$	1301.1	$(5/2^+, 7/2^+)$		
1656.5 7	2.8	2679.6	$(3/2^+, 5/2^+, 7/2^+)$	1022.6	$(5/2,7/2)^+$		
1685.7.5	1.5	1783.4	$(5/2^+, 7/2^+)$	98.1	7/2+		
1690.9.2	7.2	1690.9	$(5/2,7/2)^+$	0	$9/2^+$		
1696 7 2	9.1	1794.8	$(3/2^+, 7/2^+)$	98.1	7/2+		
1722.5.5	24.1	1820.6	$(5/2^+, 7/2^+)$	98.1	7/2+		
1761 7 5	2 5	1859 7	$(5/2^+,7/2^+)$	98.1	7/2+		
1783 1 5	0.7	1783.4	$(5/2^+,7/2^+)$	0	9/2+		
1796.6.2	3.0	1894 7	$(3/2^+, 7/2^-)$ $(3/2^+, 5/2^+, 7/2^+)$	98.1	7/2+		
1801.6.5	1.2	3400 7	$(3/2^+, 3/2^+, 7/2^+)$	1599 1	$(1/2 \text{ to } 7/2)^+$		
1820.6.5	0.7	1820.6	$(5/2^+, 5/2^+, 7/2^+)$	0	$9/2^+$		
1842.0.5	1.1	3259.1	$(3/2^+, 7/2^+)$ $(3/2^+, 5/2^+, 7/2^+)$	1417 5	$(5/2^+ 7/2^+)$		
1853.0.5	0.8	2875 7	$(5/2^+, 5/2^+, 7/2^+)$	1022.6	$(5/2,7/2)^+$		
1850 7 2	0.0	1850 7	$(5/2^+,7/2^+)$	0	(3/2, 7/2) $0/2^+$		
1892.0.5	1.4	1990.2	$(5/2^+,7/2^+)$	98.1	7/2+		
1052.0 5	5.0	2059.0	$(5/2^+,7/2^+)$	08.1	7/2+		
1083 5 5	0.8	3006.1	$(3/2^+, 7/2^-)$ $(3/2^+, 5/2^+, 7/2^+)$	1022.6	$(5/2 7/2)^+$		
1900.5°	1.0 ^{<i>a</i>}	1000.1	$(5/2^+, 5/2^-, 7/2^+)$	1022.0	(3/2, 7/2) $0/2^+$		
$1990.2 \ J$	1.9	1990.2	(3/2, 7/2) $(3/2^+, 5/2^+, 7/2^+)$	707.4	$\frac{5}{2}$		
1990.2 5	1.0	2/0/./	(3/2, 3/2, 1/2) (3/2+5/2+7/2+)	1/9/.4	(3/2)		
2012.9 7	0.8	2120.0	(5/2, 5/2, 1/2)	1417.3	(3/2, 1/2)		
2052.57	0.9	2150.0	(3/2, 7/2)	90.1	7/2		
2055.4 7	0.8	2134.9	(5/2 + 7/2 +)	98.1	1/2 0/2+		
2039.0 5	0.5	2039.0	$(3/2^+, 7/2^+)$	0	$9/2^{+}$		
2130.0 3	2.9	2130.0	(3/2, 1/2) (3/2+5/2+7/2+)	1022.6	9/2 (5/2 7/2)+		
2139.27	0.9	2102.4 2242.5	(3/2, 3/2, 1/2)	1022.0	$(J/2, I/2)^{+}$		
2140.0 3	0.5	2245.5	$(5/2^{+})$	98.1	$\frac{1}{2}$		
2190.77	0.0	2940.4	$(5/2^{+})$	/50.4	(3/2)		
2243.5 5	1.1	2245.5	(5/0+7/0+)	0	9/2* 7/2+		
2295.57	0.4	2391.2	$(5/2^+, 7/2^+)$	98.1	$1/2^{+}$		
2391.27	0.4	2391.2	$(5/2^{+}, 1/2^{+})$	707.4	9/2		
2431.3 3	0.4	3229.2 2875 7	$(3/2^+, 3/2^+, 1/2^+)$	/9/.4	(3/2)		
2//0.1 /	1.2	28/3./	$(3/2^+, 1/2^+)$	98.1	1/2 ⁺ 7/2 ⁺		
2841.9 3	3.1 0.5	2940.4	$(3/2^{+})$ (5/0+ 7/0+)	98.1	1/2 ⁺		
28/3./ 3	0.5	28/3./	$(3/2^+, 1/2^+)$	0	9/2 ⁺		
2940.0 3	0.4	2940.4	$(3/2^{+})$ $(2/2^{+}, 5/2^{+}, 7/2^{+})$	0 1	9/2 7/0+		
3064.9 /	0.4	3162.4	$(3/2^{+}, 5/2^{+}, 1/2^{+})$	98.1	1/2		

From ENSDF

$\gamma(^{101}\text{Ag})$ (continued)

[†] From $\alpha(K)$ exp.

- [±] Authors state $\Delta E\gamma \approx 0.2$ and $\Delta I\gamma \approx 6\%$. In the case of doublets, these values may increase to 0.7 keV and 20%. [#] For absolute intensity per 100 decays, multiply by 0.472 5.
- [@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Multiply placed with undivided intensity.

^{*a*} Multiply placed with intensity suitably divided.

 $\underbrace{\frac{\text{Decay Scheme}}{\text{Intensities: I}_{(\gamma+ce)} \text{ per 100 parent decays}}}_{\text{@ Multiply placed: intensity suitably divided}}$

8

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Decay Scheme (continued)

 $^{101}_{47}Ag_{54}$