100 Y β^- decay (0.94 s) 2002Lh01

	Histor	ry	
Туре	Author	Citation	Literature Cutoff Date
Update	Balraj Singh and Jun Chen	ENSDF	12-Dec-2022

Parent: ¹⁰⁰Y: E=145 15; $J^{\pi}=4^+$; $T_{1/2}=0.94$ s 3; $Q(\beta^-)=9051$ 14; $\%\beta^-$ decay=100

 100 Y-E,J^{π},T_{1/2}: From 100 Y Adopted Levels. Note that isomer energy is listed as 144 keV *16* in 2021Ko07.

¹⁰⁰Y-Q(β^{-}): From 2021Wa16.

2002Lh01: ¹⁰⁰Y source was produced by 25-MeV p-induced fission of ²³⁸U. Fission products were separated by the IGISOL

separator. γ rays were detected with four Ge detectors. Measured E γ , I γ , $\gamma\gamma$ -coin. Deduced levels, J, π , β -decay branching ratios, log *ft*. Comparisons with theoretical calculations.

Others:

1977Kh03: ¹⁰⁰Y source was produced from ²³⁵(U,F) with the JOSEF gas-filled separator. γ rays were detected with Ge(Li) detector, x rays were detected with a Ge detector and conversion electrons were detected with a Si(Li) detector. Measured E γ , I γ , $\gamma\gamma$ -coin, γ (t),ce(t). Deduced levels, J, π , β -decay branching ratios, log *ft*, parent T_{1/2}.

1977Pf01: measured Ey, Iy, $T_{1/2}$ (¹⁰⁰Y isotope) with the isotope separator Lohengrin.

1979Bo26: measured selected $E\gamma$ using curved-crystal measurement.

The identification of this isomer is based on the observation of an intense 352γ , decaying with $T_{1/2}=0.96$ s and in coincidence with the 212γ to the g.s. The 352γ is most likely the same as the (4⁺) to 2⁺ transition observed in ²⁵²Cf SF decay. 1977Kh03 assigned five γ rays to this isomer only, on the basis of $T_{1/2}$ data, but the later work of 1986Wo01 showed that all these γ rays were also present in the decay of the 735-ms isomer, with the difference that the 352γ was much more intense in the spectrum obtained by 1977Kh03 and a weak 1097 γ was not reported by 1986Wo01. The source collection procedures were different in 1977Kh03 and 1986Wo01, although both used mass separation of fragments from neutron fission of ²³⁵U. The recoil-separator method used by 1977Kh03 collected all the activities of A=100 whereas only the ¹⁰⁰Rb and ¹⁰⁰Sr isotopes were collected in the method used by 1986Wo01. In the former, all isomers of ¹⁰⁰Y (high and low spin) would be observed whereas in the latter mainly the low spin isomer would be detected since the formation of ¹⁰⁰Y was entirely due to ¹⁰⁰Sr β^- decay (g.s. $J^{\pi}=0^+$). It may also be pointed out that the γ -ray spectra shown by 1977Kh03 contain a much larger number of contaminants than those in the spectra shown by 1986Wo01.

Existence of isomerism in ¹⁰⁰Y is confirmed in precision mass measurements of 2007Ha32.

Q(β⁻)=9310 70 (1988GrZX,1984Pa19). Other: 7920 100 (1985IaZZ).

Total decay energy deposit of 9041 keV *1093* calculated by RADLIST code is in agreement with expected value of 9195 keV *20*. However the decay scheme is considered as incomplete in view of unrealistic large β feeding (thus low log *ft* values) to several $\Delta J=2$, $\Delta \pi=n0$ levels in ¹⁰⁰Zr probably due to unobserved transitions from higher-energy levels. There is a large gap of about 7 MeV between $Q(\beta^{-})$ value and the highest known populated level at 2349.

¹⁰⁰Zr Levels

1408 and 1428 levels proposed by 1977Kh03 have been discarded, 1196 γ from 1408 level has now been placed from 1196 level and 1096.7 γ (I γ =4 2) from 1428 level has not been reported by 2002Lh01.

E(level)	J π #
0.0	0^{+}
212.532 9	2^{+}
331.12 11	0^{+}
564.492 15	4+
878.48 11	2^{+}
1061.59 20	6+
1196.10 <i>11</i>	(2^{+})
1397.92 17	(3^{+})
1414.6 <i>3</i>	4+
1441.41 [‡] <i>14</i>	$(1,2^+)$
1856.0 <i>3</i>	4 ⁽⁺⁾
1961.7 4	(6+)

100 Y β^{-} decay (0.94 s) 2002Lh01 (continued)

¹⁰⁰Zr Levels (continued)

E(level) [†]	$J^{\pi #}$	Comments
2003.1? 4		
2070.27 16	$(3,4^{+})$	
2220.3 <i>3</i>	$(2^+, 3, 4^+)$	
2349.29 19	$(3,4^{+})$	
6827+x		E(level): x<2369 24 from Q(β^{-}) (for ¹⁰⁰ Y decay) + Energy of the isomer – S(n)(¹⁰⁰ Zr), where
		$Q(\beta^{-})=9051$ 14, energy of the isomer=145 15 and $S(n)=6827$ 13 from 2021Wa16.

[†] From a least-squares fit to γ -ray energies. [‡] The branching ratios of γ rays are in disagreement with those from 1986Wo01 in the decay of ¹⁰⁰Y β^- decay (735 ms).

[#] From the Adopted Levels.

 β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	$\log ft^{\dagger}$	Comments
$(1.2 \times 10^3 @ 12)$	6827+x	1.02 6		$I\beta^-$: $\beta^- n = 1.02$ 6 for the decay of the ¹⁰⁰ Y g.s. and the isomer.
(6847 21)	2349.29	≈13.5	≈5.6	av $E\beta = 3108.7$ 99
(6976 21)	2220.3	<1.7	>6.6	$I\beta = 14.8 \ 25, \ \log ft = 5.7 \ (2002Lh01). \ Apparent \ I\beta = 13.5 \ 25 \ (evaluators).$ av $E\beta = 3170.8 \ 99$
(7126 21)	2070.27	≈11.6	≈5.8	$I\beta$ =1.9 5, log <i>ft</i> =6.6 (2002Lh01). Apparent $I\beta$ =1.7 5 (evaluators). av E β =3242.9 99
(7193 ^{#} 21)	2003.1?	< 0.8	>6.9	$I\beta$ =12.7 22, log <i>ft</i> =5.8 (2002Lh01). Apparent $I\beta$ =11.6 22 (evaluators). av E β =3275.3 99
				Apparent I β =0.8 3 (evaluators).
(7234" 21)	1961.7			av $E\beta$ =3295.2 99 I β =0.2 2, log <i>ft</i> =7.3 (2002Lh01). Apparent I β =0.26 11 (evaluators) is probably due to missing γ intensity from higher levels, as no β feeding is expected for a Δ I=2 β transition
(7340 21)	1856.0	<1.0	>6.9	av E β =3346.0 99
				I β =1.9 4, log <i>ft</i> =6.7 (2002Lh01). Apparent I β =1.0 2 (evaluators).
(7781 21)	1414.6	<2.4	>6.6	av E β =3558.3 99 I β =2.4.5 log θ =6.7 (2002I b01) Apparent I β =2.4.5 (evaluators)
(7798 21)	1397.92	<3.2	>6.5	$\mu = 2.4.5$, $\log \mu = 0.7$ (2002En01). Apparent $\mu = 2.4.5$ (contrators). av E $\beta = 3566.3.99$
				$I\beta = 3.6 \ 8$, log ft=6.5 (2002Lh01). Apparent $I\beta = 3.2 \ 8$ (evaluators).
(8000 [#] 21)	1196.10			av E β =3663.3 99 I β =6.9 15, log ft=6.3 (2002Lh01). Apparent I β =6.2 16 (evaluators) is probably due to missing γ intensity from higher levels, as no β feeding is expected for a Δ J=2 β transition.
(8134 [#] 21)	1061.59			av $E\beta$ =3727.9 99 I β =1.6 3, log <i>ft</i> =6.9 (2002Lh01). Apparent I β =1.1 3 (evaluators) is probably due to missing γ intensity from higher levels, as no β feeding is expected for a Δ J=2 β transition.
(8318 [#] 2 <i>1</i>)	878.48			I β =7.2 22, log <i>ft</i> =6.3 (2002Lh01). Apparent I β =6.8 22 (evaluators) is probably due to missing γ intensity from higher levels, as no β feeding is expected for a Δ I=2 β transition
(8632 21)	564.492	≈15	≈6.0	$I\beta$ =16.9 32, log ft=6.0 (2002Lh01). Apparent I β =15 4 (evaluators).
(8865 [#] 21)	331.12			I β =2.3 23, log <i>t</i> =6.9 (2002Lh01). Apparent I β =7 3 (evaluators) is probably due to missing γ intensity from higher levels, as no β feeding is expected for a Δ J=4 β transition.
(8984 [#] 21)	212.532			av E β =4135.6 99 I β =28 11, log ft=5.9 (2002Lh01). Apparent I β =28 16 (evaluators) is probably due to missing γ intensity from higher levels, as no β feeding is expected for a Δ J=2, $\Delta\pi$ =yes β transition.

Continued on next page (footnotes at end of table)

100 Y β^- decay (0.94 s) 2002Lh01 (continued)

β^- radiations (continued)

[†] All the values are considered as approximate since a large gap of about 7 MeV between $Q(\beta^-)$ value and the highest known populated level at 2349 allows the possibility of additional levels and undetected gamma rays. Quoted values of $I\beta^-$ are from $I(\gamma+ce)$ intensity balance at each level. All the $I\beta$ and log *ft* are listed as limits, with only three cases with $I\beta \ge 10\%$ listed as approximate. Values of $I\beta$ and log ft as given in Table V of 2002Lh01 are listed under comments, as are apparent $I\beta$ feedings deduced by the evaluators from γ -intensity intensity balances.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

[@] Estimated for a range of levels.

$\gamma(^{100}\text{Zr})$

I γ normalization: From $\Sigma I(\gamma + \text{ce to g.s.}) = 99$ to g.s., allowing for $\%\beta^- n = 1.02$ 6 for ¹⁰⁰Y and/or ^{100m}Y decay from the Adopted Levels of ¹⁰⁰Y. The γ normalization factor is treated as approximate by the evaluators as the decay scheme is not known well, in particular, apparent 28% β feeding to the first 2⁺ state, and the source may have mixed activity from the decay of the g.s. and the isomer.

The following γ rays with E γ (I γ) assigned to ¹⁰⁰Y decay by 1977Pf01 have been discarded: 455.6(8), 555.6 (26), 583.0 (12), 724.6 (13), 809.4 (12), 826.7 (21), 831.5 (21), 911.1 (15). None of these γ rays was assigned to ¹⁰⁰Y by 2002Lh01, 1986Wo01 or 1977Kh03. A 1096.7 γ , I γ =4 2 reported only by 1977Kh03 has also been discarded.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \&}$	E_i (level)	\mathbf{J}_i^π	$E_f \qquad J_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{a}	$I_{(\gamma+ce)}^{\&}$	Comments
118.6 2	29 6	331.12	0^{+}	212.532 2+	E2		0.597		E_{γ} : other: 118.5 <i>3</i> (1977Pf01). I _γ : 5 <i>2</i> (1977Kh03), 11 (1977Pf01).
212.531 [#] 9	322 58	212.532	2+	0.0 0+	E2		0.0723		E_{γ} : other: 212.5 <i>1</i> (2002Lh01), 212.5 <i>3</i> (1977Pf01). I _{\gamma} : 100 (1977Kh03).
(314.0)	$0.4^{\textcircled{0}}2$	878.48	2+	564.492 4+					
(318.0)	$0.8^{\textcircled{0}}{2}$	1196.10	(2^{+})	878.48 2+					
331.1 2		331.12	0+	0.0 0+	E0			14 5	$I_{(\gamma+ce)}$: 7.4 <i>15</i> (1977Kh03). $I_{(\gamma+ce)}$: deduced by 2002Lh01.
351.960 [#] 12	100 8	564.492	4+	212.532 2+	E2				E_{γ} : other: 351.8 2 (2002Lh01), 351.9 3 (1977Pf01). I _γ : 33 4 (1977Kh03), 48 (1977Pf01).
353.0	0.6 2	1414.6	4+	1061.59 6 ⁺					\dot{E}_{γ} , I_{γ} : from $\gamma\gamma$ -coin (2002Lh01).
497.1 2	6.2 6	1061.59	6+	564.492 4+	E2				
547.4 2	14.7 23	878.48	2+	331.12 0 ⁺					
631.6 2	3.8 8	1196.10	(2^{+})	564.492 4+					
665.8 2	40 6	878.48	2+	212.532 2+	(M1+E2)	+1.0 3			E_{γ} : other: 666.8 <i>3</i> (1977Pf01). I _{γ} : 13 <i>3</i> (1977Kh03), 24 (1977Pf01).
672.4 2	7.0 12	2070.27	$(3,4^{+})$	1397.92 (3 ⁺)					
833.5 <i>3</i>	2.8 10	1397.92	(3^{+})	564.492 4+					
850.1 <i>3</i>	9.3 8	1414.6	4+	564.492 4+	(M1+E2)	+0.99 6			
865.0 2	14.2 23	1196.10	(2^{+})	331.12 0 ⁺					
874.3 <i>3</i>	8.7 17	2070.27	$(3,4^{+})$	1196.10 (2 ⁺)					
878.6 2	23 3	878.48	2^{+}	$0.0 0^+$					I _γ : 18 <i>3</i> (1977Kh03).
900.1 <i>3</i>	1.1 4	1961.7	(6^{+})	$1061.59 6^+$	(M1+E2)	+0.74 7			
907.8 <i>3</i>	13.8 16	2349.29	$(3,4^{+})$	1441.41 (1,2)	-)				
983.2 <i>3</i>	7.0 12	1196.10	(2^{+})	$212.532 \ 2^+$					
1110.1 3	4.3 8	1441.41	$(1,2^+)$	331.12 0+					
1153.0 <i>3</i>	11.1 <i>15</i>	2349.29	$(3,4^{+})$	1196.10 (2 ⁺)					
1185.4 <i>3</i>	17.7 15	1397.92	(3^{+})	$212.532 \ 2^+$					
1191.6 <i>3</i>	22.1 17	2070.27	$(3,4^{+})$	$878.48 2^+$					
1196.2 2	20 3	1196.10	(2^{+})	$0.0 0^+$					E_{γ}, I_{γ} : in 1977Kh03, 1195.5 γ , $I\gamma$ =5 2 was

tentatively assigned from 1408 to 213 level.

4

¹⁰⁰Y β⁻ decay (0.94 s) 2002Lh01 (continued)

$\gamma(^{100}\text{Zr})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}\&$	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	Comments
1229.0 3	4.9 10	1441.41	$(1,2^+)$	212.532 2+			
1291.5 <i>3</i>	4.2 6	1856.0	4 ⁽⁺⁾	564.492 4+	(M1+E2)	-2.8 7	
1438.6 <mark>b</mark> 4	3.4 8	2003.1?		564.492 4+			
1441.4 2	3.6 6	1441.41	$(1,2^+)$	$0.0 0^+$			
1471.0 <i>3</i>	27 3	2349.29	$(3,4^{+})$	878.48 2+			
1505.5 5	3.0 8	2070.27	$(3,4^{+})$	564.492 4+			
^x 1644.2 3	3.2 8						E_{γ} : γ in coin with 213 γ , but possibly not from 1856 level (2002Lh01).
1655.8 <i>3</i>	5.9 10	2220.3	$(2^+, 3, 4^+)$	564.492 4+			
1857.8 4	7.7 21	2070.27	$(3,4^{+})$	212.532 2+			
2008.0 ^b 8	1.3 8	2220.3	$(2^+, 3, 4^+)$	212.532 2+			
2137.0 8	4.3 17	2349.29	$(3,4^{+})$	212.532 2+			

[†] From 2002Lh01, unless otherwise stated. [‡] From the Adopted Gammas.

S

[#] From curved-crystal measurement (1979Bo26).

[@] Intensity deduced from the Adopted Gammas.

[&] For absolute intensity per 100 decays, multiply by ≈ 0.24 .

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

$\frac{100}{100}$ Y β^- decay (0.94 s) 2002Lh01

