²³⁵U(n,Fγ),²⁴¹Pu(n,Fγ) 2012Mu08,2017An15

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 172,1 (2021)	31-Jan-2021

2012Mu08: ²³⁵U(n,F γ), E=thermal neutrons from the Canada India Research Utility Services (CIRUS) reactor facility, Bhabha Atomic Research Center (BARC), Mumbai. Target≈5.1 gm/cm³ UAl₃ (17% enriched ²³⁵U). Gamma rays were detected in coincidence mode by two clover HPGe detectors with anti-Compton shields. Measured E γ , I γ , $\gamma\gamma$ -coin. Deduced levels, J, π , isotopic yield, angular momentum distribution.

2017An15: ²³⁵U,²⁴¹Pu(n,F γ), prompt-fission spectroscopy using incident neutrons from the PF1B cold neutron beam at the Institut Laue-Langevin (ILL), Grenoble. Measured E γ , $\gamma\gamma$ -coin, lifetimes of the first 2⁺, 4⁺ and 6⁺ levels by fast-timing technique using the EXILL-FATIMA array consisting of eight EXOGAM clovers and 16 LaBr₃(Ce) scintillators. The $\gamma\gamma$ coincidences between one clover and two LaBr₃(Ce) detectors were required within a 120-ns time window. The analysis of fast-timing coincidence events involved method of mirror symmetric centroid difference (MSCD), extended to the generalized centroid difference method (GCDM). Deduced B(E2) and compared with Interacting Boson model and Monte-Carlo shell-model calculations. See also 2014Re16 for methodology of fast timing $\gamma\gamma$ (t) technique. See also the conference paper 2015ReZZ.

Others:

1973Kh05: ²³⁵U(n,F γ). 1973Kh05 measure energies and intensities of three γ rays in the g.s. band, conversion electrons. 1974Su04: ²³⁵U(n,F γ); ²³⁹Pu(n,F γ). 1987BoZN: measured E γ , I γ . Additional information 1.

¹⁰⁰Zr Levels

E(level)	Jπ†	T _{1/2} ‡	Comments		
0 #	0^{+}				
213 [#]	2+	582 ps 12	T _{1/2} : mean lifetime τ =840 ps 18 from τ =830 ps 30 in ²⁴¹ Pu(n,F γ), and 850 ps 20 in ²³⁵ U(n,F γ) (2017An15). Other: T _{1/2} =573 ps 50 (2013RuZX, $\gamma\gamma$ (t), also measurement at ILL-Grenoble, probably using the same experimental setup as in 2017An15).		
564 [#]	4+	25.6 ps 28	T _{1/2} : mean lifetime τ =37 ps 4 from ²³⁵ U(n,F γ) (2017An15). Other: τ =25 ps 10 from ²⁴¹ Pu(n,F γ), where the lifetime is affected by a contaminant γ line in the complementary fission partner (2017An15).		
1062 [#] 1687 [#] 2426 [#]	6+ 8+ 10+	8.3 ps <i>35</i>	T _{1/2} : mean lifetime τ =12 ps 5 from ²³⁵ U(n,F γ) (2017An15).		

[†] From 2012Mu08.

[‡] From fast-timing $\gamma\gamma$ -coin technique, and analysis by generalized centroid difference method (GCDM) (2017An15).

Band(A): g.s. band.

 $\gamma(^{100}\text{Zr})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	Comments
212	>100	213	2+	0 0+	(E2)	I _y : other: $I(212\gamma)/I(352\gamma)=37(13)/56(28)$ (1973Kh05). Mult.: suggested by K/L ratio of measured conversion electrons in 1973Kh05.
352 498 625 739	100 62 17 9.6	564 1062 1687 2426	4 ⁺ 6 ⁺ 8 ⁺ 10 ⁺	$\begin{array}{ccc} 213 & 2^+ \\ 564 & 4^+ \\ 1062 & 6^+ \\ 1687 & 8^+ \end{array}$		I _γ : other: I(498γ)/I(352γ)=55(18)/56(28) (1973Kh05). I _γ : other: I(625γ)/I(352γ)=50(25)/56(28) (1973Kh05).

[†] From 2012Mu08, unless otherwise noted. Intensity uncertainties of 5% to 25% are stated in 2012Mu08, depending on γ -ray intensity.

²³⁵U(**n**,**F**γ),²⁴¹Pu(**n**,**F**γ) 2012Mu08,2017An15

 $^{100}_{40}{
m Zr}_{60}$