Adopted Levels, Gammas

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Balraj Singh and Jun Chen	NDS 172, 1 (2021)	31-Jan-2021							

 $Q(\beta^{-})=9050 \ 14$; $S(n)=4749 \ 13$; $S(p)=12095 \ 12$; $Q(\alpha)=-8398 \ 12 2017Wa10$

 $S(2n)=11175 \ 14, \ S(2p)=27536 \ 20, \ Q(\beta^{-}n)=2222 \ 15 \ (2017Wa10).$

 $Q(\beta^{-})$ measurement: 1984Pa19,1985IaZZ.

Other measurements:

1976SeZN associated a 10.5 μ s isomer with ¹⁰⁰Y, based on the observation of the following γ rays (each decaying with $T_{1/2}\approx 10$ μ s) in the A=100 mass-separated fission fragments: 172.7 (I γ =86, $T_{1/2}=10.5 \ \mu$ s 20), 184.9 (I γ =100, $T_{1/2}=10.5 \ \mu$ s 20), 357.5 (I γ =74, $T_{1/2}=10.5 \ \mu$ s 20), 391.6 (I γ =56, $T_{1/2}=15 \ \mu$ s 3), 658.2 (I γ =30). No level scheme was suggested. The existence of this isomer should be considered as tentative since no confirmatory evidence is as yet available.

2006Ca38: Measured resonance fluorescence spectra using collinear laser spectroscopy.

2007Ch07: Measured static moments using laser-spectroscopic method. In this experiment only one state (arbitrarily assumed by 2007Ch07 as the ground state) is observed. No information about the absolute energy and half-life is available from this experiment. The spin analysis by 2007Ch07 favors J=3; J≥4 cannot reproduce the observed hyperfine structure pattern, J=1 suggests unrealistic β_2 >0.7 and J=2 suggest β_2 =0.47 which is too large to be consistent with a rigid, strongly deformed nucleus. According to e-mail reply from the first author (B. Cheal) of 2007Ch07 on February 1, 2007, there seems uncertainty as to which of the two activities is observed in their experiment, but they claim to have observed only one state which they assume as the g.s. Further work by this group is planned to return to the question of isomerism in ¹⁰⁰Y. In the meantime 2007Ha32, in mass measurements have confirmed the existence of isomerism in this nucleus but there is no information about half-life and spin assignments. Following 2007Ch07, evaluators have also assigned the state reported by 2007Ch07 to the ground state, even though, the spin of 3 proposed in this work is inconsistent with adopted J^{π} =1⁻,2⁻. The source of ¹⁰⁰Y produced by proton (30 MeV beam) fission of uranium.

2007Ha32: Precision measurement of masses of g.s. and isomer using JYFLTRAP at IGISOL facility in Jyvaskyla. In this work the ground state (most bound state) is populated with twice the intensity of the second (isomeric) state. But there is no information about spins and half-lives from this experiment. The source of ¹⁰⁰Y produced by proton (30 MeV beam) fission of uranium, the same method as in 2007Ch07.

2009Pe06, 2012Qu01: ¹⁰⁰Y formed by fragmentation of 120 MeV/nucleon ¹³⁶Xe beam at NSCL facility using Coupled Cyclotrons and A1900 fragment separator. Measured β and γ radiation, half-life of ¹⁰⁰Y g.s. decay, and $\%\beta^-n$. Analysis used least-squares fits and maximum likelihood method.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for three primary references, two dealing with nuclear structure calculations and one with decay modes and half-lives.

Additional information 1.

With Nilsson configuration of $\pi 5/2[422] \otimes v 3/2[411]$ for the 1⁺ level at 10.7 keV and the 4⁺ isomer at 145 keV,

Gallagher-Moszkowski rule would suggest that 4^+ isomer should be lower in energy than the 1^+ state. This anomaly is inexplicable in the present level scheme. Further experimental work is needed to confirm the relative positions of the 732-ms and 0.94-s activities.

100Y Levels

Cross Reference (XREF) Flags

A 100 Sr β^- decay (200 ms)

- **B** 101 Sr β^- n decay (118 ms)
- C ²⁵²Cf SF decay
- D ⁷Li(⁹⁸Rb,T2NG)

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
0.0	(1)-	732 ms 5	ABCD	$%\beta^{-}=100; ~%\beta^{-}n=1.02~6$ Evaluated rms charge radius $^{1/2}=4.471$ fm 23 (2013An02). Evaluated $\delta < r^{2}>(^{89}X^{100}Sr)=1.985$ fm ² 1 (2013An02).

 J^{π} : E1 10.7 γ from 1⁺; evidence of β feedings to 2⁺ and 0⁺ levels in ¹⁰⁰Zr; 1⁻ favored

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁰⁰Y Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments			
				by proposed configuration= $\pi 5/2[303] \otimes v3/2[411]$ (1987Wo07). From available experimental data, 2 ⁻ is less likely, but not totally excluded. T _{1/2} : weighted average (NRM) of 0.66 s +15-12 (2009Pe06); 0.71 s 3 (1996Me09); 0.638 s 17 (1993Ru01); 0.735 s 4 (1986ReZU, supersedes 728 ms 4 in 1986Wa17); 0.735 s 7 (1986Wo01); 0.65 s 15 (1985IaZZ); 0.682 s 18 (1983Mu19); and 0.55 s 15 (1977Kh03). Conventional weighted average gives 729 ms 8, but with reduced χ^2 =5.8, larger than 2.0 at 95% confidence level. Others: 0.845 s 75 (least-squares fit method), 0.840 s 97 (maximum likelihood method), both from 2012Qu01; 0.740 s 20 (1987PfZX). % β^- n: weighted average of 1.8 6 (1996Me09), 1.08 5 (1993Ru01), 0.9 3 (1987PfZX), 0.85 9 (1986ReZU, supersedes 0.81 4 in 1986Wa17), and 0.9 2 (1986Wo01). Note that this value corresponds to one or both the activities: 732-ms g.s. and/or 0.94-s. Other: ≤ 10 (2009Pe06). Additional information 2.			
10.70 [@] 2	1^{+}		A CD	J^{π} : allowed β feeding (log $ft \approx 4.6$) from 0 ⁺ parent.			
76.15 [@] 3	$(2)^{+}$	72 ps 7	A CD	J^{π} : M1(+E2) γ to 1 ⁺ ; band member. The from $\beta \gamma \gamma$ (t) in ¹⁰⁰ Sr β^{-} decay (1990Ma08)			
99.16 2 145 <i>15</i>	(0,1,2) [#] 4 ⁺	0.94 s <i>3</i>	A	In (2). Itom <i>p</i> (γ) in <i>P</i> is <i>p</i> and (1) a			
172.03 [@] 4	(3+)		A CD	list also values for J=1,2,3 and 5. J ^{π} : 95.9 γ to (2) ⁺ ; band member.			
194.98 2	$(0,1,2^{-})$		Α	J^{π} : 195 γ to (1) ⁻ ; possible β feeding from 0 ⁺ parent.			
303.1 [@] 5	(4 ⁺)		С	J^{π} : 131.1 γ to (3 ⁺); band member.			
309.83 <i>3</i> 355.75 <i>4</i>	$(0^+, 1, 2)^{m}$		A A	J^{*} : 299 γ to 1 ⁺ , 309.7 γ to (1) ⁻ , 76.2 γ to (2) ⁺ .			

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁰⁰Y Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
376.07 3	$(1^+,2,3^+)^{\#}$	A	J^{π} : 365.3 γ to 1 ⁺ ; 204.1 γ to (3 ⁺).
461.1 [@] 7	(5 ⁺)	С	J^{π} : 158.0 γ to (4 ⁺); band member.
483.58 5	$(1^+ \text{ to } 4^+)^{\#}$	Α	J^{π} : 407 γ to (2) ⁺ , 311.6 γ to (3 ⁺).
656.6 [@] 9	(6+)	С	J^{π} : 195.5 γ to (5 ⁺); band member.
698.71 8	$(1^+ \text{ to } 4^+)^{\#}$	Α	J^{π} : 622 γ to (2) ⁺ ; 526.7 γ to (3 ⁺).
734.03 6	$(1^+, 2, 3^+)^{\#}$	Α	J^{π} : 562.1 γ to (3 ⁺), 723.3 γ to 1 ⁺ .
776.24 5		Α	
827.97 8	$(1^+, 2, 3^+)^{\#}$	Α	J^{π} : 633.0 γ to (1 ⁺), 655.9 γ to (3 ⁺).
849.45 8		Α	
860.60 4		Α	
861.19 6		Α	
874.0 [@] 10	(7^{+})	С	J^{π} : 217.4 γ to (6 ⁺); band member.
974.60 4	1+	Α	J ^{π} : allowed β feeding (log $ft \approx 4.4$) from 0 ⁺ parent. Configuration= $\pi 5/2[422] \otimes v3/2[422]$ (1987Wo07).
1045.70 13		Α	-
1146.33 9		Α	
1149.46 9		Α	
1340.74 6		Α	
1379.16 4	$(0^+, 1, 2^-)$	Α	J^{π} : 1379 γ to (1) ⁻ ; 1302 γ to (2) ⁺ ; possible β feeding from 0 ⁺ parent.
1389.85 <i>11</i>		Α	
1412.14 14	$(1^+, 2, 3^+)^{\#}$	A	J^{π} : 1401.2 γ to 1 ⁺ , 1240.1 γ to (3 ⁺).
1699.99 <i>10</i>		Α	

[†] From a least-squares fit to γ -ray energies.

[‡] Since levels are populated by the decay of ¹⁰⁰Sr β^- ($J^{\pi}(g.s.)=0^+$), J values are expected to be <4. In four cases where levels are populated by strong β^- branches and associated log *ft* values in the range 4.4-5.7, J^{π} is restricted to 1⁺ for the two very strong ($\approx 40\%$) branches and to (1⁺) for two medium intensity ($\approx 3\%$) branches. Log *ft* values for levels with β^- feedings of $\approx 1\%$ or less have not been used in J^{π} assignments since possible unobserved transitions can affect these feedings significantly.

[#] Assignments of 2⁺, 3 or 4 will not be possible if definite β feeding from 0⁺ parent is determined in future experiments. [@] Band(A): $K^{\pi}=1^+, \pi 5/2[422] \otimes v 3/2[411]$. This band was interpreted by 1987Wo07 (also 1985PeZZ) as a 'pairing-free' rotational

band, meaning that moment of inertia was nearly equal to that for a rigid spheroid. However, theoretical calculations by 1987Kr02 using Random-phase approximation (RPA) refuted this claim, and concluded that pairing was reduced only by 50-60%.

$\gamma^{(100}\mathrm{Y})$									
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α #	Comments
10.70	1+	10.68 3	100	0.0	(1)-	E1		8.55 14	α (L)=7.21 <i>12</i> ; α (M)=1.197 <i>20</i> ; α (N)=0.1389 <i>23</i> ; α (O)=0.00506
76.15	(2)+	65.46 <i>3</i>	100	10.70	1+	M1(+E2)	< 0.1	0.62 2	Mult.: from ¹⁰⁰ Sr β^- decay, based on intensity balance and expected β feeding. B(M1)(W.u.)=0.67 +9-7
	(_)					()			Mult., δ : from ce data in ¹⁰⁰ Sr β^- decay. RUL=300 (for E2) gives $\delta < 0.05$
99.16	(0,1,2)	88.50 <i>3</i> 99.20 <i>3</i>	100 5 90 4	$10.70 \\ 0.0$	1^+ (1) ⁻				5.000 0 0000
172.03	(3^{+})	95.94 4	100	76.15	$(2)^+$				
194.98	(0,1,2 ⁻)	95.91 <i>4</i> 195.01 <i>3</i>	23.1 <i>16</i> 100 <i>5</i>	99.16 0.0	(0,1,2) $(1)^{-}$				
303.1	(4^{+})	131.1 [‡]		172.03	(3^{+})				
309.83	$(0^+, 1, 2)$	114.86 5	15.7 11	194.98	$(0,1,2^{-})$				
		233.77 4	32.9 18	76.15	(2)+				
		299.03 5	100 7	10.70	1+				
		309.68 6	67 4	0.0	(1) ⁻				
355.75		256.63 4	100	99.16	(0,1,2)				
376.07	$(1^+, 2, 3^+)$	66.0 <i>6</i>	34 5	309.83	$(0^+, 1, 2)$				
		181.17 <i>3</i>	76 4	194.98	$(0,1,2^{-})$				
		204.11 8	8.1 13	172.03	(3 ⁺)				
		276.90 6	29 3	99.16	(0,1,2)				
		299.70 6	34.2 22	76.15	$(2)^{+}$				
		365.31 4	100.5	10.70	1'				
461.1	(5 ⁺)	158.0+		303.1	(4+)				
483.58	$(1^+ \text{ to } 4^+)$	107.43 11	92 <i>13</i>	376.07	$(1^+, 2, 3^+)$				
		127.65 11	25 4	355.75	$(0, 1, 2^{-})$				
		288./ 3	1.1 19 54 12	194.98	(0,1,2)				
		311.02 19 384 55 14	34 12 81 14	00.16	(012)				
		407 43 <i>8</i>	01 <i>14</i> 100 <i>12</i>	99.10 76.15	(0,1,2) $(2)^+$				
656 6	(6^{+})	105 5	100 12	161 1	(<i>2</i>) (5 ⁺)				
000.0 608 71	(0^{+})	193.3T 526.72.9	16.9	401.1	(3^{+})				
070./1	(1 10 4)	520.72 0	40 0 100 12	76.15	$(3)^+$				
734 03	$(1^+ 2 3^+)$	562 08 18	389	172.03	(2) (3^+)				
, 57.05	(1,2,5)	657.84 9	30.3	76.15	$(2)^+$				
		723.33 6	100.9	10.70	1+				
776.24		466.46 6	100 7	309.83	$(0^+, 1.2)$				
		581.26 6	63 4	194.98	$(0,1,2^{-})$				
827.97	$(1^+, 2, 3^+)$	633.04 10	89 9	194.98	$(0,1,2^{-})$				
		655.87 11	100 16	172.03	(3 ⁺)				
849.45		473.33 15	100 15	376.07	$(1^+, 2, 3^+)$				

4

From ENSDF

 $^{100}_{39}\mathrm{Y}_{61}$ -4

L

 $^{100}_{39} Y_{61}\text{-}4$

$\gamma(^{100}\text{Y})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π
849.45		539.64 8	89 11	309.83	$(0^+, 1, 2)$	1340.74		564.56 7	30.0 22	776.24	
860.60		376.96 7	100 7	483.58	$(1^+ \text{ to } 4^+)$			964.57 8	100 9	376.07	$(1^+, 2, 3^+)$
		484.77 8	89 8	376.07	$(1^+, 2, 3^+)$			1241.66 19	27 5	99.16	(0,1,2)
		505.09 8	66 <i>6</i>	355.75		1379.16	$(0^+, 1, 2^-)$	518.67 6	100 6	860.60	
		550.45 19	21 4	309.83	$(0^+, 1, 2)$			602.95 9	65 6	776.24	
		665.45 8	58 6	194.98	$(0,1,2^{-})$			1003.04 11	37 7	376.07	$(1^+, 2, 3^+)$
861.19		762.06 6	100 10	99.16	(0,1,2)			1069.24 6	97 7	309.83	$(0^+, 1, 2)$
		861.02 11	62 7	0.0	(1)-			1183.90 17	12 <i>3</i>	194.98	$(0,1,2^{-})$
874.0	(7^{+})	217.4 [‡]		656.6	(6 ⁺)			1280.08 17	23 6	99.16	(0,1,2)
974.60	1^{+}	875.45 11	1.56 17	99.16	(0,1,2)			1302.89 16	18 2	76.15	$(2)^{+}$
		898.50 <i>4</i>	86 4	76.15	$(2)^{+}$			1379.25 15	61 7	0.0	$(1)^{-}$
		963.85 4	100 4	10.70	1+	1389.85		240.64 [@] 8	62 6	1149.46	
1045.70		873.90 14	100 20	172.03	(3^{+})			1313.70 10	100 7	76.15	$(2)^{+}$
		969.02 21	59 14	76.15	$(2)^{+}$	1412.14	$(1^+, 2, 3^+)$	1240.12 14	100 10	172.03	(3 ⁺)
1146.33		285.11 8	100 15	861.19				1401.2 4	50 <i>13</i>	10.70	1^{+}
		951.46 <i>16</i>	97 15	194.98	$(0,1,2^{-})$	1699.99		1623.78 10	100 6	76.15	$(2)^{+}$
1149.46		1073.31 8	100	76.15	$(2)^{+}$			1689.61 25	27 8	10.70	1+

S

[†] From ¹⁰⁰Sr β^- decay, unless otherwise stated. [‡] From ²⁵²Cf SF decay.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

 $^{100}_{39}Y_{61}$

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{100}_{\ 39} Y_{61}$

Adopted Levels, Gammas

 $^{100}_{\ 39} Y_{61}$