		Hist	ory	
	Туре	Author	Citation	Literature Cutoff Date
	Full Evaluation	Balraj Singh and Jun Chen	NDS 172, 1 (2021)	31-Jan-2021
$Q(\beta^{-})=3206.4 \ 14; \ S(n)=$	6764.4 <i>10</i> ; S(p)=7	2017Wa10		
S(2n)=157514, S(2p)=1	7074 3 (2017 wai	0).		

Other reactions:

¹⁰³Rh(n,α): 1972Bo14, 1968Ve02, 1965Ku07, 1963Cs01.

¹⁰⁰Mo(HI,X): 1984As02, 1976Mi13.

Additional information 1. ⁹⁹Tc(n, γ),(n,n): resonances: see dataset for about 690 neutron resonances and associated parameters from 5.58 eV to 10.0 keV, taken from 2018MuZY evaluation.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 22 primary references, 11 dealing with nuclear structure calculations and 11 with decay modes and half-lives.

¹⁰⁰Tc Levels

Cross Reference (XREF) Flags

			A ⁹⁶ Zr B ⁹⁹ Tc C ⁹⁹ Tc D ⁹⁹ Tc	$ \begin{array}{lll} (^{7}\text{Li},3n\gamma) & E & \ \ ^{100}\text{Mo}(p,n\gamma),(d,2n\gamma) \\ (n,\gamma) & E = \text{thermal} & F & \ \ ^{100}\text{Mo}(^{3}\text{He},t) \\ (n,\gamma),(n,n): \text{resonances} & G & \ \ ^{101}\text{Ru}(\gamma,p\gamma) \\ (cd,p) \end{array} $								
E(level) [†]	J ^{π#}	T _{1/2} &	XREF	Comments								
0.0 [‡]	1+	15.65 s <i>12</i>	AB DEFG	%β ⁻ =99.9974 4; %ε=0.0026 4 (2008Sj01) %ε=0.0026 4 for ¹⁰⁰ Tc decay (2008Sj01, absolute counting method). Other: 0.0018 9 (1993Ga09, x-ray measurement). J ^π : log ft=4.6 to 0 ⁺ . T _{1/2} : unweighted average 15.27 s 5 (2001Fu21); 15.9 s 4 (2002Ab03); 15.5 s 1 (1995Ha46); 15.8 s 1 (1969Be69); 15.8 s 2 (1952Bo30). Weighted average is 15.42 s 11, but with reduced χ^2 =7.3. Others: 17.1 s 7 (1963Cs01), 17.5 s 10 (1952Ho17).								
172.15 [‡] 4	2+	<3 ns	AB DE G	J^{π} : M1+E2 172.1 γ to 1 ⁺ , primary 6593.2 γ from 4 ⁺ ,5 ⁺ .								
200.67 [‡] 4	(4)+	8.25 μs 8	AB DE G	%IT=100 J ^π : E2 28.5γ to 2 ⁺ ; primary 6564.3γ from 4 ⁺ ,5 ⁺ . T _{1/2} : from γ(t) and/or ce(t) using pulsed beam in (p,nγ), (d,2nγ) and (γ,pγ). The Adopted value is unweighted average of 8.18 μs 7 (1980Bi01), 8.46 μs 5 (1978Ma36) and 8.15 μs 20 (1961Sc11) in (p,nγ), and 8.2 μs 3 (1978Ba18) in (γ,pγ). Others: 10.2 μs I (1979Pi08) in (d,2nγ), 11.5 μs 2 (1964Br27) in (γ,pγ) are discrepant.								
223.47 4	$(2)^{-}$	<3 ns	B EF	J^{π} : E1 223.5 γ to 1 ⁺ ; L(³ He,t)=1+3 from 0 ⁺ .								
243.95 [‡] 4	(6)+	3.2 µs 2	AB DE	%IT=100 J ^{π} : E2 43.3 γ to (4) ⁺ ; primary 6520.5 γ from 4 ⁺ ,5 ⁺ . T _{1/2} : from γ (t) in (p,n γ) (1980Bi01). Others: 4.6 μ s 5 in (d,2n γ) (1979Pi08); 16 μ s 3 (1967Iv04) and 15.5 μ s 8 (1961Sc11) in (p,n γ) seem discrepant.								
263.56 [‡] 4	(3)+	<3 ns	AB DE	J^{π} : E2 263.6 γ to 1 ⁺ ; M1 62.9 γ to (4) ⁺ .								
287.52 4	$(5)^+$	<3 ns	B dE	J^{π} : M1 43.6y to (6) ⁺ and M1 86.8y to (4) ⁺ . E(level): in (d,p), the 290 group corresponds to 287.5+294.9+299.6.								
294.92 [‡] 4	(4)+	0.87 ^{<i>a</i>} ns 14	AB dE	XREF: E(?). J^{π} : M1(+E2) 31.4 γ to (3) ⁺ ; M1 105.7 γ from (5) ⁺ ; primary 6470.2 γ from $_{4^+}$ 5 ⁺								
299.66 4	(2,3)+	<3 ns	B dE	J^{π} : E2(+M1) 127.5 γ to 2 ⁺ ; possible 99.1 γ to (4) ⁺ and possible 299.47 γ to 1 ⁺ .								

Continued on next page (footnotes at end of table)

¹⁰⁰Tc Levels (continued)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E(level) [†]	J ^{π#}	T _{1/2} &	XREF	Comments
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	319.49 [‡] 4	(5)+		AB DE	J^{π} : $\Delta J=(1)$, M1 75.5 γ to (6) ⁺ ; 118.8 γ to (4) ⁺ ; L(d,p)=0+2 from 9/2 ⁺
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	335.16 4	$(2,3)^+$	<3 ns	B dE	J^{π} : M1 71.7 γ to (3) ⁺ ; 335.2 γ to 1 ⁺ .
355.84 $(2,3)^+$ <3 ns	340.98 4	$(3)^{+}$		B dE	J^{π} : M1 168.8 γ to 2 ⁺ and M1 46.0 γ to (4) ⁺ ; L(d,p)=2 for 339+355.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	355.58 4	$(2,3)^+$	<3 ns	B DEF	XREF: D(355).
$ \begin{array}{ccc} conflict. \\ conflict$					J^{π} : M1+E2 92.0 γ to (3) ⁺ , 355.6 γ to 1 ⁺ . $J^{\pi}=1^+$ assigned in (³ He,t) is in
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	400.63 4	(5)+		AB DE	conflict. J^{π} : $\Delta J=(1)$, D 144.2 γ from (6) ⁻ ; 239.2 γ from (3) ⁺ ; L(d,p)=2 from 9/2 ⁺
Autor, Start, Marker,	424.36.4	(3.4^{+})		ΒE	J^{π} : 252.2 γ to 2 ⁺ , 129.4 γ to (4) ⁺ , 75.8 γ from (4) ⁻ .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	440 38 [‡] 13	$(7)^+$	$< 0.28^{a}$ ns	A	I^{π} : $\Lambda I=(1)$ M1(+F2) 196 4 γ to (6) ⁺ : $\Lambda I=1$ D 267 5 γ from (8) ⁻
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	454.20 4	$(4,5)^+$	(0.20 III)	B DE	XREF: D(444).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					E(level): assignment of this level as one component of the doublet in (d,p) is consistent with $L(d,p)(444+460)=0+2$ from $9/2^+$. I^{π} : M1 166 72 to $(5)^+$ 113 22 to $(3)^+$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	456 79 <i>4</i>	$(2^+ 3 4^-)$		В	I^{π} : 233 3v to (2) ⁻ : primary 6308 5v from 4 ⁺ 5 ⁺
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	457.05 [‡] .15	$(2^{+}, 5, 1^{+})^{+}$	$<0.28^{a}$ ns	۵	$I^{\pi} \cdot \Lambda I_{-}(1) = M1(+F2) = 213 1 \text{ tr} (6)^{+} \cdot 250 7 \text{ from } (8)^{-}$
461.10 4(5)*BDXREF: D(46).461.10 4(5)*BDXREF: D(46).461.10 4(5)*BDXREF: D(46).461.10 4(5)*BDXREF: D(46).476.02 8(<3)	459.13 5	$(0.1.2.3^+)$	<0.20 IIS	ВЕ	J^{π} : 458.8 γ to 1 ⁺ .
E(level): assignment of this level as one component of the doublet in (d,p) is consistent with L(d,p)(444+460)=0+2 from 9/2 ⁺ . J ⁷ : MI 217.1y to (6) ⁺ ; 197.5y to (3) ⁺ . 484.04? <i>I</i> 3 (53) E J ⁷ : 176.4y to (2,3) ⁺ ; possible 475.9y to 1 ⁺ . 493.67 4 4 ⁺ ,5 ⁺ B DE XREF: D(47). J ⁷ : MI 1+E2 206.2y to (5) ⁺ ; 230.1y to (3) ⁺ ; L(d,p)=0+2 from 9/2 ⁺ . 500.02 4 (2,3) ⁻ B E J ⁷ : HI 276.6y to (2) ⁻ ; 236.5y to (3) ⁺ ; 327.9y to 2 ⁺ . 500.15 4 (4) ⁻ B E J ⁷ : EI 299.5y to (4) ⁺ , 159.2y to (3) ⁺ , 180.7y to (5) ⁺ . 513.92 4 (3 to 6) ⁺ B D XREF: D(514). F ¹ : (1 ⁺ , 2,3.4 ⁺) from possible 348.7 to 2 ⁺ and 227.5y to (3) ⁺ . 521.0? 4 E J ⁷ : (5) ⁺ (4) ⁻ , 5) ⁻ S3 8.69 yto (4) ⁺ and 220.1y to (5) ⁺ . 544.87 4 (6) ⁻ 0.43 ^d ns <i>I</i> 0 AB J ⁷ : $\Delta I=(0)$, EI 300.9y to (6) ⁺ ; $\Delta I=(1)$, EI 225.5y to (5) ⁺ . 552.29 4 4 ⁺ , 5 ⁺ B D J ⁷ : MI (+E2) 91.2y to (5) ⁺ ; 288.7y to (3) ⁺ ; L(d,p)=0 from 9/2 ⁺ . 580.41 4 (3,4,5) ⁺ B D XREF: D(580). J ⁷ : 239.4y to (3) ⁺ and 292.9y to (5) ⁺ ; L(d,p)=0+2 for 586+600 from 9/2 ⁺ . 599.78 4 (2 to 7) ⁺ B D XREF: D(600). J ⁷ : L(d,p)=0+2 for 586+600 from 9/2 ⁺ target gives J ^π =4 ⁺ ,5 ⁺ for both levels or J ^π =4 ⁺ ,5 ⁺ for one level and J ^π =2 ⁺ to 7 ⁺ for the other. 608.65 <i>I</i> 2 (7) ⁻ <0.28 ^d ns A J ^π : $\Delta I=(1)$, MI (+E2) 50.3y to (6) ⁻ ; $\Delta I=(0)$, DI 68.2y to (7) ⁺ ; 636.17 8 (3,4,5) ⁺ B d J ^π : $\Delta I=(1)$, MI (+E2) 63.8y to (5) ⁺ ; L(d,p)=0+2 for a doublet from 9/2 ⁺ target. 639.82 4 (3) ⁺ B d J ^π : $\Delta I=(1)$, MI (+E2) 20.3y to (5) ⁺ ; L(d,p)=0+2 for a doublet from 9/2 ⁺ target. 639.82 6 (4,5,6) ⁻ B E XREF: B(?). 630.23 6 (4,5,6) ⁻ B E XREF: B(?).	461.10 4	$(5)^+$		B D	XREF: D(460).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					E(level): assignment of this level as one component of the doublet in (d,p) is consistent with $L(d,p)(444+460)=0+2$ from $9/2^+$.
476.02 8 (≤ 3) E J^{+} : 176.47 to (2,3) ⁺ ; possible 475.97 to 1 ⁺ . 484.04? 13 (≤ 3) E J^{-} : possible 483.97 to 1 ⁺ . 493.67 4 4 ⁺ ,5 ⁺ B DE XREF: D(497). J ⁷ : M1+E2 206.27 to (3) ⁺ ; 230.17 to (3) ⁺ ; L(d,p)=0+2 from 9/2 ⁺ . 500.02 4 (2,3) ⁻ B E J^{-} : M1 276.67 to (2) ⁻ ; 236.57 to (3) ⁺ , 180.77 to (5) ⁺ . 513.92 4 (3 to 6) ⁺ B D XREF: D(514). J ⁷ : 226.47 to (5) ⁺ and 313.27 to (4) ⁺ ; L(d,p)=2 from 9/2 ⁺ . 521.07 4 E J^{-} : (1 ⁺ , 2,3,4 ⁺) from possible 348.7 to 2 ⁺ and 257.57 to (3) ⁺ . 539.63 4 (4 ⁻ ,5 ⁻) B J ⁷ : possible M1 39.57 to (4,5) ⁻ ; 338.967 to (4) ⁺ and 220.17 to (5) ⁺ . 552.29 4 4 ⁺ ,5 ⁺ B D J ⁷ : M1(+E2) 91.27 to (5) ⁺ ; 288.77 to (3) ⁺ ; L(d,p)=0 from 9/2 ⁺ . 580.41 4 (3,4,5) ⁺ B D XREF: D(586). J ⁷ : 239.47 to (3) ⁺ and 292.97 to (5) ⁺ ; L(d,p)=0+2 for 586+600 from 9/2 ⁺ . 599.78 4 (2 to 7) ⁺ B D XREF: D(600). J ⁷ : L(d,p)=0+2 for 586+600 from 9/2 ⁺ . 608.65 12 (7) ⁻ <0.28 ^d ns A J ⁷ : (3 ⁺ , M) C MB J ⁷ : (3 ⁺ , M) C MB J ⁷ : (4,5) ⁻) for 586+600 from 9/2 ⁺ target gives $J^{\pi}=4^{+},5^{+}$ for both levels or $J^{\pi}=4^{+},5^{+}$ for one level and $J^{\pi}=2^{+}$ to 7 ⁺ for the other. 608.65 12 (7) ⁻ <0.28 ^d ns A J ⁷ : (3.98 yto (⁺), 320.37 to (5) ⁺ ; L(d,p)=0+2 for a doublet from 9/2 ⁺ target. 639.82 4 (3) ⁺ B d J ⁷ : 639.88 yto (⁺), 320.37 to (5) ⁺ ; L(d,p)=0+2 for a doublet from 9/2 ⁺ target. 680.23 6 (4,5,6) ⁻ B E XREF: B(7).				_	J^{π} : M1 217.1 γ to (6) ⁺ ; 197.5 γ to (3) ⁺ .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4/6.02 8	(≤ 3)		E	J^{*} : 1/6.4 γ to (2,3)'; possible 4/5.9 γ to 1'.
$\begin{array}{rcl} 375.0^{+} & 4^{+}, 5^{+} & B^{+} & B^$	484.04 / 15	(≤ 3) $1^+ 5^+$		E R DF	J ^{\circ} : possible 485.97 to 1 ^{\circ} .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	495.07 4	4,5		B DE	I^{π} : M1+F2 206 2v to (5) ⁺ : 230 1v to (3) ⁺ : I (d n)=0+2 from 9/2 ⁺
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	500.02 4	$(2,3)^{-}$		ΒE	J^{π} : M1 276.6 γ to (2) ⁻ ; 236.5 γ to (3) ⁺ ; 327.9 γ to 2 ⁺ .
513.92 4 (3 to 6) ⁺ B D XREF: D(514). J ^π : 226.4γ to (5) ⁺ and 313.2γ to (4) ⁺ ; L(d,p)=2 from 9/2 ⁺ . 521.0? 4 E J ^π : (1 ⁺ ,2,3,4 ⁺) from possible 348.7 to 2 ⁺ and 257.5γ to (3) ⁺ . 539.63 4 (4 ⁻ ,5 ⁻) B J ^π : possible M1 39.5γ to (4,5) ⁻ ; 338.96γ to (4) ⁺ and 220.1γ to (5) ⁺ . 544.87 4 (6) ⁻ 0.43 ^d ns 10 AB J ^π : $\Delta J=(0)$, E1 300.9γ to (6) ⁺ ; $\Delta J=(1)$, E1 225.5γ to (5) ⁺ . 552.29 4 4 ⁺ ,5 ⁺ B D J ^π : M1(+E2) 91.2γ to (5) ⁺ ; 288.7γ to (3) ⁺ ; L(d,p)=0 from 9/2 ⁺ . 580.41 4 (3,4,5) ⁺ B D XREF: D(586). J ^π : 239.4γ to (3) ⁺ and 292.9γ to (5) ⁺ ; L(d,p)=0+2 for 586+600 from 9/2 ⁺ . 599.78 4 (2 to 7) ⁺ B D XREF: D(600). J ^π : L(d,p)=0+2 for 586+600 from 9/2 ⁺ target gives J ^π =4 ⁺ ,5 ⁺ for both levels or J ^π =4 ⁺ ,5 ⁺ for one level and J ^π =2 ⁺ to 7 ⁺ for the other. 608.65 12 (7) ⁻ <0.28 ^d ns A J ^π : $\Delta J=(1)$, M1(+E2) 63.8γ to (6) ⁻ ; $\Delta J=(0)$, (D) 168.2γ to (7) ⁺ ; E(level): 639 doublet in (d,p), probably corresponds to 636 and 640 levels. J ^π : 372.0γ to (3) ⁺ and 348.7γ to (5) ⁺ ; L(d,p)=0+2 for a doublet from 9/2 ⁺ target. 639.82 4 (3) ⁺ B d J ^π : 639.8γ to 1 ⁺ , 320.3γ to (5) ⁺ ; L(d,p)=0+2 for a doublet from 9/2 ⁺ target. 680.23 6 (4,5,6) ⁻ B E XREF: B(?).	500.15 4	(4)-		ΒE	J^{π} : E1 299.5 γ to (4) ⁺ , 159.2 γ to (3) ⁺ , 180.7 γ to (5) ⁺ .
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	513.92 4	$(3 \text{ to } 6)^+$		ΒD	XREF: D(514).
521.0? 4E $J^{\pi}: (1^{+}, 2, 3, 4^{+})$ from possible 348.7 to 2^{+} and 257.5γ to $(3)^{+}$.539.63 4 $(4^{-}, 5^{-})$ B $J^{\pi}:$ possible M1 39.5 γ to $(4, 5)^{-};$ 338.96 γ to $(4)^{+}$ and 220.1 γ to $(5)^{+}$.544.87 4 $(6)^{-}$ 0.43^{a} ns 10AB $J^{\pi}: \Delta J=(0)$, E1 300.9 γ to $(6)^{+}; \Delta J=(1)$, E1 225.5 γ to $(5)^{+}$.552.29 4 $4^{+}, 5^{+}$ BD $J^{\pi}: \Delta J=(0)$, E1 300.9 γ to $(5)^{+}; 288.7\gamma$ to $(3)^{+}; L(d,p)=0$ from 9/2 ⁺ .580.41 4 $(3,4,5)^{+}$ BDXREF: D(586). $J^{\pi}: 23.94\gamma$ to $(3)^{+}$ and 292.9 γ to $(5)^{+}; 1(d,p)=0+2$ for 586+600 from 9/2 ⁺ .599.78 4(2 to 7)^{+}BD608.65 12 $(7)^{-}$ <0.28 ^a nsA $J^{\pi}: \Delta J=(1), M1(+E2) 63.8\gamma$ to $(6)^{-}; \Delta J=(0), (D) 168.2\gamma$ to $(7)^{+};$ 636.17 8 $(3,4,5)^{+}$ Bd $J^{\pi}: 639.8\gamma$ to $(1^{+}, 320.3\gamma$ to $(5)^{+}; L(d,p)=0+2$ for a doublet from 9/2 ⁺ 639.82 4 $(3)^{+}$ Bd $J^{\pi}: 639.8\gamma$ to $1^{+}, 320.3\gamma$ to $(5)^{+}; L(d,p)=0+2$ for a doublet from 9/2 ⁺ 680.23 6 $(4,5,6)^{-}$ BEKREF: B(?).KREF: B(?).					J^{π} : 226.4 γ to (5) ⁺ and 313.2 γ to (4) ⁺ ; L(d,p)=2 from 9/2 ⁺ .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	521.0? 4	(A - F -)		E	J^{n} : (1 ⁺ ,2,3,4 ⁺) from possible 348.7 to 2 ⁺ and 257.5 γ to (3) ⁺ .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	539.63 4	(4, 5)	0.42^{a} ms 10	B	J [*] : possible MI 39.57 to (4,5); 338.967 to (4); and 220.17 to (5); π_{1} AL-(0). E1 200 by to (6) [±] , AL-(1). E1 225 5y to (5) [±] .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	552 29 <i>4</i>	(0) 4^+ 5 ⁺	0.45 IIS 10	AD R D	$J : \Delta J = (0), E1 300.97 to (0) ; \Delta J = (1), E1 223.37 to (3) .$ $I^{\pi} : M1(+E2) 91 22 to (5)^+ : 288 72 to (3)^+ : I (d p) = 0 from 9/2^+$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	580.41 4	$(3.4.5)^+$		BD	XREF: D(586).
599.78 4 $(2 \text{ to } 7)^+$ BD $y/2^+$. XREF: D(600). J^{π} : L(d,p)=0+2 for 586+600 from 9/2 ⁺ target gives J^{π} =4 ⁺ ,5 ⁺ for both levels or J^{π} =4 ⁺ ,5 ⁺ for one level and J^{π} =2 ⁺ to 7 ⁺ for the other.608.65 12 $(7)^-$ <0.28 ^d nsA J^{π} : ΔJ =(1), M1(+E2) 63.8 γ to (6) ⁻ ; ΔJ =(0), (D) 168.2 γ to (7) ⁺ ;636.17 8 $(3,4,5)^+$ dE J^{π} : ΔJ =(1), M1(+E2) 63.8 γ to (6) ⁻ ; ΔJ =(0), (D) 168.2 γ to (7) ⁺ ;639.82 4 $(3)^+$ Bd J^{π} : 639.8 γ to 1 ⁺ , 320.3 γ to (5) ⁺ ; L(d,p)=0+2 for a doublet from 9/2 ⁺ target.680.23 6 $(4,5,6)^-$ BEXREF: B(?). I^{π}_{12} : D^{2}_{12} (M1) 180 here $(A,5)^{-}$: 202 7.4 π (5) ⁺		(-))-)			J^{π} : 239.4 γ to (3) ⁺ and 292.9 γ to (5) ⁺ ; L(d,p)=0+2 for 586+600 from
599.78 4 (2 to 7) ⁺ B D XREF: D(600). J^{π} : L(d,p)=0+2 for 586+600 from 9/2 ⁺ target gives J^{π} =4 ⁺ ,5 ⁺ for both levels or J^{π} =4 ⁺ ,5 ⁺ for one level and J^{π} =2 ⁺ to 7 ⁺ for the other. 608.65 12 (7) ⁻ <0.28 ^d ns 636.17 8 (3,4,5) ⁺ 639.82 4 (3) ⁺ 630.23 6 (4,5,6) ⁻ B d J ^{\pi} : 639.8γ to 1 ⁺ , 320.3γ to (5) ⁺ ; L(d,p)=0+2 for a doublet from 9/2 ⁺ target. 680.23 6 (4,5,6) ⁻					9/2+.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	599.78 4	$(2 \text{ to } 7)^+$		ΒD	XREF: D(600).
$\begin{array}{ccccc} & \text{fields of } J^{n} = 4^{+}, 5^{+} & \text{for one level and } J^{n} = 2^{+} \text{ to } f^{+} \text{ for the other.} \\ & \text{for the other.} \\ & for the$					J^{n} : L(d,p)=0+2 for 586+600 from 9/2 ⁺ target gives $J^{n}=4^{+}, 5^{+}$ for both
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	608 65 12	$(7)^{-}$	$< 0.29^{a}$ m		levels or $J^{n} = 4^{+}, 5^{+}$ for one level and $J^{n} = 2^{+}$ to J^{+} for the other. I^{π} , $AI_{-}(1)$, $M1(+E2)$, 62 , $8a$, to $(6)^{-1}$; $AI_{-}(0)$, (D) , 168 , $2a$, to $(7)^{+}$;
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	636 17 8	(7) $(3.4.5)^+$	<0.28 IIS	A dF	J: $\Delta J = (1)$, $M1(\pm E2)$ 05.87 10 (0) ; $\Delta J = (0)$, (D) 108.27 10 (7) ; E(level): 639 doublet in (d p) probably corresponds to 636 and 640 levels
$\begin{array}{cccc} 639.82 \ 4 & (3)^{+} & & \\ 680.23 \ 6 & (4,5,6)^{-} & & \\ \end{array} \qquad \qquad$	050.17 0	(3,4,3)		uL	J^{π} : 372.0 γ to (3) ⁺ and 348.7 γ to (5) ⁺ ; L(d,p)=0+2 for a doublet from $0/2^+$ torget
$\begin{array}{cccc} & & & & target. \\ 680.23 \ 6 & & (4,5,6)^{-} & & \mathbf{B} & \mathbf{E} & & XREF: \mathbf{B}(?). \\ & & & \mathbf{W}_{\mathbf{F}} \in \mathbf{P}(\cdot \mathbf{M}) \ 180 $	639.82 4	(3)+		Βd	J^{π} : 639.8 γ to 1 ⁺ , 320.3 γ to (5) ⁺ ; L(d,p)=0+2 for a doublet from 9/2 ⁺
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(00.00.6	(A = C)		D D	target.
$\Gamma : \Gamma = I \pm I I \pm I I + I = I + I + I + I + I + I + I + I$	080.25 0	(4,3,0)		D L	AREF: $D(2)$. I^{π} : $F2(\pm M1)$ 180 1 α to $(4.5)^{-1}$: 302 7 α to $(5)^{+1}$
$\mathbf{J} = \mathbf{E} [\pi^{-1} + \mathbf{I} +$	680 1	$(2)^{-}$		F	J : $E2(\mp M1)$ 160.17 to (4,5) ; 552.77 to (5) : I^{π} : I (³ He t)=1+3 from 0 ⁺ target
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	689 10	$(4^+, 5^+)$		D	J^{π} : L(d,p)=(0+2) from 9/2 ⁺ target.
$707 79^{b} 16$ (8) ⁻ <0.28 ^a ns A $I^{\pi} \cdot \Lambda I=(1) M1+F2.99 1\gamma$ to (7) ⁻ band assignment	707 79 ^b 16	(8)-	<0.28 ^a ns	A	I^{π} , $\Lambda I=(1)$, $M1+E2$, 99.1 γ to $(7)^{-1}$, hand assignment
709 10 $4^+.5^+$ D $J^{\pi}: L(d,p)=0+2+4$ from 9/2 ⁺ target.	709 10	4+,5+	\$0.20 115	 D	J^{π} : L(d,p)=0+2+4 from 9/2 ⁺ target.
$710 82^{\frac{1}{4}} 19 (8)^{+} < 0.28^{a} \text{ ns} \text{ A} \qquad I^{\pi} \cdot \Lambda I = (1) M1(+F2) 270 4\gamma \text{ to } (7)^{+}$	710 82 19	$(8)^+$	<0.28 ^a ns	A	I^{π} : $\Lambda I=(1)$ M1(+E2) 270 4 γ to (7) ⁺
748.20 4 $4^+,5^+$ B D XREF: D(758).	748.20 4	4+,5+	.0.20 115	B D	XREF: D(758).
J^{π} : 547.2 γ to (4) ⁺ ; L(d,p)=0+2 from 9/2 ⁺ .					J^{π} : 547.2 γ to (4) ⁺ ; L(d,p)=0+2 from 9/2 ⁺ .

Continued on next page (footnotes at end of table)

¹⁰⁰Tc Levels (continued)

E(level) [†]	$J^{\pi \#}$	T _{1/2} &	XREF	Comments
758.8? 4			A	J^{π} : 301.8 γ to (7) ⁺ .
776 10	$4^+, 5^+$		D	J^{π} : L(d,p)=0+2+4 from 9/2 ⁺ .
777.86 ^C 25	(9)-	<0.28 ^{<i>a</i>} ns	Α	J^{π} : $\Delta J = (1)$, M1(+E2) 70.1 γ to (8) ⁻ ; band assignment.
821.74 4	(3,4,5)		В	J^{π} : 321.6 γ to (4) ⁻ ; primary 5943.3 γ from 4 ⁺ ,5 ⁺ .
830.20 6	$(2,3)^+$		B DE	XREF: B(?).
				J^{π} : 830.3 γ to 1 ⁺ ; L(d,p)=2 from 9/2 ⁺ target.
838 1	1+		F	J^{π} : L(³ He,t)=0+2 from 0 ⁺ target.
854.01 4	$(2 \text{ to } 7)^+$		ΒD	J^{π} : 301.7 γ to 4 ⁺ ,5 ⁺ ; L(d,p)=2 from 9/2 ⁺ target.
882 10	$(2 \text{ to } 7)^+$		D	J^{π} : L(d,p)=2 from 9/2 ⁺ .
906.18 9	$(1^+, 2, 3^+)$		E	J^{π} : 905.5 γ to 1 ⁺ and 564.8 γ to (3) ⁺ .
929.90 4	(3,4,5) ⁺ [@]		ΒD	XREF: D(936).
				J^{π} : 666.3 γ to (3) ⁺ and 429.7 γ to (4) ⁻ ; primary 5835.2 γ from 4 ⁺ ,5 ⁺ ; L(d,p)=0+2 from 9/2 ⁺ target for 936+950.
952.88 4	$(2 \text{ to } 7)^+$		B D	XREF: D(950).
				J ^{π} : 498.7 γ to (4,5) ⁺ ; L(d,p)=0+2 from 9/2 ⁺ target for 936+950.
972 10	$(2 \text{ to } 7)^+$		D	J^{π} : L(d,p)=2 from 9/2 ⁺ .
1000 10	4+,5+		D	J^{π} : L(d,p)=0+2 from 9/2 ⁺ .
1051.16 4	$(2^+,3,4)$		В	J^{π} : 411.4 γ to (3) ⁺ ; primary 5713.8 γ from 4 ⁺ ,5 ⁺ ; 551.1 γ to (2,3) ⁻ .
1074.62 25	(8 ⁻)		A	J^{π} : $\Delta J=(1)$, (E1) 617.6 γ and 634.2 γ to (7) ⁺ .
1154.9 ⁰ 3	$(10)^{-}$	<0.28 ns	A	J^{π} : $\Delta J=(1)$, M1(+E2) 377.0 γ to (9) ⁻ ; band assignment.
1284.6 [‡] 3	$(9)^{+}$		A	J^{π} : $\Delta J=2$, E2 827.6 γ to (7) ⁺ ; band assignment.
1339 1	1+	~	F	J^{π} : L(³ He,t)=0+2 from 0 ⁺ .
1406.6 ^c 3	(11) ⁻	$<0.28^{a}$ ns	Α	J^{π} : $\Delta J=2$, E2 628.7 γ to (9) ⁻ and $\Delta J=1$, M1(+E2) 251.6 γ to (10) ⁻ ; band assignment.
1416 <i>1</i>	1+		F	J^{π} : L(³ He,t)=0+2 from 0 ⁺ .
1581.7 ^d 4	(10 ⁻)		Α	J^{π} : $\Delta J=(1)$ 804.0 γ to (9) ⁻ ; band assignment.
1720.9 [‡] 4	(10 ⁺)		A	J^{π} : $\Delta J=(2)$, 1010.1 γ to $(8)^+$.
1840.2 ^b 3	(12)-	<0.28 ^{<i>a</i>} ns	Α	J ^π : Δ J=2, E2 685.3γ to (10) ⁻ and Δ J=1, M1(+E2) 433.6γ to (11) ⁻ ;
				band assignment.
2053.1 ^e 4	(11^{-})		Α	J^{π} : $\Delta J=1 472.2\gamma$ and 898.3 γ to $(10)^{-}$; band assignment.
2152 1	(1^{+})		F	J^{π} : possible Gamow-Teller transition from 0 ⁺ .
2175.5 [‡] 4	(11^{+})		Α	J^{π} : $\Delta J=(2) 890.9\gamma$ to $(9)^+$.
2238.5 ^c 4	(13) ⁻	<0.28 ^{<i>a</i>} ns	A	J^{π} : $\Delta J=2$, E2 831.7 γ to (11) ⁻ and $\Delta J=1$, M1+E2 398.3 γ to (12) ⁻ ; band assignment.
2318 1	(1^{+})		F	J^{π} : possible Gamow-Teller transition from 0^+ .
2391.9 ^d 4	(12 ⁻)		Α	J ^π : Δ J=1 986.1γ to (11) ⁻ ; Δ J=2 809.7γ to (10 ⁻); band assignment.
2435 1	(1^{+})		F	J^{π} : possible Gamow-Teller transition.
2565 1	1+		F	J^{π} : L(³ He,t)=0; possible Gamow-Teller transition.
2611 <i>I</i>	(1^+)		F	J^{π} : possible Gamow-Teller transition.
2683 1	(1^{+})		F	J^{π} : possible Gamow-Teller transition.
2693.5 ^b 4	(14 ⁻)	<0.28 ^{<i>a</i>} ns	Α	J^{π} : $\Delta J=2$, 853.2 γ to (12) ⁻ and $\Delta J=1$, 454.9 γ to (13) ⁻ ; band assignment.
2695.9 [‡] 6	(12^{+})		Α	J^{π} : $\Delta J=(2)$ 975.0 γ to (10 ⁺).
2798.3 ^e 5	(13 ⁻)		Α	J ^{π} : Δ J=1, 956.9 γ to (12) ⁻ ; band assignment.
2949 1	1+		F	J ^{π} : L(³ He,t)=0; possible Gamow-Teller transition.
3075.7 [‡] 6	(13 ⁺)		A	J^{π} : $\Delta J=(2) 900.2\gamma$ to (11^+) .
3233.0 ^c 5	(15 ⁻)		A	J^{π} : $\Delta J=2$, 995.2 γ to (13) ⁻ ; $\Delta J=1$, 540.6 γ to (14 ⁻); band assignment.
$3.25 \times 10^3 \ 25$	(1^+)		F	J^{π} : possible Gamow-Teller transition.
3269.2 ^d 5	(14 ⁻)		A	J^{π} : 1030.5 γ to (13) ⁻ ; 471.1 γ to (13 ⁻): band assignment.
3690.4? ^e 6	(15-)		Α	J^{π} : 996.9 γ to (14 ⁻); possible band assignment.
3710.0 ^b 6	(16 ⁻)		A	J^{π} : $\Delta J = (2) \ 1014.7\gamma$ to (14^{-}) ; 478.9 γ to (15^{-}) ; band assignment.
$3.75 \times 10^3 25$	$(1)^{+}$		F	J^{π} ,E(level): L(³ He,t)=0+2; possible multiplet.

¹⁰⁰Tc Levels (continued)

E(level) [†]	J π #	XREF	Comments
4358.1? ^C 7	(17 ⁻)	A	J^{π} : $\Delta J=2$ 1125.1 γ to (15 ⁻); possible 644.4 γ to (16 ⁻); possible band assignment.
(6765.08 3)	$4^+, 5^+$	В	E(level): S(n)=6764.4 <i>10</i> (2017Wa10).
			J^{π} : s-wave capture in 9/2 ⁺ g.s. of ⁹⁹ Tc.
8000		F	E(level): centroid of a wide peak, giant resonance and spin-dipole resonance.
11085 <i>1</i>	0^{+}	F	J^{π} ,E(level): L(³ He,t)=0; possible Gamow-Teller transition.
13300		F	E(level): centroid of a wide peak. Giant resonance and a sharp IAR peak near 11.5 MeV.

[†] From least-squares fit to $E\gamma$ data. The relative uncertainties of secondary γ rays from (n,γ) E=thermal were doubled if less than 0.01 keV and the primary γ rays were included in the fitting procedure. The uncertainties were assumed as 0.5 keV when not stated. The overall normalized χ^2 =5.0, somewhat higher than expected which implies that some of the $E\gamma$ uncertainties should be higher than the assigned values. Based on systematic uncertainty of 0.05 keV for secondary γ rays in (n,γ) E=thermal, the absolute uncertainty on level energies contains 0.04 keV uncertainty added in quadrature, where applicable.

[‡] Configuration= $\pi g_{9/2} \otimes v d_{5/2}$ and $\pi g_{9/2} \otimes v g_{7/2}$ (1995Bi11).

[#] For levels populated in (${}^{7}Li$,3n γ) ascending spins are assumed as the excitation energy increases, based on the preferential population of yrast states in (HI,xn γ) reactions.

^(a) L(d,p)=0+2 from 9/2⁺ for 936+950 doublet gives $J^{\pi}=4^+,5^+$ for both levels or $J^{\pi}=4^+,5^+$ for one level and $J^{\pi}=2^+$ to 7⁺ for the other.

& From $\gamma(t)$ in (p,n γ) (1980Bi01), unless otherwise stated.

^{*a*} Centroid-shift method in 96 Zr(7 Li,3n γ) (1995Bi11).

^b Band(A): Negative-parity yrast band, $\alpha=0$. Configuration= $\pi g_{9/2}^{-1} \otimes \nu h_{11/2}$.

^c Band(a): Negative-parity yrast band, $\alpha = 1$. Configuration= $\pi g_{9/2}^{-1} \otimes v h_{11/2}$.

^d Band(B): Possible chiral (doublet) partner, $\alpha = 0$. Configuration= $\pi g_{9/2}^{-1} \otimes \nu h_{11/2}$.

^{*e*} Band(b): Possible chiral (doublet) partner, $\alpha = 1$. Configuration= $\pi g_{9/2}^{-1} \otimes v h_{11/2}$.

						Adop	ted Levels, (Gammas (contin	ued)
							$\gamma(^1$	⁰⁰ Tc)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	J_f^{π}	Mult. [#]	$\delta^{\#}$	α ^{&}	Comments
172.15	2+	172.1484 4	100	0.0	<u></u> 1+	M1+E2	0.45 10	0.082 7	B(E2)(W.u.)>4.5; B(M1)(W.u.)>0.0010 α (K)=0.071 6; α (L)=0.0093 11; α (M)=0.00169 19 α (N)=0.000264 29; α (O)=1.52×10 ⁻⁵ 11
200.67	(4)+	28.520 2	100	172.15	2+	E2		112.9 <i>16</i>	δ: from ce in (n,γ) E=thermal, (p,nγ) and (⁷ Li,3nγ). B(E2)(W.u.)=1.16 2 α (K)=39.1 5; α (L)=60.8 9; α (M)=11.40 16 α (N)=1.591 22; α (O)=0.00680 10
223.47	(2)-	223.4682 <i>4</i>	100	0.0	1+	E1		0.01316 <i>18</i>	E _{γ} : from ce data in (n, γ) E=thermal. From γ -ray data: 28.6 4 in (p,n γ) (1978Ma36) and 28.7 3 in (γ ,p γ) (1978Ba18). Mult.: from ce data in (n, γ) E=thermal and x-ray data in (p,n γ). B(E1)(W.u.)>9.3×10 ⁻⁶
									α (K)=0.01156 <i>16</i> ; α (L)=0.001321 <i>18</i> ; α (M)=0.0002383 <i>33</i> α (N)=3.76×10 ⁻⁵ <i>5</i> ; α (O)=2.390×10 ⁻⁶ <i>33</i> δ : <0.03 from RUL, <0.1 from ce data in (n, γ) E=thermal, 0.24 <i>4</i> from ce data in (p,n γ).
243.95	(6)+	43.2862 10	100	200.67	(4)+	E2		25.01 35	B(E2)(W.u.)=1.62 <i>11</i> α (N)=0.2214 <i>31</i> ; α (O)=0.002387 <i>33</i> α (K)=14.86 <i>21</i> ; α (L)=8.36 <i>12</i> ; α (M)=1.565 <i>22</i> Mult.: from ce data in (n, γ) E=thermal.
263.56	(3)+	62.8887 5	27.5 8	200.67	(4)+	M1		1.041 15	B(M1)(W.u.)>0.0028 α (K)=0.908 13; α (L)=0.1098 15; α (M)=0.01996 28 α (N)=0.00316 4; α (O)=0.0002060 29
		91.4074 2	81 5	172.15	2+	M1		0.359 5	B(M1)(W.u.)>0.0027 α (K)=0.313 4; α (L)=0.0376 5; α (M)=0.00684 10 α (N)=0.001086 15; α (O)=7.11×10 ⁻⁵ 10 Mult S ST20(11) (0.25 form of the interval
		263.5554 9	100.0 12	0.0	1+	E2		0.0396 6	Mult., δ : $\delta(E2/M1)<0.5$ from ce data in (i, γ) E=merinal. B(E2)(W.u.)>1.9 $\alpha(K)=0.0341$ 5; $\alpha(L)=0.00459$ 6; $\alpha(M)=0.000836$ 12 $\alpha(N)=0.0001293$ 18; $\alpha(O)=6.92\times10^{-6}$ 10 Mult., δ : $\delta(E2/M1)>2.5$ from ce data in (⁷ Li,3n γ), >2 from ce
287.52	(5)+	43.5620 10	52 7	243.95	(6)+	M1		3.02 4	data in (n, γ) E=thermal. B(M1)(W.u.)>0.012 $\alpha(K)=2.63 4; \alpha(L)=0.320 4; \alpha(M)=0.0581 8$ $\alpha(N)=0.00921 13; \alpha(O)=0.000597 8$ $\delta_{1} \delta(E2(M1)<0.3 from co. data in (n \alpha) E=thermal$
		86.8498 <i>3</i>	100 7	200.67	(4)+	M1		0.415 6	B(M1)(W.u.)>0.0028 α (N)=0.001255 <i>18</i> ; α (O)=8.21×10 ⁻⁵ <i>11</i> α (K)=0.362 5; α (L)=0.0435 6; α (M)=0.00791 <i>11</i> α (K)=0.2 from e.e. data in (n.e.) E-thermal
294.92	(4)+	31.3696 10	100 12	263.56	(3)+	M1(+E2)	< 0.08	8.13 25	B(M1)(W.u.)=0.089 +22-15 α (N)=0.0273 32; α (O)=0.001574 25

S

From ENSDF

IJ

 $^{100}_{43}{
m Tc}_{57}{
m -}5$

						$\gamma(^{100}\mathrm{Tc})$	(continued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\#}$	α &	Comments
294.92	(4)+	94.251 6	3.6 3	200.67 (4) ⁺	[M1,E2]		0.9 6	$\frac{\alpha(\text{K})=6.97 \ 13; \ \alpha(\text{L})=0.96 \ 12; \ \alpha(\text{M})=0.175 \ 23}{\delta: \text{ from RUL}(\text{E2})=300. \ \delta(\text{E2}/\text{M1})=0.35 \ 15 \ \text{from } \alpha(\text{L1})\text{exp in } (n,\gamma).}$ $\frac{\alpha(\text{K})=0.8 \ 5; \ \alpha(\text{L})=0.15 \ 11; \ \alpha(\text{M})=0.027 \ 21}{\alpha(\text{N})=0.0041 \ 31; \ \alpha(\text{O})=1.4\times10^{-4} \ 8}$ If M1, B(M1)(W.u.)=5E-5 \ 3. If E2, B(E2)(W.u.)=5 \ 3.
299.66	(2,3)+	99.09 [@] 10	<15 [@]	200.67 (4)+				
		127.5061 <i>3</i>	100 [@] 12	172.15 2+	E2(+M1)	>1.4	0.46 6	B(E2)(W.u.)>79 α (K)=0.38 5; α (L)=0.065 10; α (M)=0.0120 19 α (N)=0.00180 28; α (O)=7.1×10 ⁻⁵ 9 Mult., δ : from ce data in (p,n γ).
319.49	(5)+	299.47 ^b 4 75.5330 2	100 6	$\begin{array}{ccc} 0.0 & 1^+ \\ 243.95 & (6)^+ \end{array}$	M1		0.616 9	$\alpha(K)=0.538 \ 8; \ \alpha(L)=0.0648 \ 9; \ \alpha(M)=0.01178 \ 16 \ \alpha(N)=0.001868 \ 26; \ \alpha(O)=0.0001219 \ 17 \ Mult.: from ce data in (n, \gamma) E=thermal; \ \gamma(\theta) in (^7Li,3n\gamma)$
		118.8233 5	5.0 11	200.67 (4)+				consistent with $\Delta J = 1$.
335.16	(2,3)+	71.600 3	68 6	263.56 (3) ⁺	M1		0.718 <i>10</i>	B(M1)(W.u.)>0.0044 α (K)=0.626 9; α (L)=0.0755 11; α (M)=0.01373 19 α (N)=0.002178 30; α (O)=0.0001420 20 E _v : level-energy difference=71.610.
		163.0105 9	63 5	172.15 2+				E_{γ} : level-energy difference=163.0175.
340.98	(3)+	335.193 <i>3</i> 46.0491 <i>10</i>	100 5 7.6 10	$\begin{array}{ccc} 0.0 & 1^+ \\ 294.92 & (4)^+ \end{array}$	M1		2.57 4	E _γ : level-energy difference=335.166. $\alpha(K)=2.240 \ 31; \ \alpha(L)=0.272 \ 4; \ \alpha(M)=0.0494 \ 7$ $\alpha(N)=0.00783 \ 11; \ \alpha(O)=0.000507 \ 7$ $\delta: \ \delta(E2/M1)<0.4 \ \text{from ce data in } (n, \gamma) \ \text{E=thermal.}$
		77.418 3	2.6 4	$263.56(3)^+$				• • • (<u></u> ,) ·••• (,,)
		140.3152 <i>3</i> 168.8302 <i>2</i>	18.0 8 100 <i>10</i>	$200.67 (4)^+$ 172.15 2 ⁺	M1		0.0665 9	$\alpha(K)=0.0581 \ 8; \ \alpha(L)=0.00687 \ 10; \ \alpha(M)=0.001248 \ 17 \ \alpha(N)=0.0001983 \ 28; \ \alpha(O)=1.312\times10^{-5} \ 18 \ \delta: \ \delta(E2/M1)<0.3 \ \text{from ce data in } (n,\gamma) \ \text{E=thermal.}$
0.55.50	(2 c) [±]	340.981 3	30.4 6	0.0 1+	141 55	0 5 5	0.51.57	
355.58	(2,3) ⁺	92.0183 4	100 10	263.56 (3) ⁺	M1+E2	0.6 3	0.71 24	$\alpha(K)=0.58 \ I^{9}; \ \alpha(L)=0.10 \ 5; \ \alpha(M)=0.019 \ 9$ B(M1)(W.u.)>0.0018; B(E2)(W.u.)>30 $\alpha(N)=0.0029 \ I^{3}; \ \alpha(O)=1.14\times10^{-4} \ 3I$
100 (2	(F \±	355.575 9	79 3	$0.0 1^+$	141		0.0000.00	
400.63	(5) ⁺	105.7083 2	100 20	294.92 (4)*	MI		0.2390 <i>33</i>	$\alpha(K)=0.208729; \alpha(L)=0.0249935; \alpha(M)=0.004546$ $\alpha(N)=0.00072110; \alpha(O)=4.73\times10^{-5}7$ Mult.: $\delta(E2/M1)<0.3$ from ce data in (n,γ) E=thermal.
121 26	(3.4^{+})	199.9647 7	10.0 16	$200.67 (4)^+$				
424.30	(3,4)	129.4322 11	0.5 5	294.92 (4)				

6

From ENSDF

 $^{100}_{43}\mathrm{Te}_{57}$ -6

$\gamma(^{100}\text{Tc})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	δ [#]	α ^{&}	Comments
424.36 440.38	(3,4 ⁺) (7) ⁺	252.2159 8 196.4 2	100.0 <i>21</i> 100	$\begin{array}{cccc} 172.15 & 2^+ \\ 243.95 & (6)^+ \end{array}$	M1(+E2)	<0.3	0.0472 28	B(M1)(W.u.)>0.0090 α (N)=0.000143 11; α (O)=9.2×10 ⁻⁶ 4 α (K)=0.0412 24; α (L)=0.0050 4; α (M)=0.00090 7 E _γ ,Mult.,δ: from (⁷ Li,3nγ), with γ (θ) consistent with Δ J=1.
454.20	(4,5) ⁺	113.2194 <i>3</i> 166.6825 <i>3</i> 190.6374 <i>6</i>	32.9 9 100 9	$\begin{array}{c} 340.98 (3)^{+} \\ 287.52 (5)^{+} \end{array}$	M1		0.0688 10	$\alpha(K)=0.0602 \ 8; \ \alpha(L)=0.00712 \ 10; \ \alpha(M)=0.001292 \ 18 \ \alpha(N)=0.0002053 \ 29; \ \alpha(O)=1.358\times10^{-5} \ 19 \ Mult.: from ce data in (n,\gamma) E=thermal. E_{\gamma}: level-energy difference=190.6412.$
456.79 457.05	(2 ⁺ ,3,4 ⁻) (7) ⁺	253.532 3 233.325 3 213.1 2	19.7 20 100 100	$\begin{array}{c} 200.67 (4)^{+} \\ 223.47 (2)^{-} \\ 243.95 (6)^{+} \end{array}$	M1+E2	0.4 2	0.042 6	B(M1)(W.u.)>0.0057; B(E2)(W.u.)>6 α (K)=0.037 5; α (L)=0.0046 8; α (M)=0.00083 15 α (N)=0.000131 22; α (O)=8.0×10 ⁻⁶ 9 E _γ ,Mult.,δ: from (⁷ Li,3nγ), with γ (θ) consistent with
459.13	(0,1,2,3 ⁺)	103.78 [@] 4	36 [@] 12	355.58 (2,3)+				$\Delta J=1.$ E_{γ}, I_{γ} : level-energy difference=103.63. Other: $E_{\gamma}=103.5975$ <i>19</i> and $I_{\gamma}=78$ 8 from (n,γ) E=thermal is uncertain.
		124.01 ^{^w 5} 286.84 3 458.84 <i>18</i>	48 ^w 12 77 3 100 6	335.16 (2,3) ⁺ 172.15 2 ⁺ 0.0 1 ⁺				 E_γ, I_γ: other: Eγ=124.027 3 and Iγ=7.5 23 from (n,γ) E=thermal is uncertain. E_γ: weighted average of 286.83 3 from (n,γ) E=thermal and 286.90 6 from (p,nγ). level-energy difference=287.05. I_γ: weighted average of 78 3 from (n,γ) E=thermal and 64 12 from (p,nγ). E_γ: unweighted average of 459.01 4 from (n,γ) E=thermal
461.10	(5)+	141.5882 ^b 6 166.1707 4 173.564 <i>13</i> 197.530 <i>10</i> 217.1398 6	3.4 5 32 5 0.48 14 1.4 3 100.0 23	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	M1		0.0341 5	and 458.06 8 from (p,n γ). $\alpha(K)=0.0299$ 4; $\alpha(L)=0.00351$ 5; $\alpha(M)=0.000637$ 9
476.02	(≤3)	260.441 <i>11</i> 176.36 8 475.9 ^b	3.4 9 100	$\begin{array}{ccc} 200.67 & (4)^+ \\ 299.66 & (2,3)^+ \\ 0.0 & 1^+ \end{array}$				α (N)=0.0001012 14; α (O)=6.73×10 ⁻⁶ 9 Mult., δ : δ (E2/M1)<0.5 from ce data in (n, γ) E=thermal. E _{γ} : from (p,n γ) only. E _{γ} : from (p,n γ) only.
484.04?	(≤3)	260.7 ^b 3 483.93 ^b 5	100	$\begin{array}{ccc} 223.47 & (2)^{-} \\ 0.0 & 1^{+} \end{array}$				E_{γ} : from (p,nγ) only. E_{γ} : from (p,nγ) only.

-

					Ado	opted Leve	ls, Gamn	nas (continued)
						$\gamma(^{100})$	Tc) (cont	inued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ [#]	α &	Comments
493.67	4+,5+	39.4889 ^{ab} 10	<29 ^{<i>a</i>}	454.20	(4,5)+	M1		4.03 6	α (N)=0.01228 <i>17</i> ; α (O)=0.000795 <i>11</i> α (K)=3.51 <i>5</i> ; α (L)=0.427 <i>6</i> ; α (M)=0.0776 <i>11</i> Placement proposed in (p,n γ),(d,2n γ).
		152.7012 6	26.1 4	340.98	(3)+				E_{γ} : level-energy difference=152.6953.
		198.753 <i>10</i>	1.0 3	294.92	$(4)^+$				
		206.1568 5	100.0 20	287.52	(5)+	M1+E2	0.6 4	0.053 13	$\alpha(K)=0.046 \ 11; \ \alpha(L)=0.0060 \ 17; \ \alpha(M)=0.00109 \ 32$ $\alpha(N)=1.7\times10^{-4} \ 5; \ \alpha(O)=9.8\times10^{-6} \ 19$
	(2.2)-	230.1148 8	30.8 10	263.56	$(3)^+$				
500.02	$(2,3)^{-}$	236.4601 13	4.31 24	263.56	$(3)^+$	3.61		0.01000.00	
		276.5525 7	100.0 12	223.47	(2)	MI		0.01829 26	$\alpha(K)=0.01602\ 22;\ \alpha(L)=0.001866\ 26;\ \alpha(M)=0.000338\ 5$ $\alpha(N)=5.38\times10^{-5}\ 8;\ \alpha(O)=3.60\times10^{-6}\ 5$ $\delta:\ <0.4.$
		327.92 3	1.25 25	172.15	2+				
500.15	$(4)^{-}$	75.780 14	0.19 5	424.36	$(3,4^{+})$				
		159.175 <i>3</i>	1.56 6	340.98	$(3)^{+}$				
		180.668 15	0.05 1	319.49	$(5)^{+}$				
		299.4805 5	100.0 13	200.67	(4)+	E1		0.00587 8	$\alpha(K)=0.00516\ 7;\ \alpha(L)=0.000587\ 8;\ \alpha(M)=0.0001059\ 15$ $\alpha(N)=1.676\times10^{-5}\ 23;\ \alpha(O)=1.083\times10^{-6}\ 15$ Mult.: $\delta(M2/E1)<0.14$ from ce data in (n,γ) E=thermal, 0.3 <i>I</i> from ce data in $(p,n\gamma)$.
513.92	(3 to 6) ⁺	226.4041 7	100 5	287.52	$(5)^+$				
		313.237 8	8.2 7	200.67	$(4)^{+}$				
521.0?		257.5 ⁶		263.56	$(3)^{+}$				E_{γ} : from (p,n γ) only.
		348.7 <mark>b</mark>		172.15	2^{+}				E_{γ} : from (p,n γ) only.
539.63	$(4^{-},5^{-})$	39.4889 <mark>ab</mark> 10	<13 ^a	500.15	$(4)^{-}$	M1		4.03 6	$\alpha(N)=0.01228$ 17: $\alpha(O)=0.000795$ 11
	(, , , ,								$\alpha(K)=3.51\ 5;\ \alpha(L)=0.427\ 6;\ \alpha(M)=0.0776\ 11$ $\delta:\ \delta(E2/M1)<0.2\ from ce data in (n,\gamma) E=thermal.$
		78.558 <mark>b</mark> 6	0.82 23	461.10	$(5)^{+}$				
		220.1428 5	31.2 9	319.49	$(5)^{+}$				
		244.705 <i>3</i>	3.2 5	294.92	$(4)^+$				
		338.9634 17	100.0 11	200.67	$(4)^+$				<i>,</i>
544.87	(6) ⁻	83.7760 17	1.8 5	461.10	(5) ⁺	[E1]		0.2214 <i>31</i>	B(E1)(W.u.)=9×10 ⁻⁶ +7-4 α (K)=0.1937 27; α (L)=0.02287 32; α (M)=0.00411 6 α (N)=0.000639 9; α (O)=3.68×10 ⁻⁵ 5
		144.2378 3	29.9 8	400.63	(5)+	(E1)		0.0459 6	B(E1)(W.u.)=2.9×10 ⁻⁵ +13-8 α (N)=0.0001315 18; α (O)=8.07×10 ⁻⁶ 11 α (K)=0.0403 6; α (L)=0.00465 7; α (M)=0.000838 12 I _Y : other: 41 4 in (⁷ Li,3ny). Mult : D from α (β) in (⁷ Li 3ng)
		225.3835 5	100 1	319.49	(5) ⁺	E1		0.01284 18	B(E1)(W.u.)= $2.6 \times 10^{-5} + 11 - 7$ α (K)= $0.01128 \ 16; \ \alpha$ (L)= $0.001290 \ 18; \ \alpha$ (M)= $0.0002326 \ 33$

 ∞

 $^{100}_{43}{
m Tc}_{57}{
m -8}$

				A	dopted Leve	ls, Gamn	nas (continue	<u>d)</u>
					$\gamma(^{100}$	Tc) (cont	inued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	δ [#]	α &	Comments
544.87	(6)-	300.9302 10	112 18	243.95 (6) ⁺	E1		0.00579 8	
								$\alpha(\mathbf{K})=0.00509^{-7}; \alpha(\mathbf{L})=0.000579^{-8}; \alpha(\mathbf{M})=0.0001045^{-7}5^{-7}$ $\alpha(\mathbf{N})=1.654\times10^{-5} 23; \alpha(\mathbf{O})=1.070\times10^{-6} 15^{-7}5^{-7}$ E _{\gamma} : level-energy difference=300.9171. I _γ : unweighted average from (n,γ) and (⁷ Li,3nγ). Mult.: from $\gamma(\theta,\text{pol})$ and ce data in (⁷ Li,3nγ), with $\gamma(\theta)$ consistent with $\Delta J=0$ and $\delta(\mathbf{M}2/\mathbf{E}1)=0.25^{-6}6^{-7}$ from ce data. I _γ : other: 130 2 in (⁷ Li,3nγ).
552.29	4+,5+	91.177 5	30 6	461.10 (5)+	M1(+E2)	<1.1	0.7 4	$\alpha(K)=0.61\ 29;\ \alpha(L)=0.11\ 7;\ \alpha(M)=0.020\ 13$ $\alpha(N)=0.0031\ 20;\ \alpha(O)=1.2\times10^{-4}\ 5$ Mult δ : from ce data in (n χ) E=thermal
		127.9233 5 211.3101 8 232.772 ^b 8 257.3564 22 264.767 22 288.7234 15	44 7 95 5 3.7 11 64 4 15 4 100.0 17	$\begin{array}{r} 424.36 & (3,4^+) \\ 340.98 & (3)^+ \\ 319.49 & (5)^+ \\ 294.92 & (4)^+ \\ 287.52 & (5)^+ \\ 263.56 & (3)^+ \end{array}$				Mult.,0. from ee data in (ii,y) E–ulefiniai.
580.41	$(3,4,5)^+$ (2 to 7) ⁺	119.3093 21 179.7982 11 239.4184 8 260.9136 11 292.9062 18 379.758 11 145.5786 5	2.2 7 37 6 65 4 100 3 71 3 23.0 22 100	$\begin{array}{c} 461.10 (5)^{+} \\ 400.63 (5)^{+} \\ 340.98 (3)^{+} \\ 319.49 (5)^{+} \\ 287.52 (5)^{+} \\ 200.67 (4)^{+} \\ 454.20 (4.5)^{+} \end{array}$				E_{γ} : level-energy difference=179.7757. E_{γ} : level-energy difference=239.4289. E_{γ} : level-energy difference=260.9206. E_{γ} : level-energy difference=292.8924.
608.65	(7)-	63.8 [@] 2	100 [@] 3	544.87 (6) ⁻	M1(+E2)	<0.12	1.04 4	B(M1)(W.u.)>0.12 α (K)=0.897 30; α (L)=0.115 10; α (M)=0.0209 18 α (N)=0.00329 26; α (O)=0.000202 5 Mult.,δ: $\gamma(\theta)$ in (⁷ Li,3n γ) suggests Δ J=1, intensity balance at 609 level gives α (exp) \approx 1.4 implying M1(+E2), δ <0.4. RUL(E2)=300 gives δ <0.12.
		168.2 [@] 2	14.7 [@] 19	440.38 (7) ⁺	(E1)		0.0295 4	
		364.7 [@] 2	12.8 [@] 13	243.95 (6)+	(E1)		0.00348 5	$\alpha(K)=0.00306 \ 4; \ \alpha(L)=0.000347 \ 5; \ \alpha(M)=6.26\times10^{-5} \ 9$ $\alpha(N)=9.93\times10^{-6} \ 14; \ \alpha(O)=6.48\times10^{-7} \ 9$

					A	dopted Leve	els, Gamn	nas (continued	1)
						$\gamma(^{100}$	Tc) (cont	inued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α &	Comments
636 17	$(3 4 5)^+$	295.2.2	<117	340.98	(3)+				B(E1)(W.u.)>1.0×10 ⁻⁶ Mult.: D from $\gamma(\theta)$ in (⁷ Li,3n γ) consistent with $\Delta J=1$; (E1) from level scheme.
050.17	(3,4,3)	348.70 8 372.0 <i>3</i>	100 22 27 11	287.52 263.56	$(5)^+$ $(3)^+$				E_{γ}, I_{γ} : from (p,n γ). E_{γ}, I_{γ} : may be an unresolved doublet in (p,n γ). E_{γ}, I_{γ} : from (p,n γ).
639.82	(3)+	139.634 <i>11</i> 146.1502 <i>15</i> 185.6197 6 239.169 5 320.341 <i>14</i> 344.884 <i>4</i> 376.255 <i>17</i> 639.79 <i>3</i>	0.48 <i>12</i> 6.0 <i>16</i> 22.9 <i>5</i> 4.8 <i>12</i> 15.6 <i>16</i> 100.0 <i>20</i> 4.2 <i>5</i> 17.7 <i>6</i>	500.15 493.67 454.20 400.63 319.49 294.92 263.56 0.0	$\begin{array}{c} (4)^{-} \\ 4^{+}, 5^{+} \\ (4,5)^{+} \\ (5)^{+} \\ (5)^{+} \\ (4)^{+} \\ (3)^{+} \\ 1^{+} \end{array}$				
680.23	(4,5,6) ⁻	180.08 [@] 6	100 [@] 13	500.15	(4)-	E2(+M1)	>0.9	0.125 26	$\alpha(N)=0.00043 \ 10; \ \alpha(O)=2.1\times10^{-5} \ 4 \\ \alpha(K)=0.106 \ 22; \ \alpha(L)=0.015 \ 4; \ \alpha(M)=0.0028 \ 7 \\ E_{\gamma}: \ \text{other:} \ 180.3316 \ 13 \ \text{from (n,\gamma)} \ \text{E=thermal is uncertain.} \\ \text{Mult.,} \delta: \ \text{from ce data in (p,n\gamma)}.$
707.79	(8) ⁻	99.1 2	12 2 100 <i>3</i>	608.65	(5) ⁺ (7) ⁻	M1(+E2)	<0.25	0.316 <i>30</i>	B(M1)(W.u.)>0.050 α (K)=0.273 23; α (L)=0.035 5; α (M)=0.0064 10 α (N)=0.00101 15; α (O)=6.0×10 ⁻⁵ 4 Mult.,δ: ce data in (⁷ Li,3nγ) give M1+E2 with δ (E2/M1)=0.62 16. RUL(E2)=300 gives δ <0.25; γ (θ) consistent with Δ I=1
		250.7 2	7.7 15	457.05	(7) ⁺	[E1]		0.00955 14	B(E1)(W.u.)>2.9×10 ⁻⁶ α (K)=0.00839 <i>12</i> ; α (L)=0.000957 <i>14</i> ; α (M)=0.0001726 <i>24</i> α (N)=2.73×10 ⁻⁵ <i>4</i> ; α (Q)=1.746×10 ⁻⁶ 25
		267.5 2	6.5 8	440.38	(7)+	(E1)		0.00798 11	B(E1)(W.u.)>2.2×10 ⁻⁶ α (K)=0.00701 10; α (L)=0.000800 11; α (M)=0.0001442 20 α (N)=2.280×10 ⁻⁵ 32; α (O)=1.465×10 ⁻⁶ 21 Mult.: D from $\gamma(\theta)$ in (⁷ Li,3n γ) consistent with Δ J=1; (E1) from level scheme.
710.82	(8)+	253.8 2 270.4 2	100 <i>18</i> 95 8	457.05 440.38	$(7)^+$ $(7)^+$	M1(+E2)	<0.5	0.0211 17	B(M1)(W.u.)>0.0013 α (K)=0.0184 14; α (L)=0.00220 22; α (M)=0.00040 4 α (N)=6.3×10 ⁻⁵ 6; α (O)=4.07×10 ⁻⁶ 26 Mult.,δ: from ce in (⁷ Li,3nγ); γ (θ) consistent with Δ J=1.
748.20	4+,5+	323.841 <i>3</i> 547.23 <i>5</i>	100 7 27.5 20	424.36 200.67	(3,4 ⁺) (4) ⁺				E_{γ} : level-energy difference=547.54.
758.8? 777.86	(9)-	301.8 ^b 3 70.1 2	100 100	457.05 707.79	$(7)^+$ $(8)^-$	M1(+E2)	<0.13	0.794 <i>34</i>	B(M1)(W.u.)>0.12

10

¹⁰⁰₄₃Tc₅₇-10

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^π	Mult. [#]	δ [#]	α ^{&}	Comments
821.74	(3,4,5)	321.590 4	100	500.15	(4)-				
830.20	(2,3)+	657.79 [@] 12	32 [@] 7	172.15	2+				E_{γ}, I_{γ} : other: $E_{\gamma}=657.46$ 3, $I_{\gamma}=164$ 5 in (n, γ) E=thermal is uncertain.
		830.29 [@] 7	100 [@] 21	0.0	1+				E_{γ} , I_{γ} : other: E_{γ} =830.05 <i>12</i> , I_{γ} =100 <i>10</i> in (n, γ) is uncertain.
854.01	$(2 \text{ to } 7)^+$	301.721 4	100	552.29	$4^+, 5^+$				
906.18	$(1^+, 2, 3^+)$	422.14 [@] 10	28 [@] 8	484.04?	(≤3)				
		564.84 [@] 23	28 [@] 14	340.98	$(3)^{+}$				
		682.80 [@] 9	100 [@] 14	223.47	$(2)^{-}$				
		905.5 [@] 4	18 [@] 9	0.0	1+				
929.90	$(3,4,5)^+$	429.748 5	100 5	500.15	(4)-				
052.99	$(2 + 7)^{+}$	666.34 3	52.8 10	263.56	$(3)^{+}$				
932.88	(2 to 7)	272.407 0 498 69 3	51.5 <i>17</i> 100 <i>4</i>	380.41 454 20	(3,4,3) $(4,5)^+$				
1051.16	$(2^+, 3, 4)$	411.35 3	26.5 16	639.82	$(3)^+$				
		551.14 <i>3</i>	100 3	500.02	(2,3)-				
1074.62	(8 ⁻)	617.6 3	40 15	457.05	(7)+	(E1)		9.65×10 ⁻⁴ 14	α (K)=0.000850 12; α (L)=9.54×10 ⁻⁵ 13; α (M)=1.723×10 ⁻⁵ 24 α (N)=2.74×10 ⁻⁶ 4; α (O)=1.826×10 ⁻⁷ 26 Mult.: from $\gamma(\theta,\text{pol})$ in (⁷ Li,3n γ), consistent with
		634.2 <i>3</i>	100 20	440.38	(7)+	(E1)		9.10×10 ⁻⁴ 13	$\Delta J=1.$ $\alpha(K)=0.000801 \ II; \ \alpha(L)=8.99\times10^{-5} \ I3;$ $\alpha(M)=1.623\times10^{-5} \ 23$ $\alpha(N)=2.58\times10^{-6} \ 4; \ \alpha(O)=1.721\times10^{-7} \ 24$ Mult.: from $\gamma(\theta,\text{pol})$ in (⁷ Li,3n γ), consistent with $\Delta I=1$
1154.9	(10)-	377.0 2	100 <i>I</i>	777.86	(9)-	M1(+E2)	<1.1	0.00940 99	B(M1)(W.u.)>0.00065 α (K)=0.0082 8; α (L)=0.00098 13; α (M)=0.000177 23 α (N)=2.81×10 ⁻⁵ 35; α (O)=1.80×10 ⁻⁶ 15 Mult.: from ce data, $\gamma(\theta, \text{pol})$ and γ (DCO) in
		446.9	0.43 6	707.79	(8)-	[E2]		0.00706 10	$\alpha(K)=0.00614 \ 9; \ \alpha(L)=0.000757 \ 11; \ \alpha(M)=0.0001374 \ 19 \ \alpha(N)=2.155\times10^{-5} \ 30; \ \alpha(O)=1.301\times10^{-6} \ 18 \ B(E2)(W.u.)>0.015$

 $^{100}_{43}{
m Tc}_{57}$ -11

L

 $^{100}_{43}\mathrm{Tc}_{57}$ -11

From ENSDF

$\gamma(^{100}\text{Tc})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α ^{&}	Comments
1284.6	(9)+	827.6 3	100 11	457.05	(7)+	E2		1.29×10 ⁻³ 2	α (K)=0.001134 <i>16</i> ; α (L)=0.0001315 <i>18</i> ; α (M)=2.379×10 ⁻⁵ <i>33</i> α (N)=3.77×10 ⁻⁶ <i>5</i> ; α (O)=2.460×10 ⁻⁷ <i>35</i>
		844 2 <i>4</i>	<220	440 38	$(7)^{+}$				Mult.: from $\gamma(\theta, \text{pol})$ in (⁷ Li,3n γ), consistent with $\Delta J=2$.
1406.6	(11)-	251.6 2	100 1	1154.9	$(10)^{-}$	M1(+E2)		0.035 12	α (K)=0.030 <i>10</i> ; α (L)=0.0039 <i>15</i> ; α (M)=7.1×10 ⁻⁴ <i>28</i> α (N)=1.1×10 ⁻⁴ <i>4</i> ; α (O)=6.3×10 ⁻⁶ <i>17</i>
									Mult.: from $\gamma(\theta, \text{pol})$ and $\gamma(\text{DCO})$ in $(^7\text{Li}, 3n\gamma)$, consistent with $\Lambda I=1$
		628.7 2	77 11	777.86	(9)-	E2		0.00263 4	B(E2)(W.u.)>0.29
									α (K)=0.002300 32; α (L)=0.000273 4; α (M)=4.94×10 ⁻⁵ 7 α (N)=7.81×10 ⁻⁶ 11; α (O)=4.95×10 ⁻⁷ 7
									Mult.: from ce data, $\gamma(\theta, \text{pol})$ and $\gamma(\text{DCO})$ in $(^7\text{Li}, 3n\gamma)$, consistent with $\Delta J=2$.
1581.7	(10 ⁻)	804.0 <i>3</i>	100	777.86	(9)-	D+Q			Mult.: γ (DCO) (2005Jo04) consistent with Δ J=1, but $\gamma(\theta)$ (1995Bi11) suggests Δ J=2, in (⁷ Li,3n γ). This γ is not placed in level scheme by 1995Bi11.
1720.9	(10^{+})	1010.1 <i>3</i>	100	710.82	$(8)^{+}$	(Q)			Mult.: $\gamma(\theta)$ in (⁷ Li,3n γ) suggests $\Delta J=2$.
1840.2	$(12)^{-}$	433.6 2	100 6	1406.6	$(11)^{-}$	M1(+E2)	< 0.8	0.0063 4	B(M1)(W.u.) > 0.00037
									$\alpha(\mathbf{N}) = 0.00534 \ 30; \ \alpha(\mathbf{L}) = 0.00005 \ 3; \ \alpha(\mathbf{M}) = 0.000117 \ 8$ $\alpha(\mathbf{N}) = 1.86 \times 10^{-5} \ 13; \ \alpha(\mathbf{O}) = 1.22 \times 10^{-6} \ 5$
									Mult., δ : from ce data, $\gamma(\theta, \text{pol})$ and $\gamma(\text{DCO})$ in (⁷ Li,3n γ), consistent with $\Delta J=1$.
		685.3 2	44 9	1154.9	(10)-	E2		$2.09 \times 10^{-3} 3$	B(E2)(W.u.)>0.12
									$\alpha(K)=0.001827\ 26;\ \alpha(L)=0.0002151\ 30;\ \alpha(M)=3.90\times10^{-5}\ 5$ $\alpha(N)=6\ 16\times10^{-6}\ 9;\ \alpha(O)=3.95\times10^{-7}\ 6$
									Mult.: from $\gamma(\theta, \text{pol})$ and $\gamma(\text{DCO})$ in (⁷ Li,3n γ), consistent with $\Delta J=2$.
2053.1	(11^{-})	472.2	27.4 6	1581.7	(10 ⁻)	D+Q			Mult.: from γ (DCO) in (⁷ Li,3n γ), consistent with Δ J=1.
		898.3	100 <i>1</i>	1154.9	$(10)^{-}$	D+Q			Mult.: from γ (DCO) in (⁷ Li,3n γ), consistent with Δ J=1.
2175.5	(11^+)	890.9 <i>3</i>	100	1284.6	$(9)^+$	(Q)		0.0007.14	Mult.: $\gamma(\theta)$ in (¹ Li,3n γ) suggests $\Delta J=2$.
2238.5	(13)	398.3 2	6/0	1840.2	(12)	M1+E2		0.0087 14	$\alpha(K)=0.0076 T2; \ \alpha(L)=0.00092 T8; \ \alpha(M)=0.000167 32$ $\alpha(N)=2.6\times10^{-5} 5; \ \alpha(O)=1.64\times10^{-6} 20$
									Mult.: from $\gamma(\theta, \text{pol})$ and $\gamma(\text{DCO})$ in (⁷ Li, 3n γ), consistent with $\Delta J=1$.
		831.7 <i>3</i>	100 <i>I</i>	1406.6	$(11)^{-}$	E2		$1.28 \times 10^{-3} 2$	B(E2)(W.u.)>0.11
									$\alpha(K)=0.001120 \ 16; \ \alpha(L)=0.0001298 \ 18; \ \alpha(M)=2.350\times10^{-5} \ 33$ $\alpha(N)=3.73\times10^{-6} \ 5; \ \alpha(O)=2.431\times10^{-7} \ 34$
									Mult.: from $\gamma(\theta, \text{pol})$ and $\gamma(\text{DCO})$ in (⁷ Li,3n γ), consistent with $\Delta J=2$.
2391.9	(12 ⁻)	338.9 2	79 <i>2</i>	2053.1	(11^{-})	D			Mult.: from $\gamma(\theta)$ in (⁷ Li,3n γ) suggests $\Delta J=1$.
		809.7	38.2 12	1581.7	(10 ⁻)	Q			Mult.: from γ (DCO) in (⁷ Li,3n γ), consistent with $\Delta J=2$.
		986.1	100.0 14	1406.6	$(11)^{-}$	D+Q			Mult.: from γ (DCO) in (⁷ Li,3n γ), consistent with $\Delta J=1$.

12

$\gamma(^{100}\text{Tc})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.#	Comments
2391.9	(12^{-})	1236 7 <mark>b</mark>		1154.9	$(10)^{-}$		
2693.5	(12^{-})	454.9 2	100 7	2238.5	$(13)^{-}$	D+O	Mult.; from $\gamma(\theta)$ and $\gamma(DCO)$ in (⁷ Li.3n γ), consistent with $\Lambda J=1$.
	()	853.2.3	49.3	1840.2	$(12)^{-}$	0	Mult.: from $\gamma(\theta)$ and $\gamma(DCO)$ in (⁷ Li.3n γ), consistent with $\Delta J=2$.
2695.9	(12^{+})	975.0 4	100	1720.9	(10^{+})	(0)	Mult.: from $\gamma(\theta)$ in $({}^{7}\text{Li},3n\gamma)$ for a doublet, consistent with $\Delta J=2$.
2798.3	(13-)	407.7	9.8 6	2391.9	(12 ⁻)		
		743 <mark>b</mark>		2053.1	(11^{-})		
		956.9	100 1	1840.2	$(12)^{-}$	D+O	Mult.: from γ (DCO) in (⁷ Li,3n γ), consistent with $\Delta J=1$.
3075.7	(13^{+})	900.2 4	100	2175.5	(11^{+})	(Q)	Mult.: from $\gamma(\theta)$ in (⁷ Li,3n γ) suggests $\Delta J=2$.
3233.0	(15 ⁻)	540.6	39.7 13	2693.5	(14 ⁻)	D+Q	Mult.: from γ (DCO) in (⁷ Li,3n γ), consistent with $\Delta J=1$.
		995.2	100 1	2238.5	(13)-	Q	Mult.: from γ (DCO) in (⁷ Li,3n γ), consistent with $\Delta J=2$.
3269.2	(14 ⁻)	471.1	100 3	2798.3	(13 ⁻)		
		1030.5	67 <i>3</i>	2238.5	$(13)^{-}$		
3690.4?	(15^{-})	419.6 <mark>6</mark>	14.1 10	3269.2	(14 ⁻)		
		996.9	100 2	2693.5	(14 ⁻)		
3710.0	(16 ⁻)	478.9	44 2	3233.0	(15 ⁻)		E_{γ} : level-energy difference=477.1.
		1014.7	100 1	2693.5	(14 ⁻)	(Q)	E_{γ} : level-energy difference=1016.5.
		h					Mult.: from γ (DCO) in ('Li,3n γ), probably consistent with $\Delta J=2$.
4358.1?	(17^{-})	644.4 ⁰	67 3	3710.0	(16 ⁻)		7
		1125.1	100 3	3233.0	(15 ⁻)	Q	Mult.: from γ (DCO) in ('Li,3n γ), consistent with $\Delta J=2$.
(6765.08)	4+,5+	5713.81 8	63.9 21	1051.16	$(2^+,3,4)$		
		3811.7 4 5825 2 2	9.0 14	952.88	$(2 10 7)^{+}$		
		5911 3 6	439	929.90 854.01	(3,4,3) $(2 \text{ to } 7)^+$		
		$5035 45^{b} 13$	30.1.14	830.20	$(2 \ (0 \ 7))$		
		5943 25 9	30.1 14 43 7 15	821 74	(2,3) (345)		
		6017.4 6	2.2.8	748.20	$4^+.5^+$		
		6084 13 ^b 24	969	680.23	$(456)^{-}$		
		6125.16 13	27.4 16	639.82	$(3)^+$		
		6165.09 18	15.7 10	599.78	$(2 to 7)^+$		
		6184.47 17	17.2 10	580.41	$(3,4,5)^+$		
		6212.7 4	6.0 9	552.29	4+,5+		
		6219.97 5	100.0 22	544.87	(6)-		
		6225.17 12	30.1 14	539.63	$(4^{-},5^{-})$		
		6250.85 14	21.5 <i>10</i> 51 5 <i>1</i> 5	513.92	$(3 to b)^{-}$		6264.7 to 500.02 or 500.15 level, the energy difference and I^{π} assignments encourte
		0204.74 0	51.5 15	500.15	(4)		favor the placement from the latter.
		6270.6 6	13.4 10	493.67	$4^+,5^+$		
		6303.91 25	13.3 10	461.10	$(\mathfrak{I})^{+}$		
		0308.5 4	7.99 217	430.79	$(2^{+}, 3, 4^{+})$		
		6364 5 <i>4</i>	$\frac{2.1}{507}$	400.63	(5, +) $(5)^+$		
		6444.9 <i>4</i>	4.5 7	319.49	$(5)^+$		

13

 $^{100}_{43}\mathrm{Tc}_{57}$ -13

$\gamma(^{100}\text{Tc})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}
(6765.08)	4+,5+	6470.2 4	5.0 7	294.92	$(4)^{+}$
		6477.2 <i>3</i>	5.7 7	287.52	$(5)^{+}$
		6501.1 <i>3</i>	6.2 7	263.56	$(3)^{+}$
		6520.5 6	2.4 5	243.95	$(6)^{+}$
		6564.26 10	29.4 12	200.67	$(4)^{+}$
		6593.2 8	2.1 5	172.15	2+

[†] From (n,γ) E=thermal, when a level is populated in this reaction, unless otherwise noted. For E γ data below 596 keV from bent-crystal in (n,γ) E=thermal, the quoted uncertainty is obtained from relative precision, while the absolute uncertainty is 0.05 keV, based on the energies of 539.59 γ and 590.83 γ from ¹⁰⁰Tc β^- , used as calibration lines in (n,γ) .

[‡] Primarily from (n,γ) E=thermal, when a level is populated in this reaction and for γ rays from high-spin levels, values are from $(^{7}\text{Li},3n\gamma)$, unless otherwise noted.

[#] From ce data in (n,γ) E=thermal, and ce, $\gamma(\theta)$ and $\gamma(\ln \text{ pol})$ in $(^7\text{Li},3n\gamma)$, unless otherwise noted. Values of δ are deduced from ce data using the BrIccMixing code (by evaluators), unless otherwise noted.

[@] From ¹⁰⁰Mo(p,n γ),(d,2n γ); the assignment in ⁹⁹Tc(n, γ) E=thermal is either uncertain or not reported.

[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Multiply placed with undivided intensity.

^b Placement of transition in the level scheme is uncertain.

From ENSDF

 $^{100}_{43}{
m Tc}_{57}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Legend

 $^{100}_{43}{
m Tc}_{57}$

¹⁰⁰₄₃Tc₅₇

¹⁰⁰₄₃Tc₅₇

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

¹⁰⁰₄₃Tc₅₇