¹⁰⁰Rh ε decay (20.5 h) 1995KeZZ,1996Gi04,1969Be69

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 172, 1 (2021)	31-Jan-2021

Parent: ¹⁰⁰Rh: E=0.0; J^{π}=1⁻; T_{1/2}=20.5 h 3; Q(ε)=3636 18; % ε +% β ⁺ decay=100.0

¹⁰⁰Rh-J^{π},T_{1/2}: From the Adopted Levels.

¹⁰⁰Rh-Q(ε): From 2017Wa10.

1995KeZZ: ¹⁰⁰Rh source was produced via the ¹⁰⁰Ru(p,n) reaction with proton beam from the IPEN cyclotron on 15 mg ¹⁰⁰Ru target. γ rays were detected with HPGe and Ge(Li) detectors. Measured E γ , $\gamma\gamma$ -coin, γ (t). Deduced levels, decay branching ratios, parent T_{1/2}. Comparisons with available data. In an earlier work by the same author as 1995KeZZ, $\gamma\gamma(\theta)$ data using two Ge(Li) detectors were reported in Master's thesis 1990KeZV, and γ -ray multipolarities and mixing ratios were deduced. See also 1991Pr08.

1996Gi04: ce data, γ data for selected transitions.

1969Be69: γ , $\gamma\gamma$ data.

1974Ko23 (also 1974Ko05 from the same group): ce data for mainly the E0 transitions. γ data for selected transitions.

1978Ba29: $\gamma\gamma(\theta)$ data using germanium and NaI detectors. γ data for selected transitions.

Others: 1977BhZV, 1969An11, 1968Ka04, 1966Au06, 1964Ko04, 1964An13, 1962Ba17, 1953Ma64, 1950Su29, 1948Li03.

All measurements grouped by types of measured data:

γ data: 1995KeZZ, 1969Be69, 1996Gi04, 1978Ba29, 1974Ko23, 1977BhZV, 1969An11, 1968Ka04, 1964Ko04, 1964An13, 1962Ba17.

γγ data: 1995KeZZ, 1969Be69, 1978Ba29, 1977BhZV, 1969An11, 1968Ka04, 1964Ko04, 1962Ba17.

γγ(*θ*) data: 1978Ba29, 1991Pr08, 1968Ka04, 1964Ko04.

ce data: 1996Gi04, 1974Ko23 (also 1974Ko05), 1964Ko04, 1964An13, 1953Ma64.

(ce)(γ): 1968Ka04.

 $\gamma\gamma(\theta,H,t)$: 1966Au06.

 β^+ data: 1953Ma64, 1964An13, 1948Li03.

T_{1/2}(¹⁰⁰Rh g.s.): 1995KeZZ, 1953Ma64, 1964An13, 1964Ko04, 1950Su29, 1948Li03.

Total decay energy deposit of 3640 keV 24 calculated by RADLIST code is in agreement with expected value of 3636 keV 18.

¹⁰⁰Ru Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0 539.511 <i>5</i>	$0^+ 2^+$	12.54 ps 10	$g=+0.55\ 7\ (1966Au06)$
1130.300 7 1226.477 7 1362.162 6	0+ 4+ 2+#	8.2 ps +15-11	g-factor from $\gamma\gamma(\theta, \mathbf{H}, t)$ for $\Gamma_{1/2}=11.0$ ps in 1900Au06.
1740.993 <i>11</i> 1865.106 <i>7</i> 1881.043 <i>6</i> 2051.657 <i>7</i>	0^+ 2^+ 3^+ 0^+		Branching ratios to 0 ⁺ states: <0.1% (to g.s.), <0.7% (to 1130) (1996Gi04).
2099.109 8 2166.873 6 2240.812 9	2+ 3- 2+		
2387.14 <i>3</i> 2469.388 <i>6</i> 2512.41 <i>3</i> 2516.824 <i>6</i>	0^+ 2^- $(4)^+$ 1^-		
2516.824 6 2536.151 25 2543.733 25 2569 908 8	$ \begin{array}{c} 1 \\ 3 \\ 2^+ \\ (3)^- \end{array} $		
2617.09 4	1,2+		

$^{100}\mathbf{Rh}\,\varepsilon$ decay (20.5 h) 1995KeZZ,1996Gi04,1969Be69 (continued)

¹⁰⁰Ru Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
2660.135 <i>17</i> 2666.30 <i>3</i>	$1,2^+$ (2,3)	
2745.59 <i>5</i> 2774.9 <i>8</i>	$(1,2^+)$ $2^+,3^+$	
2801.41 6 2915.542 6 2933.65 10	2^{-} (1,2) ⁺	
3060.15 5 3069.522 7 3072.248 18	$(1,2)^{-}$ $(1,2)^{-}$ 2^{+}	J ^{π} : (2530 γ)(540 γ)(θ) in 1978Ba29 favors J=1 but $\gamma\gamma(\theta)$ in 1990KeZV favors J=2.
3323.759 <i>25</i> 3419.13 <i>17</i> 3463.79 <i>4</i>	$(1,2^+)$ (2^+) $(1^+,2)$	

[†] From least-squares fit to Eγ data. The uncertainty of the doublet at 1207.50 *3* was assumed as 0.3 keV in the fitting procedure. Normalized χ² is 1.8, somewhat larger than the critical value of 1.4.
 [‡] From the Adopted Levels, unless otherwise stated.

[#] From $\gamma\gamma(\theta)$.

ε, β^+ radiations

Branching to 2167 level <0.07%.

E(decay)	E(level)	$I\beta^+$ #	Ie#	Log <i>ft</i>	$I(\varepsilon + \beta^+)^{\ddagger \#}$	Comments
(172 18)	3463.79		0.012 3	7.4 2	0.012 3	εK=0.840 5; εL=0.129 4; εM+=0.0313 10
(217 18)	3419.13		0.0123 6	7.6 1	0.0123 6	εK=0.8467 24; εL=0.1236 19; εM+=0.0297 6
(312 18)	3323.759		0.330 6	6.51 6	0.330 6	εK=0.8544 11; εL=0.1175 8; εM+=0.02807 23
(564 18)	3072.248		0.433 11	6.93 4	0.433 11	εK=0.8616 3; εL=0.11190 23; εM+=0.02652 7
(566 18)	3069.522		3.45 4	6.03 <i>3</i>	3.45 4	εK=0.8616 3; εL=0.11187 22; εM+=0.02651 6
(576 18)	3060.15		0.122 3	7.50 4	0.122 3	εK=0.8618 3; εL=0.11176 22; εM+=0.02648 6
(702 18)	2933.65		0.0106 4	8.74 <i>3</i>	0.0106 4	εK=0.8633 2; εL=0.11058 14; εM+=0.02616 4
(720 18)	2915.542		68.6 6	4.95 <i>3</i>	68.6 <i>6</i>	εK=0.8634 2; εL=0.11045 14; εM+=0.02612 4
(835 18)	2801.41		0.0072 13	9.1 <i>1</i>	0.0072 13	εK=0.8643 2; εL=0.1097 1; εM+=0.02593 3
(861 18)	2774.9		0.019 5	8.7 1	0.019 5	εK=0.8645 2; εL=0.1096 1; εM+=0.02590 3
(890 18)	2745.59		0.049 3	8.28 4	0.049 3	εK=0.8647 1; εL=0.10947 9; εM+=0.02586 3
(970 18)	2666.30		0.009 3	9.1 2	0.009 3	εK=0.86510 9; εL=0.10914 8; εM+=0.02576 2
(976 18)	2660.135		0.016 4	8.9 <i>1</i>	0.016 4	εK=0.86513 9; εL=0.10911 7; εM+=0.02576 2
(1019 18)	2617.09		0.056 2	8.35 2	0.056 2	εK=0.8653; εL=0.10896 7; εM+=0.02572 2
$(1066^{\textcircled{0}}18)$	2569.908		< 0.03	>8.7	< 0.03	εK=0.8655; εL=0.10880 6; εM+=0.02567 2
(1092 18)	2543.733		0.080 3	8.25 2	0.080 3	εK=0.8656; εL=0.10872 6; εM+=0.02565 2
(1119 18)	2516.824		1.313 13	7.06 2	1.313 13	εK=0.8657; εL=0.10863 6; εM+=0.02563 2
(1124 [@] 18)	2512.41		< 0.03	>8.7	< 0.03	εK=0.8657; εL=0.10862 6; εM+=0.02562 2
(1167 18)	2469.388	0.0024 17	19.9 2	5.91 2	19.9 2	av Eβ=71.1 82; εK=0.8658; εL=0.10849 6; εM+=0.02559 2
(1249 18)	2387.14		0.080 4	8.37 3	0.080 4	εK=0.8654 3; εL=0.10821 8; εM+=0.02551 2
(1395 18)	2240.812	0.00091 19	0.134 9	8.24 4	0.135 9	av Eβ=171.0 78; εK=0.8607 12; εL=0.10727 18; εM+=0.02528 5
(1537 18)	2099.109	0.0013 3	0.055 9	8.7 1	0.056 9	av Eβ=232.0 78; εK=0.847 3; εL=0.1053 4; εM+=0.02481 9
(1584 18)	2051.657	0.00072 15	0.022 4	9.1 <i>1</i>	0.023 4	av E β =252.4 78; ε K=0.840 4; ε L=0.1043 5;

Continued on next page (footnotes at end of table)

¹⁰⁰ Rh ε decay (20.5 h)	1995KeZZ,1996Gi04,1969Be69 (continued)
------------------------------------	--

E(decay)	E(level)	Iβ ⁺ #	Iɛ#	Log ft	$I(\varepsilon + \beta^+)^{\ddagger \#}$	Comments
(1755 18)	1881.043	0.009 3	0.10 4	8.6 2	0.11 4	ε M+=0.02458 <i>11</i> av E β =326.2 <i>79</i> ; ε K=0.800 <i>6</i> ; ε L=0.0991 <i>7</i> ; sM \pm =0.02334 <i>17</i>
(1895 18)	1740.993	0.0090 17	0.058 10	8.9 <i>1</i>	0.067 12	av E β =387.2 79; ε K=0.751 8; ε L=0.0929 10; ε M+=0.02187 22
(2274 18)	1362.162	0.11 4	0.20 9	8.5 2	0.31 13	av E β =554.4 81; ϵ K=0.570 10; ϵ L=0.0703 12; ϵ M+=0.0166 3 I β ⁺ : 0.16 3 from (γ^{\pm})(823 γ) coin (1995KeZZ). This
(2506 18)	1130.300	0.149 7	0.165 8	8.67 <i>3</i>	0.314 14	gives $1\varepsilon + 1\beta = 0.47$ 9. av $E\beta = 658.2 \ 81$; $\varepsilon K = 0.456 \ 9$; $\varepsilon L = 0.0561 \ 11$; $\varepsilon M + = 0.01320 \ 25$ $1\beta^+: 0.13 \ 2 \ from (\gamma^{\pm})(591\gamma) \ coin (1995 KeZZ)$. This gives $1\varepsilon + 1\beta = 0.29 \ 5$.
3092 [†] 20	539.511	1.2 4	0.47 14	8.4 1	1.7 5	av E β =927.0 83; ε K=0.241 5; ε L=0.0296 6; ε M+=0.00696 14 I β ⁺ : 1.7 5 from (γ [±])(539 γ) coin (1995KeZZ) and 1.9 from β ⁺ spectrum (1953Ma64). I β =1.7 gives I ε +I β =2.4 7.
3637 [†] 20	0.0	2.4 6	0.46 11	8.6 1	2.9 7	av E β =1176.8 84; ε K=0.1381 25; ε L=0.0169 3; ε M+=0.00398 8 I β^+ : from γ^{\pm} coin spectra (1995KeZZ). Other: 2.2 (1953Ma64, β^+ data with a magnetic spectrometer).

ϵ, β^+ radiations (continued)

[†] From 1953Ma64 from analysis of Fermi plot in five components. The components to g.s. and 540 level seem to agree with γ -ray data whereas three others at E $\beta(I\beta)$ =1260 *10*(0.62%), 540 *25* (0.18%), 150 *30* (0.003%) are probably incorrect. The relative branching to g.s. and 540 level is also not very accurately determined.

^{\ddagger} From I(γ +ce) intensity balance at each level.

[#] Absolute intensity per 100 decays.

[@] Existence of this branch is questionable.

$\gamma(^{100}\text{Ru})$

Iγ normalization: from $\Sigma(I(\gamma+ce)$ of gammas to g.s.)=97.1 7. $I(\varepsilon+\beta^+)$ (to g.s.)=2.9 7 based on measured I β^+ (g.s.)=2.4 6 (1995KeZZ). The previous measurements: ce(K)(540 γ)/I β^+ =0.062 (1953Ma64), I(γ^\pm)/I γ (540 γ)=0.110 12 (1968Ka04), 0.150 16 (1964Ko04) combined with γ -ray intensity balance in the level scheme give I γ normalization=0.78 2.

The 218 γ (I γ =0.03 *I*, 1978Ba29) and 2395.7 γ (I γ =0.13 8, 1969Be69) are omitted since these are not confirmed by 1995KeZZ and 1996Gi04. I γ (218 γ)<0.0025 (1996Gi04), I γ (2396 γ)<0.0012 (1995KeZZ).

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}\&$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	α^{a}	Comments
x104.20 4 140.03 3 141.27 5 154.007 10	0.0023 5 0.0052 5 0.0028 5 0.0328 9	3463.79 2801.41 3069.522	$(1^+,2)$ $(1,2)^-$	3323.759 (2660.135 1 2915.542 2	$1,2^+)$ $2,2^+$ 2^-	[D,E2] [D,E2] [M1,E2]		0.22 <i>17</i> 0.21 <i>16</i> 0.18 9	α(K)=0.16 8; α(L)=0.024 14; α(M)=0.004 3
228.581 8	0.1798 [#] 14	2469.388	2-	2240.812 2	2+	E1		0.01306	$\alpha(N)=0.0007 \ 4; \ \alpha(O)=2.5\times10^{-5} \ 11$ $\alpha(K)\exp=0.008 \ 2 \ (1996Gi04)$ $\alpha(K)=0.01146 \ 16; \ \alpha(L)=0.001322 \ 19;$
234.0 ^{<i>c</i>} 5	0.0023 8	2099.109	2+	1865.106 2	2+	[M1,E2]		0.047 <i>16</i>	$\alpha(M)=0.000241 \ 4$ $\alpha(N)=3.87\times10^{-5} \ 6; \ \alpha(O)=1.94\times10^{-6} \ 3$ Mult.: $\alpha(K)$ exp from 1996Gi04 gives mult=E1. $\alpha(K)=0.040 \ 14; \ \alpha(L)=0.0054 \ 22; \ \alpha(M)=0.0010 \ 4$ $\alpha(N)=0.00016 \ 7; \ \alpha(O)=6.9\times10^{-6} \ 19$ $I_{\gamma}: \ 0.10 \ 2 \ (1978Ba29)$ is in severe disagreement. $I_{\gamma}(234\gamma)/I_{\gamma}(1559\gamma)<0.002 \ (1996Gi04).$ Placement is from 1978Ba29. E γ agrees with the level energy difference
249.25 <i>3</i> 255.417 <i>17</i> 298 55 <i>11</i>	0.0151 <i>6</i> 0.0210 <i>5</i> 0.0060 9	2915.542 2915.542 2915.542	2^{-} 2^{-} 2^{-}	2666.30 (2 2660.135 1 2617.09 1	$^{2,3)}_{2,2^+}$	[D,E2] [D,E2] [D,E2]		0.03 2 0.03 2 0.017 11	level-energy difference.
301.771 8	0.258 18	2166.873	3-	1865.106 2	2+	(E1(+M2))	+0.04 3	0.00620 23	$\alpha(K)=0.00544\ 20;\ \alpha(L)=0.00063\ 3;\ \alpha(M)=0.000114\ 5$ $\alpha(N)=1.84\times10^{-5}\ 8;\ \alpha(O)=9.4\times10^{-7}\ 4$ $\alpha(N)=1.80\times10^{-5}\ 3;\ \alpha(O)=9.18\times10^{-7}\ 13$
302.507 6	0.899 18	2469.388	2-	2166.873 3	3-	M1+E2	1.8 +12-5	0.0237 14	
345.654 8	0.0983 13	2915.542	2-	2569.908 (:	3)-	[M1,E2]		0.014 3	$A_4 = +0.21 \ I9 \ \text{for} \ (302\gamma)(1627\gamma)(\theta) \ (1990\text{KeZV})$ gives $\delta(Q/D) = 2.7 \ 9 \ \text{or} \ 0.16 \ I0 \ \text{for} \ J(2469) = 2 \ \text{and}$ J(2167) = 3. $\alpha(\text{K}) = 0.0123 \ 23; \ \alpha(\text{L}) = 0.0015 \ 4; \ \alpha(\text{M}) = 0.00028 \ 7 \ \alpha(\text{N}) = 4.5 \times 10^{-5} \ I1; \ \alpha(\text{O}) = 2.2 \times 10^{-6} \ 4$

				100 Rh ε d	ecay (2	0.5 h) 199	95KeZZ,19	96Gi04,1969B	e69 (continued)
						$\gamma(^{100}$	⁾ Ru) (contin	nued)	
E_{γ}^{\dagger}	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	α^{a}	Comments
349.960 16	0.0379 13	2516.824	1-	2166.873	3-	[E2]		0.01614	α (K)=0.01393 20; α (L)=0.00181 3; α (M)=0.000334 5 α (N)=5.29×10 ⁻⁵ 8; α (O)=2.37×10 ⁻⁶ 4
370.275 7	0.933 [#] 4	2469.388	2-	2099.109	2+	E1		0.00355	$\begin{aligned} \alpha(K) = 0.00312 \ 5; \ \alpha(L) = 0.000357 \ 5; \ \alpha(M) = 6.52 \times 10^{-5} \ 10 \\ \alpha(N) = 1.051 \times 10^{-5} \ 15; \ \alpha(O) = 5.40 \times 10^{-7} \ 8 \\ \text{Mult.:} \ \alpha(K) \exp = 0.0039 \ 9 \ \text{from } 1996Gi04 \ \text{gives} \\ \delta(M2/E1) = 0.16 \ +8 - 16; \ \alpha(K) \exp = 0.013 \ 8 \ \text{from } 1964Ko04 \\ \text{is consistent with mult} = D, E2. \ \text{Other ce data: } 1953Ma64. \\ (370\gamma)(1560\gamma)(\theta): \ A_2 = +0.12 \ 8, \ A_4 = -0.11 \ 12 \ (1990 \text{KeZV}) \\ \text{gives } \delta(Q/D) = -1.3 \ 13. \end{aligned}$
378.79 5	0.082 14	1740.993	0+	1362.162	2+	E2		0.01251	$\begin{aligned} &\alpha(K)\exp=0.0012\ 6\ (1974Ko23)\\ &\alpha(K)=0.01082\ 16;\ \alpha(L)=0.001389\ 20;\ \alpha(M)=0.000256\ 4\\ &\alpha(N)=4.06\times10^{-5}\ 6;\ \alpha(O)=1.85\times10^{-6}\ 3\\ &E_{\gamma}:\ 378.93\ 4\ (1974Ko23).\\ &Mult.:\ \alpha(K)\exp\ in\ 1974Ko23\ gives\ mult=M1,E2,\ but\ \Delta J^{\pi}\\ &requires\ E2;\ (378\gamma)(1362\gamma)(\theta):\ A_2=-0.1\ 5,\ A_4=+0.4\ 9\\ &(1990KeZV)\ supports\ E2. \end{aligned}$
379.24 5	$0.065 \ 14$	2915.542	2-	2536.151	3			0.007 (E_{γ} : level energy difference=379.39.
398.716 6 403.07 ^b 11	$0.1737^{a} 12$ $0.10^{b} 2$	2915.542 2569.908	2 ⁻ (3) ⁻	2516.824 2166.873	1- 3-	[D,E2] (M1+E2)	+1.58 7	0.007 <i>4</i> 0.00958 <i>15</i>	$ α(K)=0.00832 \ 13; \ α(L)=0.001036 \ 16; \ α(M)=0.000191 \ 3 $ $ α(N)=3.04\times10^{-5} \ 5; \ α(O)=1.452\times10^{-6} \ 21 $ Placement from 1995KeZZ. 1969Be69 place this γ from 3464 level. $ E_{\gamma}: \text{ level energy difference}=403.03 \ 1. $ $ I_{\gamma}: \text{ from } γ\gamma. I_{\gamma}(\text{doublet})=0.232 \ 24 \text{ from singles spectrum.} $
403.07 ^b 11	0.09 ^b 3	2915.542	2-	2512.41	(4)+	[M2]		0.0289	$ α(K)=0.0250 4; α(L)=0.00316 5; α(M)=0.000586 9 α(N)=9.45\times10^{-5} 14; α(O)=4.85\times10^{-6} 7 Placement from 1995KeZZ. 1969Be69 place from 3464 level. E_{\gamma}: level energy difference=403.13 3. I_{\gamma}: from \gamma\gamma.$
409.18 8	0.0082 8	3069.522	$(1,2)^{-}$	2660.135	$1,2^{+}$	[D,E2]		0.006 4	,
446.153 5	14.86 [#] 8	2915.542	2-	2469.388	2-	M1(+E2)	<0.45	0.00624 15	$\begin{aligned} &\alpha(K) = 0.00546 \ 13; \ \alpha(L) = 0.000638 \ 19; \ \alpha(M) = 0.000117 \ 4 \\ &\alpha(N) = 1.89 \times 10^{-5} \ 6; \ \alpha(O) = 9.93 \times 10^{-7} \ 19 \\ &\alpha(K) \exp = 0.0054 \ 3 \ (1996Gi04). \\ &K/L = 8.3 \ 10, \ \alpha(K) \exp = 0.0064 \ 6, \ \alpha(L) \exp = 0.00077 \ 7 \\ &(1964Ko04). \\ &\delta: \ ce \ data \ in \ 1996Gi04 \ and \ 1964Ko04 \ gives \ \delta(E2/M1) > 0.7 \\ &is \ inconsistent \ with \ adopted \ value. \ Other \ ce \ data: \\ &1953Ma64. \\ &(446\gamma)(1930\gamma)(\theta): \ A_2 = +0.067 \ 11, \ A_4 = -0.02 \ 3 \ (1978Ba29). \\ &A_2 = +0.046 \ 12, \ A_4 = -0.01 \ 2 \ for \ (446\gamma)(1930\gamma)(\theta) \ and \\ &A_2 = +0.10 \ 3, \ A_4 = -0.06 \ 5 \ for \ (446\gamma)(1107\gamma)(\theta) \\ &(1990KeZV) \ gives \ \delta(E2/M1) = -0.11 \ 3. \end{aligned}$

S

 $^{100}_{44}$ Ru₅₆-5

				100 Rh ε dec	ay (20.	5 h) 199	5KeZZ,199	6Gi04,1969Be	69 (continued)
						$\gamma(^{100})$	Ru) (contin	ued)	
E_{γ}^{\dagger}	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	α^{a}	Comments
465.15 3	0.1283 [#] 10	2516.824	1-	2051.657	0+	[E1]		0.010 9	$\alpha(K)=0.009 \ 8; \ \alpha(L)=0.0011 \ 10; \ \alpha(M)=0.00021 \ 17$
470.98 17	0.0037 8	2569.908	(3)-	2099.109	2+	[E1,M2]		0.010 8	$\alpha(N)=3.E-5, \alpha(O)=1.7\times10^{-1}15^{-1}$ $\alpha(K)=0.009, 7; \alpha(L)=0.0011, 9; \alpha(M)=0.00020, 17^{-1}$ $\alpha(N)=3.E-5, 3; \alpha(O)=1.7\times10^{-6}, 14^{-1}$
^x 480.33 <i>14</i> 499.599 <i>7</i>	0.0040 8 0.1401 <i>20</i>	3069.522	(1,2) ⁻	2569.908	(3)-	M1,E2		0.0050 4	α (K)exp=0.0044 7 (1996Gi04) α (K)=0.0044 3; α (L)=0.00052 6; α (M)=9.6×10 ⁻⁵ 10
1501 70 <i>(</i>	0.022.3								α (N)=1.54×10 ⁻⁵ <i>15</i> ; α (O)=7.8×10 ⁻⁷ <i>4</i> Mult.: α (K)exp from 1996Gi04 gives mult=M1,E2. Placement from 1995KeZZ. 1969Be69 and 1996Gi04 place from 2241 level.
*501.79 6 502.907 18	0.022 3 0.069 6	1865.106	2+	1362.162	2+	M1,E2		0.0049 4	α (K)exp=0.004 <i>I</i> (1996Gi04) α (K)=0.0043 <i>3</i> ; α (L)=0.00051 <i>5</i> ; α (M)=9.4×10 ⁻⁵ <i>I0</i>
									$\alpha(N)=1.52\times10^{-5}$ 14; $\alpha(O)=7.6\times10^{-7}$ 4 Mult.: $\alpha(K)$ exp in 1996Gi04 gives mult=M1,E2. I $\gamma(503\gamma)/I\gamma(735\gamma)=0.30$ 4 (1996Gi04). Additional information 1.
518.882 5	1.131 [#] 5	1881.043	3+	1362.162	2+	M1+E2	+0.37 7	0.00432 7	α (K)exp=0.00411 22 (1996Gi04) α (K)=0.00379 6; α (L)=0.000441 7; α (M)=8.08×10 ⁻⁵ 13
									$\alpha(N)=1.306\times10^{-3} 21; \ \alpha(O)=6.87\times10^{-7} 10$ $\alpha(K)\exp \text{ from } 1996\text{Gio4 gives } \delta(\text{E2/M1})=2.4$ $+\infty-17.$ (519x)(1362x)(θ): $A_2=+0.15$ 7. $A_4=+0.10$ 11
									(1978Ba29); A_2 =-0.04 8, A_4 =+0.01 13 (1990KeZV) gives $\delta(Q/D)$ =0.03 9 or 4.3 +29-13.
533.52 7	0.110 19	3069.522	(1,2)-	2536.151	3	[E1]		1.44×10^{-3}	$\alpha(K)=0.001266\ 18;\ \alpha(L)=0.0001438\ 21;\ \alpha(M)=2.63\times10^{-5}\ 4$
539.512 5	100.0 5	539.511	2+	0.0	0+	E2		0.00428	$\alpha(N)=4.24 \times 10^{-6} 6; \alpha(O)=2.22 \times 10^{-7} 4$ K/L=6.1 5; $\alpha(L)\exp=0.00061 4 (1964Ko04)$ $\alpha(K)=0.00373 6; \alpha(L)=0.000456 7;$ $\alpha(M)=8.37 \times 10^{-5} 12$
									$\alpha(N)=0.57\times10^{-12}$ $\alpha(N)=1.339\times10^{-5} I9; \ \alpha(O)=6.52\times10^{-7} I0$ Mult.: The ce(L) intensity is probably incorrect. K/L(theory)=8.2. $\gamma\gamma(\theta)$ in 1990KeZV also supports E2.
552.706 8	0.1370 [#] 10	3069.522	(1,2)-	2516.824	1-	[M1,E2]		0.00383 18	α (K)=0.00335 <i>15</i> ; α (L)=0.00040 <i>3</i> ; α (M)=7.3×10 ⁻⁵ <i>6</i>

 $^{100}_{44}$ Ru₅₆-6

				KII	e dec	ay (20.5 II)	1995KeLL	,1990G104,190	59Beo9 (continued)
							$\gamma(^{100}\text{Ru})$ (co	ontinued)	
E_{γ}^{\dagger}	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult.@	α^{a}	$I_{(\gamma+ce)}^{\&}$	Comments
					<u> </u>				$\alpha(N)=1.17\times10^{-5} 8; \alpha(O)=5.98\times10^{-7} 15$
555 12 1	0.0179.8	3072 248	2+	2516 824	1-	[F]1]	1.31×10^{-3}		E_{γ} : 553.6 3 (1969Be69). $\alpha(K) = 0.001153.17; \alpha(L) = 0.0001308.10;$
555.72 7	0.0179 0	5072.240	2	2310.024	1		1.51×10		$\alpha(M)=2.39\times10^{-5} 4$
									α (N)=3.86×10 ⁻⁶ 6; α (O)=2.02×10 ⁻⁷ 3
588.343 5	6.21 [#] 3	2469.388	2^{-}	1881.043	3+	E1	1.15×10^{-3}		K/L=9.4 5; α (K)exp=0.00103 4; α (L)exp=0.000109 6
									$\alpha(K) = 0.001010 \ 15; \ \alpha(L) = 0.0001145 \ 16;$
									$\alpha(M) = 2.09 \times 10^{-5} \ 3$
									$\alpha(N)=3.38\times10^{-6} 5; \alpha(O)=1.771\times10^{-7} 25$
									I_{γ} : from 1974Ko23. 1969Be69 give I_{γ} =5.3 3.
									Mult.: $\alpha(K) \exp = 0.00104$ 5 from 1996G104 gives $\delta(M2/E1) = 0.06$ 6 Other ca data: 1064K c04
									$(588\gamma)(1342\gamma)(\theta)$; A ₂ =-0.15 8. A ₄ =+0.07 9
									$(1978Ba29); A_2=-0.12 3, A_4=+0.02 5 (1990KeZV)$
									gives $\delta(M2/E1) = -0.03 \ 3$.
590.792 6	1.351 <i>13</i>	1130.300	0^{+}	539.511	2+	E2	0.00332		K/L=8.5 6; α(K)exp=0.0027 2; α(L)exp=0.00032 2 (1974Ko23)
									$\alpha(K)=0.00289 4; \alpha(L)=0.000350 5; \alpha(M)=6.42\times10^{-5} 9$
									$\alpha(N)=1.029\times10^{-5}$ 15; $\alpha(O)=5.07\times10^{-7}$ 8
									Mult.: ce data give mult=M1,E2; $\gamma\gamma(\theta)$ support E2.
									$(3917)(3407)(\theta)$: A ₂ =+0.55 8, A ₄ =+1.06 24 (1991Pr08): A ₂ =+0.40 7 A ₄ =+1.00 13 (1990Ke7V)
600.124 6	0.292 3	3069.522	$(1,2)^{-}$	2469.388	2^{-}	M1,E2	0.00310 9		α (K)exp=0.0028 4 (1996Gi04)
						,			$\alpha(K)=0.00271$ 7; $\alpha(L)=0.000320$ 16; $\alpha(M)=5.9\times10^{-5}$ 3
									$\alpha(N)=9.4\times10^{-6}$ 5; $\alpha(O)=4.85\times10^{-7}$ 7
							2		α (K)exp from 1996Gi04 gives mult=M1,E2.
602.91 4	0.041 6	3072.248	2+	2469.388	2-	[E1]	1.09×10^{-3}		$\alpha(K)=0.000955\ 14;\ \alpha(L)=0.0001082\ 16;$
									$\alpha(M) = 1.98 \times 10^{-5} 3$
(01 22 5	0 207 12	2460 200	2-	1065 106	2+	F 1	1.08×10^{-3}		$\alpha(N) = 5.20 \times 10^{-6} \text{ S}; \ \alpha(U) = 1.676 \times 10^{-7} \text{ 24}$
004.33 3	0.28/13	2409.388	2	1803.106	Ζ'	EI	1.08×10 ⁻⁵		$\alpha(\mathbf{K}) = 0.0012.3 (19900104)$ $\alpha(\mathbf{K}) = 0.000950.124 \alpha(\mathbf{L}) = 0.0001076.154$
									$\alpha(M) = 1.97 \times 10^{-5} 3$
									$\alpha(N)=3.18\times10^{-6}$ 5: $\alpha(O)=1.667\times10^{-7}$ 24
									E_{γ}, I_{γ} : other: $E_{\gamma}=604.9$ <i>3</i> , $I_{\gamma}=0.47$ <i>8</i> (1969Be69).
									α (K)exp in 1996Gi04 gives δ (M2/E1)=0.19 +10-19.
610.48 [‡] <i>10</i>		1740.993	0+	1130.300	0+	E0		0.00009 [‡] 5	I _{(γ+ce}): from ce(K)(611 γ)/ce(K)(540 γ)=0.00020 <i>10</i> (1974Ko23). Uncertainty of 0.00001 quoted by 1974Ko23 is probably underestimated since the peak is very weak in the ce spectrum shown by 1974Ko23.

 $^{100}_{44}$ Ru₅₆-7

				100 Rh $arepsilon$ decay	(20.5 h)	1995KeZZ	2,1996Gi04,19	069Be69 (continued)
						$\gamma(^{100}\mathrm{Ru})$ (co	ontinued)	
E_{γ}^{\dagger}	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [@]	$\delta^{@}$	α ^{<i>a</i>}	Comments
631.35 <i>3</i> 638.619 <i>14</i>	0.0717 <i>19</i> 0.0610 <i>20</i>	2512.41 1865.106	$(4)^+$ 2 ⁺	1881.043 3 ⁺ 1226.477 4 ⁺	M1+E2 E2	+0.41 5	0.00268	$\begin{aligned} &\alpha(K) \exp = 0.0023 \ 5 \ (1996 \text{Gi04}) \\ &\alpha(K) = 0.00234 \ 4; \ \alpha(L) = 0.000281 \ 4; \ \alpha(M) = 5.15 \times 10^{-5} \ 8 \\ &\alpha(N) = 8.27 \times 10^{-6} \ 12; \ \alpha(O) = 4.12 \times 10^{-7} \ 6 \\ &\text{Mult.:} \ \alpha(K) \exp \text{ from } 1996 \text{Gi04 gives } M1, E2; \text{ but only} \\ &E2 \text{ is consistent with transition to } 4^+. \\ &I\gamma(639\gamma)/I\gamma(735\gamma) = 0.18 \ 2 \ (1996 \text{Gi04}). \end{aligned}$
651.707 6	0.565 [#] 3	2516.824	1-	1865.106 2+	E1		9.13×10 ⁻⁴	$\begin{aligned} &\alpha(\text{K}) = 0.000803 \ 12; \ \alpha(\text{L}) = 9.08 \times 10^{-5} \ 13; \\ &\alpha(\text{M}) = 1.659 \times 10^{-5} \ 24 \\ &\alpha(\text{N}) = 2.68 \times 10^{-6} \ 4; \ \alpha(\text{O}) = 1.411 \times 10^{-7} \ 20 \\ &\alpha(\text{K}) \exp = 0.00084 \ 12 \ \text{from } 1996\text{Gi}04 \ \text{gives} \\ &\delta(\text{M}2/\text{E}1) = 0.08 \ 8; \ \alpha(\text{K}) \exp = 0.0022 \ 6 \ \text{from } 1964\text{Ko}04 \\ &\text{is for } 652\gamma + 654\gamma. \end{aligned}$
654.571 6	0.686 [#] 3	1881.043	3+	1226.477 4+	M1+E2	+2.3 5	0.00250	α (K)exp=0.00213 <i>13</i> (1996Gi04) α (K)=0.00219 <i>3</i> ; α (L)=0.000260 <i>4</i> ; α (M)=4.77×10 ⁻⁵ <i>7</i> α (N)=7.67×10 ⁻⁶ <i>11</i> ; α (O)=3.87×10 ⁻⁷ <i>6</i> Mult.: cc data from 1996Gi04 gives mult=M1.E2.
662.99 <i>21</i> 671.3 <i>6</i> 678.65 <i>3</i>	0.0040 9 0.0017 4 0.0264 20	2543.733 2536.151 2543.733	2+ 3 2+	$\begin{array}{rrrr} 1881.043 & 3^+ \\ 1865.106 & 2^+ \\ 1865.106 & 2^+ \end{array}$				
686.971 7	0.888 [#] 4	1226.477	4+	539.511 2+	E2		0.00221	α (K)exp=0.0032 9 (1964Ko04) α (K)=0.00193 3; α (L)=0.000230 4; α (M)=4.22×10 ⁻⁵ 6 α (N)=6.78×10 ⁻⁶ 10; α (O)=3.41×10 ⁻⁷ 5 Mult.: ce data from 1964Ko04 gives mult=M1,E2; (687 γ)(540 γ)(θ): A ₂ =+0.081 75, A ₄ =-0.07 12 (1990KeZV) favors E2.
689.491 <i>5</i>	0.0245 18	2051.657	0+	1362.162 2 ⁺	[E2]		0.00219	α(K)=0.00191 3; α(L)=0.000228 4; α(M)=4.17×10-5 6 α(N)=6.71×10-6 10; α(O)=3.37×10-7 5 Eγ: 689.419 quoted by 1995KeZZ is probably a misprint. Eγ deduced from a least-squares procedure is 689.500 13 (table 6.4 in 1995KeZZ).
734.806 7	0.0040 <i>10</i> 0.3312 [#] <i>18</i>	2745.59 1865.106	(1,2') 2 ⁺	2051.657 0 ⁺ 1130.300 0 ⁺	E2		0.00186	α (K)exp=0.0016 3 (1996Gi04) α (K)=0.001623 23; α (L)=0.000192 3; α (M)=3.52×10 ⁻⁵ 5 α (N)=5.67×10 ⁻⁶ 8; α (O)=2.87×10 ⁻⁷ 4 Mult.: α (K)exp from 1996Gi04 gives M1,E2; but Δ J requires L=2.
736.966 20	0.1630 [#] 14	2099.109	2+	1362.162 2+	(M1,E2)		0.00186 4	α (K)exp=0.0010 6 (1996Gi04) α (K)=0.00163 4; α (L)=0.000190 3; α (M)=3.48×10 ⁻⁵ 6 α (N)=5.62×10 ⁻⁶ 8; α (O)=2.93×10 ⁻⁷ 9

 ∞

				100 Rh ε decay (2	20.5 h) 199	95KeZZ,19	996Gi04,1969	Be69 (continued)
					$\gamma(^{100}$	⁾ Ru) (cont	inued)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.@	$\delta^{@}$	α^{a}	Comments
				<u> </u>				Mult.: α (K)exp from 1996Gi04 gives mult=(M1,E2).
748.666 7	1.123 [#] 4	2915.542	2-	2166.873 3-	M1,E2		0.00179 4	$\alpha(K) \exp[=0.0020 \ 3 \ (1964Ko04) \\ \alpha(K) = 0.00157 \ 4; \ \alpha(L) = 0.000183 \ 3; \\ \alpha(M) = 3.34 \times 10^{-5} \ 5 \ 7$
								$\begin{aligned} \alpha(N) &= 5.40 \times 10^{-6} \ 8; \ \alpha(O) &= 2.82 \times 10^{-7} \ 9 \\ \alpha(K) &= x \text{ from } 1964 \text{K} \text{o} 04 \text{ for } 749\gamma + 734\gamma + 736\gamma. \\ \text{Other ce data: } 1953 \text{M} \text{a} 64. \\ (749\gamma)(1627\gamma)(540\gamma)(\theta): \ \text{A}_2 &= +0.24 \ 6, \ \text{A}_4 &= -0.10 \ 10 \\ (1990 \text{KeZV}) \text{ gives } \delta(\text{E}2/\text{M}1) &= -0.51 \ 12. \end{aligned}$
752.0 3	0.0048 10	2617.09	$1,2^{+}$	$1865.106 2^+$				
7/5.831 11	0.1184 19	2516.824	1	1740.993 0'				
806.93 6	0.028 3	3323.759	(1.2^+)	2516.824 1				
816.454 <i>16</i>	0.4642 [#] 19	2915.542	2-	2099.109 2+	(E1+M2)	0.7 6		Mult., δ : (816 γ)(1560 γ)(540 γ)(θ): A ₂ =-0.06 8, A ₄ =-0.01 14 (1990KeZV) gives δ (Q/D)=0.7 6.
822.654 7	26.17 [#] 8	1362.162	2+	539.511 2+	E2+M1	+3.7 3	1.40×10^{-3}	α (K)=0.001230 <i>18</i> ; α (L)=0.0001439 <i>21</i> ; α (M)=2.64×10 ⁻⁵ <i>4</i>
								α (N)=4.25×10 ⁻⁶ 6; α (O)=2.19×10 ⁻⁷ 3
								K/L=5.6 11; α (K)exp=0.0015 2; α (L)exp=0.00027 5 (1964Ko04)
								Mult.: α (K)exp=0.00123 5 from 1996Gi04 gives δ (E2/M1)=3.3 + ∞ -29. Other ce data: 1953Ma64. The ce(L) intensity is probably incorrect in
								δ : from (822γ)(540γ)(θ): A ₂ =-0.215 8, A ₄ =+0.312 2 (1991Pr08). δ =+3.2 8 from A ₂ =-0.25 3,
								$A_4=+0.32$ 4 (1978Ba29); 3.7 4 from $A_2=-0.230$ 7, $A_4=+0.362$ 12 (1990KeZV). Others: 1996Gi04, 1968Ka04 1964Ka04
828.70 4	0.0152 25	3069.522	$(1,2)^{-}$	2240.812 2+				
831.272 ^c 19	0.0564 13	3072.248	2+	2240.812 2+				Placement from level energy difference (evaluators).
854.32 6	0.0218 3	3323.759	$(1,2^+)$	2469.388 2-				
872.62 5	0.026 3	2099.109	2^{+}	1226.477 4+				Additional information 2.
000 0 2	0.0062.18	2745 50	(1.2^{+})	1965 106 2+				$1\gamma(8/3\gamma)/1\gamma(1559\gamma)=0.018\ 2\ (1996G104).$
000.0 J 002 673 10	0.119.5	2745.59	$(1,2)^{-}$	2166 873 3				
905.60 21	0.057.5	3072.248	2^+	$2166.873 \ 3^{-1}$				
968.85 3	0.049 3	2099.109	$\frac{2}{2^{+}}$	1130.300 0+				Additional information 3. $I_{\gamma}(969\gamma)/I_{\gamma}(1559\gamma)=0.033\ 7\ (1996Gi04).$
973.15 4	0.0301 25	3072.248	2^{+}	2099.109 2+				······
1024.98 <i>3</i>	0.0490 17	2387.14	0^{+}	1362.162 2+				

				100 Rh ε dec	ay (20.5 h)	1995KeZZ	Z,1996Gi04,19	69Be69 (contin	nued)
						$\gamma(^{100}\text{Ru})$ (c	ontinued)		
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^{π}	E _f J	$\frac{\pi}{f}$ Mult. [@]	$\delta^{@}$	α^{a}	$I_{(\gamma+ce)}^{\&}$	Comments
1034.510 8	1.918 [#] 6	2915.542	2-	1881.043 3	+ (E1)		3.55×10 ⁻⁴		$\alpha(K) \exp = 0.00048 \ 17 \ (1964K004)$ $\alpha(K) = 0.000312 \ 5; \ \alpha(L) = 3.50 \times 10^{-5} \ 5;$ $\alpha(M) = 6.39 \times 10^{-6} \ 9$ $\alpha(N) = 1.035 \times 10^{-6} \ 15; \ \alpha(O) = 5.52 \times 10^{-8} \ 8$ $(1034\gamma)(1342)(\theta): \ A_2 = -0.19 \ 4, \ A_4 = +0.02 \ 4$ $(1978Ba29); \ A_2 = -0.03 \ 5, \ A_4 = 0.00 \ 9 \ \text{gives}$
1107.223 8	16.84 [#] 5	2469.388	2-	1362.162 2	+ E1		3.18×10 ⁻⁴		$\delta(M2/E1) = -0.11 \ 6.$ $\alpha(K)\exp=0.000032 \ 2 \ (1974Ko23)$ $\alpha(K) = 0.000275 \ 4; \ \alpha(L) = 3.08 \times 10^{-5} \ 5;$ $\alpha(M) = 5.62 \times 10^{-6} \ 8$ $\alpha(N) = 9.10 \times 10^{-7} \ 13; \ \alpha(O) = 4.86 \times 10^{-8} \ 7;$ $\alpha(IPF) = 5.87 \times 10^{-6} \ 9$ Mult.: Other ce data: 1964Ko04, 1953Ma64. $\gamma\gamma(\theta)$ in 1990KeZV gives $\delta(O/D) = -0.016 \ 22.$
1110.66 <i>11</i>	0.032 8	2240.812	2+	1130.300 0	+				(1107 γ)(822 γ)(θ): A ₂ =+0.100 <i>15</i> , A ₄ =-0.03 <i>3</i> (1978Ba29); A ₂ =+0.125 <i>12</i> , A ₄ =-0.03 <i>2</i> (1990KeZV). Other: 1968Ka04. (1107 γ)(1362 γ)(θ): A ₂ =+0.22 <i>3</i> , A ₄ =-0.02 <i>3</i> (1978Ba29); A ₂ =+0.264 <i>16</i> , A ₄ =0.00 <i>3</i> (1990KeZV). Others: 1968Ka04, 1964Ko04. Placement of this γ may be suspect since it is not
1130.3 [‡] 3		1130.300	0^{+}	0.0 0	+ E0			0.00051 [‡] 4	reported in (n,γ) E=th. I _{(γ+ce}): from ce(K)(1130 γ)/ce(K)(540 γ)=0.00115
1154.680 <i>10</i>	0.296 3	2516.824	1-	1362.162 2	+ (E1)				9 (1974Ko23). $1\gamma < 0.05$ (1974Ko23). Mult.: (1155 γ)(1362 γ)(θ): A ₂ =-0.18 22, A ₄ =+0.03 37 (1990KeZV) gives δ (Q/D)=-0.0 2 for J=1 and 0.8 +17-5 for J=2 with latter adopted by 1990KeZV.
1181.49 5	0.0338 18	2543.733	2+	1362.162 2	+ M1+E2	-0.12 9	6.69×10 ⁻⁴		$\alpha(K)=0.000585 \ 9; \ \alpha(L)=6.61\times10^{-5} \ 10; \alpha(M)=1.209\times10^{-5} \ 17 \alpha(N)=1.96\times10^{-6} \ 3; \ \alpha(O)=1.058\times10^{-7} \ 15; \alpha(IPF)=4.30\times10^{-6} \ 7$
1191.16 <i>4</i> 1201.493 <i>16</i>	0.0358 <i>23</i> 0.1186 <i>25</i>	3072.248 1740.993	2^+ 0 ⁺	1881.043 3 539.511 2	+ + (E2)				Mult.: E2 proposed by 1990KeZV from
1204.46 5	0.0367 25	3069.522	(1,2)-	1865.106 2	+				$(1201\gamma)(540\gamma)(\theta)$: $A_2 = +0.73$ 43, $A_4 = +1.1$ 9. E_{γ} : 1969Be69 reported only one line at 1206.0 10 $(I\gamma = 0.05$ 3). 1995KeZZ report three lines at 1204.46 and 1207.50 (doublet).
1207.50 ^b 3	0.052 ^b 7	2569.908	(3)-	1362.162 2	+				E_{γ} : level energy difference=1207.74. I_{γ} (doublet)=0.080 8.
1207.50 ^b 3 1224.63 <i>13</i>	0.028 ^b 7 0.020 3	3072.248 3323.759	2^+ (1,2^+)	1865.106 2 2099.109 2	+				E_{γ} : level energy difference=1207.13.

 $^{100}_{44}$ Ru₅₆-10

				100 Rh ε decay	(20.5 h)	1995KeZZ	Z,1996Gi04,1969]	Be69 (continued)		
$\gamma(^{100}\text{Ru})$ (continued)										
E_{γ}^{\dagger}	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult.@	$\delta^{@}$	α^{a}	Comments		
^x 1232.25 <i>13</i> 1272.01 <i>11</i> 1309.8 <i>3</i>	0.0130 25 0.016 3 0.0126 23	3323.759 2536.151	$(1,2^+)$	2051.657 0 ⁺ 1226.477 4 ⁺						
1325.583 <i>13</i>	0.431 [#] 3	1865.106	2+	539.511 2+	M1+E2	-1.0 3	5.30×10 ⁻⁴ 10	$\begin{aligned} &\alpha(\text{K}) \exp[=0.00042\ 6\ (1996\text{Gi}04) \\ &\alpha(\text{K}) = 0.000441\ 9;\ \alpha(\text{L}) = 4.99 \times 10^{-5}\ 10;\ \alpha(\text{M}) = 9.14 \times 10^{-6}\ 18 \\ &\alpha(\text{N}) = 1.48 \times 10^{-6}\ 3;\ \alpha(\text{O}) = 7.92 \times 10^{-8}\ 18;\ \alpha(\text{IPF}) = 2.86 \times 10^{-5}\ 10 \\ &I_{\gamma}:\ I_{\gamma}(1326\gamma)/I_{\gamma}(735\gamma) = 1.301\ 12\ (1995\text{KeZZ}),\ 1.46\ 6 \\ &(1996\text{Gi}04),\ 0.91\ 11\ \text{in}\ (n,\gamma)\ \text{E=th.} \\ &\delta:\ -1.6\ +14-7\ \text{from}\ (1326\gamma)(540\gamma)(\theta):\ \text{A}_2 = +0.42\ 17, \end{aligned}$		
1341.515 9	6.561 [#] 25	1881.043	3+	539.511 2+	M1+E2	+5.7 5	5.05×10 ⁻⁴	$\begin{array}{l} A_{4}=+0.24\ 29\ \text{in }1990\text{KeZV},\\ \alpha(\text{K})\text{exp}=0.00068\ 19\ (1964\text{Ko04})\\ \alpha(\text{K})=0.000413\ 6;\ \alpha(\text{L})=4.70\times10^{-5}\ 7;\ \alpha(\text{M})=8.60\times10^{-6}\ 12\\ \alpha(\text{N})=1.392\times10^{-6}\ 20;\ \alpha(\text{O})=7.38\times10^{-8}\ 11;\\ \alpha(\text{IPF})=3.48\times10^{-5}\ 5\\ \alpha(\text{K})\text{exp}=0.000413\ 13\ \text{from }1996\text{Gi04\ gives}\ \delta(\text{E2/M1})=4.4\\ +\infty-31\ \text{Other\ ce\ data:}\ 1953\text{Ma64},\\ (1342\gamma)(540\gamma)(\theta);\ A_{2}=+0.20\ 8,\ A_{4}=+0.05\ 8\ (1978\text{Ba29});\\ A_{2}=-0.089\ 20,\ A_{4}=-0.07\ 3\ (1990\text{KeZV})\ \text{gives}\ \delta(\text{Q/D})=6.8 \end{array}$		
1343.44 5	0.060 12	2569.908	(3)-	1226.477 4+				+13-10. Others: 1968Ka04, 1964Ko04. Placement may be suspect since with the reported intensity in ¹⁰⁰ Rh ε decay, this γ should have been seen in (n, γ) E=th.		
1362.152 10	19.09 6	1362.162	2+	0.0 0+	E2		4.95×10 ⁻⁴	α(K) exp=0.00038 6; α(L)exp=0.00004 2 (1964Ko04) α(K)=0.000399 6; α(L)=4.54×10-5 7; α(M)=8.31×10-6 12 α(N)=1.345×10-6 19; α(O)=7.13×10-8 10; α(IPF)=4.01×10-5 6 Mult.: Other ce data: 1953Ma64. γγ(θ) in 1990KeZV also supports F2		
1386.521 10	0.486 4	2516.824	1-	1130.300 0+	(E1)		3.66×10^{-4}	$\alpha(K)=0.000185 \ 3; \ \alpha(L)=2.05\times10^{-5} \ 3; \ \alpha(M)=3.75\times10^{-6} \ 6 \ \alpha(N)=6.08\times10^{-7} \ 9; \ \alpha(Q)=3.26\times10^{-8} \ 5; \ \alpha(IPF)=0.0001563 \ 22$		
1512.140 16	0.1528 20	2051.657	0^+	539.511 2+	E2			Mult.: E2 proposed in 1990KeZV from $(1512\gamma)(540\gamma)(\theta)$: A ₂ =+0.83 20 A ₄ =+1.8 16		
1548.4 8	0.024 6	2774.9	$2^+, 3^+$	1226.477 4+						
1553.348 10	25.65 [#] 10	2915.542	2-	1362.162 2+	E1		4.53×10 ⁻⁴	$\begin{aligned} &\alpha(\text{K}) \exp[=0.00017 \ 3 \ (1964\text{Ko04}) \\ &\alpha(\text{K}) = 0.0001525 \ 22; \ \alpha(\text{L}) = 1.695 \times 10^{-5} \ 24; \ \alpha(\text{M}) = 3.09 \times 10^{-6} \\ & 5 \end{aligned}$ $\begin{aligned} &\alpha(\text{N}) = 5.02 \times 10^{-7} \ 7; \ \alpha(\text{O}) = 2.70 \times 10^{-8} \ 4; \ \alpha(\text{IPF}) = 0.000280 \ 4 \\ &\text{Mult.:} \ \alpha(\text{K}) \exp[=0.000159 \ 9 \ \text{from } 1996\text{Gi04 gives} \\ & \delta(\text{M2/E1}) = 0.10 \ +6-10. \ \text{Other ce data: } 1953\text{Ma64. } \gamma\gamma(\theta) \\ &\text{in } 1990\text{KeZV gives } \delta(\text{Q/D}) = -0.003 \ 20. \end{aligned}$ $\begin{aligned} &(1553\gamma)(822\gamma)(\theta): \ \text{A}_2 = +0.083 \ 24, \ \text{A}_4 = +0.04 \ 4 \ (1978\text{Ba29}); \end{aligned}$		

				100 Rh ε decay (20.5 h)		1995KeZZ,19	96Gi04,1969B	e69 (continued)	
						<u>)</u>	/(¹⁰⁰ Ru) (conti	nued)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ} †&	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	α^{a}	$I_{(\gamma+ce)}^{\&}$	Comments
									A ₂ =+0.09 <i>1</i> , A ₄ =+0.02 <i>2</i> . Other: 1968Ka04. (1553 γ)(1362 γ)(θ): A ₂ =+0.21 <i>3</i> , A ₄ =0.00 <i>4</i> (1978Ba29); A ₂ =+0.246 <i>14</i> , A ₄ =+0.020 <i>25</i> (1990KeZV). Others: 1968Ka04, 1964Ko04.
1559.554 <i>21</i>	1.239# 6	2099.109	2+	539.511	2+	M1	4.65×10 ⁻⁴		$\begin{aligned} &\alpha(\text{K}) \text{exp} = 0.00039 \ 4 \ (1996\text{Gi}04) \\ &\alpha(\text{K}) = 0.000329 \ 5; \ \alpha(\text{L}) = 3.70 \times 10^{-5} \ 6; \ \alpha(\text{M}) = 6.76 \times 10^{-6} \ 10 \\ &\alpha(\text{N}) = 1.098 \times 10^{-6} \ 16; \ \alpha(\text{O}) = 5.94 \times 10^{-8} \ 9; \ \alpha(\text{IPF}) = 9.16 \times 10^{-5} \\ &13 \end{aligned}$
1500 0 5	0.005.2	24(2.50	(1+ 2)	1001 042	24				α (K)exp from 1996Gi04 is higher by $\approx 5\%$ than for pure M1. δ (E2/M1)=-0.72 +25-32 from (1559 γ)(540 γ)(θ): A ₂ =+0.62 8, A ₄ =+0.13 <i>13</i> (1990KeZV).
1582.9 5	0.005 3	3463.79 2745.59	$(1^+,2)$ $(1,2^+)$	1881.043 1130.300	3^+ 0 ⁺				
1627.340 <i>11</i>	2.029 [#] 10	2166.873	3-	539.511	2+	E1	4.98×10 ⁻⁴		α (K)exp=0.00014 3 (1996Gi04) α (K)=0.0001413 20; α (L)=1.569×10 ⁻⁵ 22; α (M)=2.86×10 ⁻⁶ 4
									$\begin{aligned} &\alpha(\text{N})=4.65\times10^{-7} \ 7; \ \alpha(\text{O})=2.50\times10^{-8} \ 4; \ \alpha(\text{IPF})=0.000338 \ 5\\ &\alpha(\text{K})\text{exp from 1996Gi04 gives } \delta(\text{M2/E1})=0.06 \ +19-6.\\ &\delta(\text{M2/E1})=0.09 \ 6 \ \text{from (1627\gamma)(540\gamma)(\theta): } A_2=+0.016 \ 49,\\ &A_4=-0.076 \ 83 \ (1990\text{KeZV}). \end{aligned}$
1698.32 24 1701.310 <i>18</i>	0.021 <i>3</i> 0.384 <i>6</i>	3060.15 2240.812	1,2+ 2+	1362.162 539.511	2+ 2+	(M1)	4.60×10 ⁻⁴		$ \begin{array}{l} \alpha(\mathrm{K}) = 0.000276 \ 4; \ \alpha(\mathrm{L}) = 3.10 \times 10^{-5} \ 5; \ \alpha(\mathrm{M}) = 5.66 \times 10^{-6} \ 8 \\ \alpha(\mathrm{N}) = 9.20 \times 10^{-7} \ 13; \ \alpha(\mathrm{O}) = 4.98 \times 10^{-8} \ 7; \ \alpha(\mathrm{IPF}) = 0.0001459 \\ 21 \end{array} $
									δ: 0.12 40 from (1701γ)(540γ)(θ): A2=+0.41 19, A4=-0.71 31 for J=2 (1990KeZV). But 1990KeZV adopt δ=-6.3 +39-∞ for J=1.
1707.44 6	0.210 3	3069.522	(1,2) ⁻	1362.162	2+				E_{γ} : 1969Be69 reported only one line at 1709.0 5 (I γ =0.29 3). 1995KeZZ report a close doublet at 1707.44 and
1710.07 <i>3</i>	0.237 5	3072.248	2+	1362.162	2+				1/10.07.
1740.6 [‡] 2		1740.993	0^{+}	0.0	0+	E0		0.00019 [‡] 4	$I_{(\gamma+ce)}: \text{ from ce}(K)(1741\gamma)/ce(K)(540\gamma)=0.00035 7 (1974Ko23). I\gamma<0.05 (1974Ko23).$
1847.57 8	0.050 4	2387.14	0^+	539.511	2+		1 2 5 1 2 - 1		
1865.12 <i>15</i>	0.273 25	1865.106	2+	0.0	0+	E2	4.86×10 ⁻⁴		$\alpha(K)=0.000217 \ 3; \ \alpha(L)=2.43\times10^{-5} \ 4; \ \alpha(M)=4.45\times10^{-6} \ 7 \ \alpha(N)=7.22\times10^{-7} \ 11; \ \alpha(O)=3.87\times10^{-8} \ 6; \ \alpha(IPF)=0.000240 \ 4 \ I\gamma(1865\gamma)/I\gamma(735\gamma)=1.8 \ 3 \ (1996Gi04) \ is too high by a factor of \approx 2 as compared to the values available from other studies. This may be due to summing contributions.I\gamma: 0.50 \ 13 \ (1969Be69).$
1929.811 20	14.41 [#] 10	2469.388	2-	539.511	2+	E1	6.86×10^{-4}		α (K)exp=0.00011 2 (1964Ko04)

				¹⁰⁰ Rh ε decay (20.5 h)		20.5 h)	1995KeZZ	,1996Gi04,19	69Be69 (continued)
						<u> </u>	(¹⁰⁰ Ru) (co	ntinued)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [@]	$\delta^{@}$	α^{a}	Comments
									$\begin{aligned} &\alpha(\text{K}) = 0.0001078 \ 15; \ \alpha(\text{L}) = 1.194 \times 10^{-5} \ 17; \ \alpha(\text{M}) = 2.18 \times 10^{-6} \ 3\\ &\alpha(\text{N}) = 3.53 \times 10^{-7} \ 5; \ \alpha(\text{O}) = 1.91 \times 10^{-8} \ 3; \ \alpha(\text{IPF}) = 0.000564 \ 8\\ &\text{Mult.:} \ \alpha(\text{K}) \text{exp in } 1996\text{Gi04 gives mult} = \text{E1. Other ce data:}\\ &1953\text{Ma64.}\\ &(1930\gamma)(540\gamma)(\theta): \ \text{A}_2 = +0.20 \ 5, \ \text{A}_4 = -0.02 \ 5 \ (1978\text{Ba29});\\ &\text{A}_2 = +0.175 \ 19, \ \text{A}_4 = +0.138 \ 3 \ \text{in } 1990\text{KeZV} \ \text{gives } \delta(\text{Q/D}) = 0.07\\ &2. \ \text{Others: } 1968\text{Ka04, } 1964\text{Ko04.} \end{aligned}$
^x 1935.24 8	0.0291 25								
1972.91 6	0.045 3	2512.41	(4)+	539.511	2+	(E2)		5.13×10 ⁻⁴	$\alpha(K)=0.000195 \ 3; \ \alpha(L)=2.19\times10^{-5} \ 3; \ \alpha(M)=4.00\times10^{-6} \ 6 \\ \alpha(N)=6.49\times10^{-7} \ 9; \ \alpha(O)=3.49\times10^{-8} \ 5; \ \alpha(IPF)=0.000291 \ 4$
1977.24 <i>4</i>	0.325 6	2516.824	1-	539.511	2+	(E1)			Mult., δ : δ (Q/D)=0.11 <i>15</i> from 1990KeZV based on (1977 γ)(540 γ)(θ): A ₂ =-0.13 <i>25</i> , A ₄ =-0.16 <i>44</i> for J=1. 1990KeZV adopt δ (E2/M1)=1.3 + <i>1</i> 8-6 for J=2.
1996.59 <i>3</i>	0.0932 15	2536.151	3	539.511	2^{+}	D(+Q)	+0.02 3		Placement from 1995KeZZ.
2004.30 13	0.0180 14	2543.733	2+	539.511	2^{+}				
2030.56 20	0.011 3	2569.908	$(3)^{-}$	539.511	2^{+}				
2099.16 7	0.041 5	2099.109	2+	0.0	0^{+}				γ not reported by 1996Gi04.
2120.61 7	0.043 4	2660.135	$1,2^{+}$	539.511	2^{+}				
2126.92 14	0.026 3	2666.30	(2,3)	539.511	2^{+}				
2166.80 3	0.101 5	2166.873	3-	0.0	0^{+}	(E3)		5.38×10^{-4}	α (K)=0.000273 4; α (L)=3.10×10 ⁻⁵ 5; α (M)=5.68×10 ⁻⁶ 8 α (N)=9.21×10 ⁻⁷ 13; α (O)=4.91×10 ⁻⁸ 7; α (IPF)=0.000227 4
2193.40 4	0.0261 25	3323.759	$(1,2^{+})$	1130.300	0^{+}				I_{γ} : 0.16 8 (1969Be69).
2205.96 14	0.0131 22	2745.59	$(1,2^{+})$	539.511	2^{+}				
2240.1 5	0.0028 24	2240.812	2+	0.0	0^{+}				
2262.1 5	0.0061 15	2801.41		539.511	2^{+}	D+Q			
2375.976 16	40.5 [#] 3	2915.542	2-	539.511	2^{+}	E1		9.55×10^{-4}	α (K)exp=0.00007 <i>l</i> (1964Ko04)
									$\alpha(K)=7.88\times10^{-5}$ 11; $\alpha(L)=8.70\times10^{-6}$ 13; $\alpha(M)=1.588\times10^{-6}$ 23
									α (N)=2.58×10 ⁻⁷ 4; α (O)=1.393×10 ⁻⁸ 20; α (IPF)=0.000866 13 Mult.: α (K)exp from 1964Ko04 gives mult=E1. Other ce data: 1953Ma64
									$(2376\gamma)(540\gamma)(\theta)$: A ₂ =+0.23 3, A ₄ =-0.03 4 (1978Ba29); A ₂ =+0.268 10, A ₄ =+0.017 18 in 1990KeZV gives δ (Q/D)=-0.037 16. Others: 1968Ka04, 1964Ko04.
2469.328 22	0.182 <i>13</i>	2469.388	2-	0.0	0+	M2		5.83×10 ⁻⁴	α (K)exp=0.00021 4 (1996Gi04) α (K)=0.000245 4; α (L)=2.76×10 ⁻⁵ 4; α (M)=5.06×10 ⁻⁶ 7 α (N)=8.22×10 ⁻⁷ 12; α (O)=4.45×10 ⁻⁸ 7; α (IPF)=0.000304 5 Mult.: α (K)exp in 1996Gi04 gives δ (M2/E1)>1.1.
2516.86 5	0.0287 9	2516.824	1-	0.0	0^+				
2520.56 5	0.0290 9	3060.15	$1,2^{+}$	539.511	2^{+}				
2529.969 20	3.175 [#] 25	3069.522	(1,2)-	539.511	2+	D+Q			$(2530\gamma)(540\gamma)(\theta)$: A ₂ =+0.44 9, A ₄ =-0.13 9 (1978Ba29) gives $\delta(Q/D)$ =-0.64 5 for J=1; A ₂ =+0.34 4, A ₄ =+0.04 7 (1990KeZV) gives $\delta(Q/D)$ =-0.53 4 for J=1, -0.14 6 for J=2 and 0.80 18 for J=3.

From ENSDF

 $^{100}_{44}$ Ru₅₆-13

$\gamma(^{100}\text{Ru})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}\&$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	Comments
2543.60 9	0.0167 8	2543.733	2+	0.0	0^{+}		Placement from 1995KeZZ.
2617.07 4	0.0704 12	2617.09	$1,2^{+}$	0.0	0^{+}		
2660.09 12	0.0085 14	2660.135	$1,2^{+}$	0.0	0^{+}		
2784.29 5	0.288 3	3323.759	(1,2 ⁺)	539.511	2+	D+Q	$(2784\gamma)(540\gamma)(\theta)$: A ₂ =-0.01 <i>14</i> , A ₄ =-0.51 <i>24</i> (1990KeZV) gives δ (Q/D)=5.1 + <i>120</i> -25 or -0.05 <i>20</i> for J=1, 0.61 + <i>18</i> -3 for J=2, and 0.16 <i>3</i> for J=3.
2879.43 20	0.0042 4	3419.13	(2^{+})	539.511	2^{+}		
^x 2885.8 4	0.0020 4		· /				
2915.42 7	0.09 3	2915.542	2-	0.0	0^{+}		
2933.60 10	0.0131 4	2933.65	$(1,2)^+$	0.0	0^{+}		
3060.25 11	0.1015 17	3060.15	$1,2^{+}$	0.0	0^{+}		
3069.44 16	0.003 3	3069.522	(1,2)-	0.0	0^+		E_{γ} : 1969Be69 reported only one line at 3071.0 <i>10</i> (I γ =0.05 <i>3</i>). 1995KeZZ report a close doublet at 3069.44 and 3071.80.
3071.80 12	0.0346 22	3072.248	2+	0.0	0^{+}		E_{γ} : level energy difference=3072.20.
3323.91 22	0.0149 9	3323.759	$(1,2^+)$	0.0	0^{+}		,
3419.4 <i>3</i>	0.0110 6	3419.13	(2^{+})	0.0	0^{+}		
3464.8 5	0.0051 8	3463.79	$(1^+, 2)$	0.0	0^{+}		

[†] From 1995KeZZ, unless otherwise noted. I γ values given by 1995KeZZ are renormalized (by evaluators) so that I γ (539 γ)=100.

[‡] Transition observed in ce data only (1974Ko23).

[#] Uncertainty of <1% quoted by 1995KeZZ seems too low to be realistic. A minimum uncertainty of 1% is assigned (by evaluators) for branching ratio given in the Adopted Gammas.

^(a) From the Adopted Gammas. Assignments from decay measurements are consistent, which are from ce data normalized to the 540 γ treated as E2 (α (K)=0.00373) and $\gamma\gamma(\theta)$ data. Arguments and assignments if different from decay studies are given under comments.

[&] For absolute intensity per 100 decays, multiply by 0.806 *6*.

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Multiply placed with intensity suitably divided.

^c Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹⁰⁰Rh ε decay (20.5 h) 1995KeZZ,1996Gi04,1969Be69

 $^{100}_{44} \mathrm{Ru}_{56}$

¹⁰⁰Rh ε decay (20.5 h) 1995KeZZ,1996Gi04,1969Be69