History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh and Jun Chen	NDS 172, 1 (2021)	31-Jan-2021						

Parent: ¹⁰⁰Tc: E=0.0; $J^{\pi}=1^+$; $T_{1/2}=15.65$ s *12*; $Q(\beta^-)=3206.4$ *14*; $\%\beta^-$ decay=99.9982 9

 100 Tc-T_{1/2}: from 100 Tc Adopted Levels.

¹⁰⁰Tc-Q(β^{-}): From 2017Wa10.

¹⁰⁰Tc-% β^- decay: % ε =0.0018 9 for ¹⁰⁰Tc ε decay.

1969Be69: ¹⁰⁰Tc source was produced by irradiating samples of ⁹⁹Tc with thermal neutrons at Los Alamos Scientific Laboratory. γ rays were detected with Ge(Li) and NaI(Tl) detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$, $\beta\gamma$ -coin, T_{1/2}. Deduced levels, J, π , β - decay branching ratios, log *ft*, γ -ray multipolarities.

2001Fu21 (also 2005Fu18,2004Fu30): ¹⁰⁰Tc source was produced by irradiating ⁹⁹Tc samples with thermal neutrons at the Kyoto University Research Reactor Institute (KURRI). γ rays were detected with a HPGe detector and β particles were detected with a plastic scintillator. Measured E γ , I γ , $\beta\gamma$ -coin, isotopic half-life, absolute intensities of 539 γ and 591 γ .

2017Gu17 (also 2020Gu06): ¹⁰⁰Tc produced in ¹⁰⁰Mo(p,n),E(p)=10 MeV at University of Jyvaskyla. Target was enriched to 97.42% ¹⁰⁰Mo. Purification in the JYFLTRAP double Penning Trap and then the activity was implanted directly at the bottom on a plastic β detector. Measured E γ , I γ , $\gamma\beta$ coincidences using the Decay Total Absorption Spectrometer (DTAS) composed of NaI(Tl) crystals. Deduced β intensity and absolute I γ . Comparison with quasiparticle random-phase approximation calculations.

Additional information 1. Others:

 $T_{1/2}(^{100}\text{Tc g.s.})$: 2002Ab03, 1995Ha46, 1963Cs01, 1952Ho17, 1952Bo30.

 β^- data: 1977ReZK, 1958Ok13, 1952Bo30, 1952Ho17.

βγ-coin: 1958Ok13.

Total decay energy deposit of 3205 keV 4 calculated by RADLIST code is in agreement with expected value of 3206.4 keV 14.

¹⁰⁰Ru Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	0+	
539.48 8	2+	
1130.25 12	0+ #	
1362.21 8	2+	
1740.95 10	0+ #	
1864.99 17	2+	
2051.51 10	0+ #	
2098.4 4	2+	
2240.5 10	2+	
2387.12 12	0+ #	
2660.3 6	$1,2^{+}$	
2837.9 4	$(1^+, 2^+)$	
2933.7	$(1,2)^+$	E(level): from 2017Gu17.

[†] From least-squares fit to $E\gamma$ data, except where noted.

[‡] From the Adopted Levels.

[#] Spin=0 from $\gamma\gamma(\theta)$ in 1969Be69.

 $^{100}_{44}$ Ru₅₆-2

100 Tc β^- decay (15.65 s) 1969Be69,2001Fu21,2017Gu17 (continued)

β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†#}	Log ft	Comments
(272.7 14)	2933.7	0.0024 [‡] 9	5.2 2	av E β =77.87 45
(368.5 15)	2837.9	0.006 [‡] 3	5.2.2	av $E\beta = 109.4350$
(546.1 15)	2660.3	0.0046 9	5.9 1	av $E\beta = 172.3457$
`				$I\beta^{-1}$: 0.0032 30 from TAGS data (2017Gu17).
(819.3 14)	2387.12	0.063 4	5.42 3	av $E\beta = 277.6257$
				$I\beta^{-}$: 0.062 6 from TAGS data (2017Gu17).
(965.9 17)	2240.5	0.0013 7	7.4 <i>3</i>	av Eβ=337.26 71
				$I\beta^{-}$: 0.006 5 from TAGS data (2017Gu17).
(1108.0 15)	2098.4	0.0073 7	6.84 5	av E β =396.67 62
				$I\beta^-$: 0.0045 40 from TAGS data (2017Gu17).
(1154.9 14)	2051.51	0.36 5	5.22 6	av E β =416.57 60
				$I\beta^-: 0.31 \ 2 \text{ from TAGS data (2017Gu17).}$
(1341.4 14)	1864.99	0.030 4	6.55 6	av $E\beta = 496.96\ 62$
				$I\beta^{-}$: 0.029 3 from TAGS data (2017Gu17).
(1465.4 14)	1740.95	0.066 3	6.35 2	av $E\beta = 551.36.62$
				$I\beta^{-}: 0.062 \ 6 \ \text{from TAGS data} \ (2017Gu17).$
(1844.2 14)	1362.21	0.029 4	7.11.6	av $E\beta = 721.0064$
		F A A A		$I\beta^{-}: 0.026 \ 8 \ \text{from TAGS data} \ (2017Gu I7).$
$(2076.1\ 14)$	1130.25	5.38 13	5.05 1	av $E\beta = 826.87/65$
				$E(\text{decay}), I\beta^{-}: E\beta \approx 2200 \text{ from } (2200\beta)(591\gamma) (1969Be69).$
0000010	520.40	0.76.14	6 4 1	1β : 5.2 4 from TAGS data (2017Gu17).
(2666.9 14)	539.48	0.76 14	6.4 <i>I</i>	av $B\beta = 1100.94$ 60
				Measured $E\beta = 2880 / 0 (1958 \text{O} \text{k} 13)$. Others: 1952B030, 1952H017.
(220(1.14)	0.0	02.00.2	4 500 4	$\mu = 0.39.5$ from TAGS data (201/Gu1/).
(3206.4 14)	0.0	93.29 3	4.598 4	av $E\beta = 1354.78$ 0/
				Measured $E\beta = 5380 \ 00 \ (1958 \cup K13)$. Utners: 1952B030, 1952H017.
				1 β : 95.9 5 from 1AGS data, also 92.8 5 from $4\pi\gamma$ - β coin
				(2020Gu00,201/Gu1/).

[†] From γ+ce intensity balance at each level, unless otherwise noted.
[‡] From TAGS data (2017Gu17).
[#] For absolute intensity per 100 decays, multiply by 0.999982 9.

 $\gamma(^{100}\text{Ru})$

I γ normalization: from measurement of absolute intensity (per 100 decays of ¹⁰⁰Tc) of 6.60 *3* for 539.5 γ and 5.50 *2* for 590.8 γ (2005Fu18, 2001Fu21). Others: 6.0 *5* (2017Gu17, from branching ratio matrix and I β distribution); 0.070 from I β (1130 level)/I β (total)=0.057 (1969Be69); I β (1130 level) measured through (2200 β)(591 γ) coin.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}\&$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult.‡	δ^{\ddagger}	α^{a}	$I_{(\gamma+ce)}^{\&}$	Comments	
378.7 1	0.46 3	1740.95	0^+	1362.21	2+	E2		0.01252		α (K)=0.01083 <i>16</i> ; α (L)=0.001390 <i>20</i> ; α (M)=0.000256 <i>4</i> α (N)=4.06×10 ⁻⁵ <i>6</i> ; α (O)=1.85×10 ⁻⁶ <i>3</i>	
499.8 ^{@b}	≈0.01	2240.5	2+	1740.95	0^{+}						
539.52 11	100	539.48	2+	0.0	0+	E2		0.00428		α (K)=0.00373 6; α (L)=0.000456 7; α (M)=8.37×10 ⁻⁵ 12 α (N)=1.339×10 ⁻⁵ 19; α (O)=6.52×10 ⁻⁷ 10	
										I _γ : 6.60 <i>3</i> per 100 decays of ¹⁰⁰ Tc from $βγ$ coin (2005Fu18,2001Fu21).	
590.77 10	81.4 19	1130.25	0^{+}	539.48	2+	E2		0.00332		$\alpha(K)=0.00289$ 4; $\alpha(L)=0.000350$ 5; $\alpha(M)=6.42\times10^{-5}$ 9 $\alpha(N)=1.029\times10^{-5}$ 15: $\alpha(O)=5.08\times10^{-7}$ 8	
										I_{γ} : 5.50 2 per 100 decays of ¹⁰⁰ Tc from $\beta\gamma$ coin	
										(2005Fu18,2001Fu21), 5.2 5 (2017Gu17). I _{γ} : from unweighted average of I γ (591 γ)/I γ (539 γ)=1.232	
										$8/1.550 \ I0 = 0.795 \ 7 \ (2004Fu30) \ and \ I_2(5912)/I_2(5392) = 5.50 \ 2/6 \ 60 \ 3 = 0.833 \ 5$	
										(2005Fu18,2001Fu21). Others: 84.7 21 (2001Fu21) and	
										82 6 (1969Be69) are in agreement with this value. (591 γ)(540 γ)(θ): A ₂ =+0.36 5, A ₄ =+1.13 9 (1969Be69).	
689.2 1	0.59 2	2051.51	0^+	1362.21	2+	[E2]		0.00219		$\alpha(K)=0.00191 \ 3; \ \alpha(L)=0.000228 \ 4; \ \alpha(M)=4.18\times10^{-5} \ 6 \ \alpha(N)=6.72\times10^{-6} \ 10; \ \alpha(O)=3.38\times10^{-7} \ 5$	
734.8 3	0.17 2	1864.99	2+	1130.25	0^{+}	E2		0.00186		α (K)=0.001623 23; α (L)=0.000192 3; α (M)=3.52×10 ⁻⁵ 5 α (N)=5.67×10 ⁻⁶ 8; α (O)=2.87×10 ⁻⁷ 4	
736.9 ^{@b}	0.02	2098.4	2+	1362.21	2+	(M1.E2)					
822.6 1	1.05 3	1362.21	2^{+}	539.48	2+	M1+E2	+3.7 3			$(822\gamma)(540\gamma)(\theta)$: A ₂ =-0.16 11, A ₄ =+0.47 19 (1969Be69).	
1024.9 <i>1</i>	0.54 2	2387.12	0^{+}	1362.21	2+						
1130.1		1130.25	0^{+}	0.0	0^{+}	E0			≈0.0012	E_{γ} , $I_{(\gamma+ce)}$: from the Adopted Gammas.	
1201.5 <i>1</i>	0.54 2	1740.95	0^{+}	539.48	2+					$(1201\gamma)(540\gamma)(\theta)$: A ₂ =+0.4 3, A ₄ =+1.1 5 (1969Be69).	
1325.8 5	0.15 5	1864.99	2^{+}	539.48	2+	M1+E2	-1.0 3				
1362.2 <i>1</i>	1.00 3	1362.21	2^{+}	0.0	0^{+}	E2				Additional information 2.	
1512.1 <i>I</i>	4.8 7	2051.51	0^{+}	539.48	2+	E2				$(1512\gamma)(540\gamma)(\theta)$: A ₂ =+0.30 6, A ₄ =+1.26 10 (1969Be69).	
1558.9 <i>3</i>	0.11 1	2098.4	2^{+}	539.48	2+	M1					
1701.0 [#] 10	$0.02^{\#}$ /	2240.5	2^{+}	539.48	2+						
1847.6 2	0.41 5	2387.12	$\bar{0}^{+}$	539.48	2+					$(1848\gamma)(540\gamma)(\theta)$; A ₂ =+0.6 4, A ₄ =+1.2 5 (1969Be69).	
1864.9 2	0.14 1	1864.99	2^{+}	0.0	0^{+}	E2					
×1875.0 [#] 10	0.02 [#] 1										

 $\boldsymbol{\omega}$

$\gamma(^{100}\text{Ru})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \&}$	E_i (level)	\mathbf{J}_i^{π}	E_f J ²	$\frac{\pi}{f}$ Mult. [‡]
2121.2 [#] 7	0.05 [#] 1	2660.3	1,2+	539.48 2	+
$x_{2127.7}^{\#} 10$	$0.02^{\#}$ 1	2837 0	(1+2+)	530 / 8 - 2 ⁻	+ D+O
$2659.5^{\#}$ 10	$0.02^{\#}$ 1	2660.3	$(1^{-},2^{-})$ $1,2^{+}$	0.0 0	+ +

[†] Weighted averages from 2001Fu21 and 1969Be69, unless otherwise stated.

[‡] From the Adopted Gammas, except where assumed assignment is given in square brackets from ΔJ^{π} .

γ from 1969Be69 only.

^(a) γ unobserved but its existence assumed (by 1969Be69) according to the proposed decay scheme.

[&] For absolute intensity per 100 decays, multiply by 0.0660 3.

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

