⁹⁹Tc(³He,d) 1980Pe12

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh and Jun Chen	NDS 172, 1 (2021)	31-Jan-2021						

 $J^{\pi}(^{99}\text{Tc g.s.})=9/2^+$.

1980Pe12: E=33.4 MeV ³He beam was produced from the University of Colorado AVF cyclotron. Target was pure radioactive metal of ⁹⁹Tc evaporated onto a thin carbon foil. Reaction products were momentum-analyzed with a beam swinger spectrometer (FWHM=35 keV) and detected with a position sensitive helical-cathode proportional counter and a stopping scintillator behind it. Measured $\sigma(\theta)$. Deduced levels, L-transfers, spectroscopic factors from DWBA analysis. Absolute cross sections accurate to \approx 20%. All data are from 1980Pe12.

¹⁰⁰Ru Levels

E(level) [†]	L&	$(2J_f+1)C^2S^{\&b}$	E(level) [†]	L&	$(2J_f+1)C^2S^{\&b}$	E(level) [†]	L&	$(2J_f+1)C^2S^{\&b}$
0	4	0.77	1362 10	2	0.016	2750 20	4,(2)	3.0,(1.8)
540 10	2	0.13	1741 20	(4) ^{<i>a</i>}	0.086	3060 [@] 20	4	3.13
1130 10	(4) ^{<i>a</i>}	0.088	1870 [‡] 20	(4)	0.20	3240 20	4	3.74
1227 10	0	0.009	2077 [#] 20	4	0.38			

[†] Spectra calibrated with respect to well known contaminants in the ⁹⁹Tc target and peaks from ⁶³Cu, ⁶⁵Cu contributed by ⁶²Ni and ⁶⁴Ni present as impurities. Uncertainties are 10 keV for low excitations and 20 keV for high energy excitations.

[‡] Doublet.

[#] Corresponds to 6⁺ state in the Adopted Levels.

[@] Corresponds to 8⁺ state in the Adopted Levels.

& From comparison of experimental and DWBA calculations of $\sigma(\theta)$ distributions (1980Pe12).

^a Assignment by 1980Pe12 considered tentative (by evaluators).

^b $(2J_f+1)C^2S$ values where J_f =final spin. $(2J_f+1)C^2S=(d\sigma/d\Omega)exp(2J+1)\times 2J_i+1)/((d\sigma/d\Omega)DWBA)\times 4.42)$. J_i =spin of the target, J=spin of the transferred nucleon. Assumed J=5/2 for L(p)=2 and 9/2 for L(p)=4.