¹⁰¹**Ru(p,d) 1980Pe12**

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Balraj Singh and Jun Chen	NDS 172, 1 (2021)	31-Jan-2021							

 $J^{\pi}(^{101}$ Ru g.s.)=5/2⁺.

1980Pe12: E=22.9 MeV proton beam was produced from the University of Colorado AVF cyclotron. Target was 99.7% enriched 101 Ru metal sputtered onto a carbon backing. Reaction products were momentum-analyzed with a beam swinger spectrometer (FWHM=22 keV) and detected with a position sensitive helical-cathode proportional counter and a stopping scintillator behind it. Measured $\sigma(\theta)$. Deduced levels, L-transfers, spectroscopic factors from DWBA analysis. Absolute cross sections accurate to $\approx 15\%$. All data are from 1980Pe12, unless otherwise noted.

¹⁰⁰Ru Levels

E(level) [†]	L&	$C^2S^{\&a}$	E(level) [†]	L&	$C^2S^{\&a}$	E(level) [†]	L&	$C^2S^{\&a}$
0	2	0.40	2560 10	2+0	0.075,0.0085	3132 [#] 10		
540 [‡]	2	0.34	2610 [#] 10			3178 10	0	0.0020
1130 [‡]	2	0.007	2634 10	2	0.14	3268 10	2	0.025
1226‡	4	0.067	2695 10	4	0.075	3278 [#] 10		
1362 [‡] 1741?	0	0.032 <0.0002	2761 <i>10</i> 2783 <i>10</i>	2+0 2+0	0.012,0.0019 0.025,0.0064	3315 <i>10</i> 3403 <i>10</i>	$^{2+0}_{0}$	0.037,0.0070 0.0017
1887 [@] 5 2098 10 2131 10	2 2 0(+2)	0.066 0.030 0.006,0.01	2816 <i>10</i> 2865 <i>10</i> 2890 <i>10</i>	2+0 2+0 2+0	0.029,0.0094 0.012,0.0020 0.024,0.0042	3441 <i>10</i> 3517 <i>10</i> 3585 <i>10</i>	$0 \\ 2+0 \\ 2+0$	0.0089 0.020,0.0050 0.002,0.0017
2194 [#] 10 2268 5 2394 5 2438 5 2515 10	2+0 2 2+0 2+4	0.12,0.10 0.37 0.024,0.019 0.020,0.083	2926 10 2971 10 3051 10 3080 10 3124 10	2 2+0 2+0 2+0 2+0	0.014 0.018 0.025,0.008 0.023,0.0090 0.033,0.0072	3608 10 3693 10 3774 10 3860 10	2+0 2 2 2+0	0.001,0.0023 0.016 0.012 0.006,0.0014

[†] Spectra calibrated with known peaks from ⁹³Nb and ⁶¹Ni targets. The energies of the peaks below 1800 related to respective values known from γ -ray work on levels in ¹⁰⁰Ru. Uncertainty=5 keV for low excitations and 10 keV for high energy and weak excitations.

 \ddagger Rounded value from the Adopted Levels.

[#] Weakly populated level.

[@] Probably a doublet.

& From comparison of experimental and DWBA calculations of $\sigma(\theta)$ distributions (1980Pe12).

^{*a*} C²S values from the following equation: C²S=(2J+1)×N×($d\sigma/d\Omega$)expt/[($d\sigma/d\Omega$)(DWBA)], where normalization factor N=2.24, J=spin of the transferred nucleon. J=5/2 assumed for L(n)=2 and 9/2 assumed for L(n)=4.