¹⁰⁰Pd ε decay (3.63 d) 1992Si11,1965Ev05,1977KaXX

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 172, 1 (2021)	31-Jan-2021

Parent: ¹⁰⁰Pd: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=3.63 \text{ d } 9$; $Q(\varepsilon)=378 \ 25$; % ε decay=100.0

 100 Pd-T_{1/2}: From the Adopted Levels of 100 Pd.

¹⁰⁰Pd-Q(ε): From 2017Wa10.

1992Si11: ¹⁰⁰Pd source was produced via the ¹⁰³Rh(p,4n) reaction by irradiation of metallic foil of >99% pure rhodium with a 45 MeV proton beam provided by the 88-inch cyclotron at the Lawrence Berkeley Laboratory. Measured E γ , I γ , $\gamma\gamma$ -coin with γ -x intrinsic Ge detectors at LBNL and University of Toronto. Deduced levels, J, π , decay branching ratios, log *ft*. Comparisons with theoretical calculations.

1965Ev05: ¹⁰⁰Pd source was produced via ¹⁰³Rh(p,4n) with 42 MeV protons from the Nevis Synchrocyclotron. γ rays were detected with a Ge(Li) detector and conversion electrons were detected with a six-gap beta-ray spectrometer. Measured E γ , I γ , γ (t), $\gamma\gamma(\theta)$, E(ce), I(ce), ce- γ -coin. Deduced levels, isomer T_{1/2}, conversion coefficients, γ -ray multipolarities. Proposed configurations for low-lying states.

Others:

 γ, ce: 1977KaXX, 1964Ro20, 1964An07, 1970An30, 1974Si18, 1964Ko04, 1953Ma64. 1977KaXX mention ce measurements with a high resolution magnetic spectrometer (0.1% in momentum), but no detailed results about subshell ratios and conversion coefficients are available.

 $\gamma\gamma(\theta)$: 1971Re06, 1965Ma34.

γγ(θ,H,t): 1971Re06, 1965Ma34, 1966Ma54. Others (dealing mainly with hyperfine studies and electric quadrupole interaction studies): 1993Kr26, 1993Kh11, 1993Kh10, 1990Kl05, 1990De32, 1987Bh06, 1987Kl04, 1987Li19, 1986Va19, 1986Ho17, 1985Me17, 1983Tr17, 1982Ar21, 1979Vi12, 1975Kr15, 1975Kr13, 1973Ha61, 1971KiZL, 1970Ko14, 1970Re10, 1966Ma64, 1966Ma54.

γγ(t): 1979En03, 1971Re06, 1965Ma34.

T_{1/2} of ¹⁰⁰Pd: 1968Pa24. Others: 1972Ch13, 1964An07, 1964Ro20, 1948Li03.

1995Sc50: cross section for production of ¹⁰⁰Pd in ⁵⁰Cr(⁵⁸Ni,X) reaction.

Calculated β^+/ε ratio: 1988Su16.

Total decay energy deposit of 372 keV 34 calculated by RADLIST code is in agreement with expected value of 378 keV 25, indicating the completeness of the decay scheme.

¹⁰⁰Rh Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	1-		Proposed configuration= $\pi(g_{0/2}^4, p_{1/2})_{1/2-} \otimes \nu(d_{5/2}, s_{1/2})_{1/2^+ \text{ or } 3/2+} (1965\text{Ev05}).$
32.68 2	$(2)^{-}$	27.6 ns 6	$T_{1/2}$: $\gamma\gamma(t)$ (1979En03).
			Proposed configuration= $\pi(g_{9/2}^4, p_{1/2})_{1/2-} \otimes \nu(d_{5/2}, s_{1/2})_{3/2+} \text{ or } 5/2+$ (1965Ev05).
74.78 2	$(2)^{+}$	214.3 ns 20	g=+2.151 4 (1966Ma54, 1965Ma34)
			$T_{1/2}$: values from this dataset: 213.6 ns 20 (1979En03), 214.5 ns 20 (1971Re06), 235 ns 3
			(1903)(0134), 180 ins 20 (1903)(1903).
			J^{A} : $(84\gamma)(75\gamma)(\theta)$ rules out J=0 and favors J=2 over J=1.
			g factor: from $\gamma\gamma(\theta, H, t)$. Other: 2.152 15 (1971Re06).
			Q=0.076 20 (1979Vi12), an estimated value from a comparison of quadrupole interaction frequencies in ¹⁰⁰ Rh and ⁹⁹ Ru, using O=0.23.5 for a 99-keV level in ⁹⁹ Ru.
			Proposed configuration= $\pi(g_{9/2}^5)_{9/2+} \otimes \nu(d_{5/2}, s_{1/2})_{5/2+}$ and/or $\pi(g_{9/2}^5)_{7/2+} \otimes \nu(d_{5/2}, s_{1/2})_{5/2+}$
			$\nu(a_{5/2},s_{1/2})_{3/2+}$ (1965EV05).
86.28 8	(1,2)		
136.38 6	(1)		
139.92 5	(0,1)		
151.86 5	$(1)^{+}$		
154.00 10	(0,1)		
158.80 2	1+	<0.35 ns	$T_{1/2}$: other: <0.5 ns from $\gamma\gamma(t)$ (1979En03).
			Proposed configuration= $\pi(g_{9/2}^5)_{7/2+} \otimes \nu(d_{5/2},s_{1/2})_{5/2+}$ (1965Ev05).

Continued on next page (footnotes at end of table)

$^{100}{\rm Pd}~\varepsilon$ decay (3.63 d) 1992Si11,1965Ev05,1977KaXX (continued)

¹⁰⁰Rh Levels (continued)

[†] From least-squares fit to $E\gamma$ data. [‡] From the Adopted Levels.

ε radiations

E(decay)	E(level)	$\mathrm{I}arepsilon^{\dagger\ddagger}$	Log ft	Comments
$(2.2 \times 10^2 \ 3)$	158.80	92 8	4.4 1	εK=0.844 4; εL=0.125 3; εM+=0.0305 8
$(2.2 \times 10^2 \ 3)$	154.00	0.037 11	7.8 2	εK=0.845 4; εL=0.125 3; εM+=0.0303 8
$(2.3 \times 10^2 \ 3)$	151.86	0.66 6	6.6 1	εK=0.845 4; εL=0.124 3; εM+=0.0303 8
$(2.4 \times 10^2 \ 3)$	139.92	0.20 3	7.1 <i>1</i>	εK=0.847 3; εL=0.1234 24; εM+=0.0300 7
$(2.4 \times 10^2 \ 3)$	136.38	0.27 15	7.0 <i>3</i>	εK=0.847 3; εL=0.1232 23; εM+=0.0299 7
$(2.9 \times 10^{2#} 3)$	86.28	< 0.07	>7.8	εK=0.8510 19; εL=0.1199 15; εM+=0.0290 4
$(3.5 \times 10^{2#} 3)$	32.68	<4	$>5.8^{1u}$	ε K=0.823 6; ε L=0.142 5; ε M+=0.0353 13 I ε : 1 3 from intensity balance.
(378 [#] 25)	0.0	<8	>6.0	εK=0.8554 11; εL=0.1166 8; εM+=0.02807 23

[†] From I(γ+ce) intensity balance at each level.
[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

¹⁰⁰Pd ε decay (3.63 d) **1992Si11,1965Ev05,1977KaXX** (continued)

 $\gamma(^{100}\text{Rh})$

I γ normalization: $\Sigma(I(\gamma+ce) \text{ of } \gamma \text{s to } \text{g.s.})=964$, assuming Ice(g.s.)<8% corresponding to log *ft*>5.9 for a first-forbidden transition. If Ice(g.s.)=0, then I γ normalization=0.553. Both these values are consistent with 0.617 (1970An30) from I γ (absolute)(84 γ) measured relative to that of 540 γ from ¹⁰⁰Rh ε decay A 55.82 γ placed from a level at 214.6 by 1965Ev05 is not confirmed in later studies and therefore this γ together with the 214.6 level is not considered in the

decay scheme.

The experimental conversion coefficients from 1970An30 are relative to the 84 γ treated as M1 with α (K)=0.492.

 $\boldsymbol{\omega}$

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α@	$I_{(\gamma+ce)}^{\#}$	Comments
(15.5)	<0.12	151.86	$(1)^{+}$	136.38	(1)				0.5 1	γ required by $\gamma\gamma$ data in (p,n γ). I_{γ} : expected to be highly converted; α =4.22 if E1. $I_{(\gamma+ce)}$: estimated (evaluators) from branching ratio in (p,n γ) (1983Bi04)
32.66 2	4.9 <i>3</i>	32.68	(2)-	0.0	1-	M1+E2	0.15 3	10.1 7		$\alpha(K) = 7.98 \ 22; \ \alpha(L) = 1.8 \ 4; \ \alpha(M) = 0.34 \ 7 \ \alpha(N) = 0.053 \ 11; \ \alpha(O) = 0.00147 \ 3 \ E_{\gamma}: others: \ 32.72 \ 6 \ (1965 Ev05), \ 32.4 \ 2 \ (1964 An07). \ I_{\gamma}: \ 8.6 \ 2 \ (1977 KaXX). \ Mult., \delta: from \ L1/L2/L3 = 100/57 \ 10/48 \ 10 \ and \ \alpha(L) exp = 3.4 \ 17 \ (1970 An30) \ Others: \ K/(L + M) = 7 \ 0 \ 10 \ (1964 Ro20)$
42.08 2	13.5 8	74.78	(2)+	32.68	(2) ⁻	[E1]		1.695		$\alpha(K)=1.463\ 21;\ \alpha(L)=0.191\ 3;\ \alpha(M)=0.0350\ 5$ $\alpha(N)=0.00556\ 8;\ \alpha(O)=0.000207\ 3$ $E_{\gamma}:\ others:\ 42.10\ 5\ (1965Ev05),\ 41.9\ 5\ (1964An07).$ $I_{\gamma}:\ other:\ 17\ 3\ (1977KaXX);\ 1965Ev05\ report\ I(\gamma+ce)=51.$
53.52 15	0.08 2	86.28	(1,2)	32.68	(2) ⁻	[D]		1.5 6		$\alpha(K)=1.3 6; \alpha(L)=0.16 7; \alpha(M)=0.029 12$ $\alpha(N)=0.0048 20; \alpha(O)=0.00022 12$ E_{ν} : other: 1964An07 report a γ of 51.7 5.
61.60 5	0.51 10	136.38	(1)	74.78	$(2)^{+}$	[D]		1.0 4		
72.52 10	0.15 4	158.80	1+	86.28	(1,2)	[D]		0.61 25		α (K)=0.53 22; α (L)=0.07 3; α (M)=0.012 5 α (N)=0.0020 9; α (O)=9.E–5 5 I γ =0.38 8 (1977KaXX).
74.78 2	92 5	74.78	(2)+	0.0	1-	E1		0.336		$\alpha(K)=0.293$ 5; $\alpha(L)=0.0357$ 5; $\alpha(M)=0.00657$ 10 $\alpha(N)=0.001061$ 15; $\alpha(O)=4.48\times10^{-5}$ 7 E_{γ} : others: 74.77 8 (1965Ev05), 74.4 4 (1964An07). I _{\gamma} : others: 69.8 (1965Ev05), 81.1 17 (1977KaXX). Mult.: from $\alpha(K)\exp=0.25$ 14 (1970An30). Others: $\alpha(K)\exp=0.42$ (1965Ev05), K/(L)=8.4 8 (1964An07), K/(L+M)=7.2 5 (1964Ro20).
84.00 2	100 6	158.80	1+	74.78	(2) ⁺	M1		0.561		$\begin{aligned} &\alpha(K) = 0.488 \ 7; \ \alpha(L) = 0.0598 \ 9; \ \alpha(M) = 0.01114 \ 16 \\ &\alpha(N) = 0.00184 \ 3; \ \alpha(O) = 9.15 \times 10^{-5} \ 13 \\ &E_{\gamma}: \ others: \ 84.00 \ 9 \ (1965Ev05), \ 83.8 \ 4 \ (1964An07). \\ &Mult.: \ \alpha(K)exp = 0.54 \ (1965Ev05), \ 0.69 \ 23 \ (1970An30). \\ &Others: \ K/L = 9.0 \ 9 \ (1964An07), \ K/(L+M) = 7.1 \ 5 \\ \ (1964Ro20). \end{aligned}$

¹⁰⁰ Pd ε decay (3.63 d) 1992Si11,1965Ev05,1977KaXX (continued)								
γ ⁽¹⁰⁰ Rh) (continued)								
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α@	Comments
86.37 15	0.05 2	86.28	(1,2)	0.0	1-	[D]	0.37 15	$(84\gamma)(75\gamma)(\theta)$: A ₂ =0.173 4 (1971Re06). Others: A ₂ =+0.18 3 (1965Ev05); 1965Ma34. $\alpha(K)=0.32$ 13; $\alpha(L)=0.039$ 16; $\alpha(M)=0.007$ 3 $\alpha(N)=0.0012$ 5; $\alpha(Q)=6$ E=5 3
119.18 8	0.13 5	151.86	$(1)^{+}$	32.68	(2) ⁻	[E1]	0.0881	$\alpha(\mathbf{K}) = 0.0770 \ II; \ \alpha(\mathbf{L}) = 0.00913 \ I3; \ \alpha(\mathbf{M}) = 0.001685 \ 24$ $\alpha(\mathbf{K}) = 0.0023 \ I3; \ \alpha(\mathbf{M}) = 0.001685 \ 24$
126.15 2	15 <i>I</i>	158.80	1+	32.68	(2)-	E1	0.0748	$\alpha(N)=0.0002734; \alpha(O)=1.240\times10^{-7}18$ $E_{\gamma}=118.59, I_{\gamma}=0.345 (1977KaXX).$ $\alpha(K)=0.0654 10; \alpha(L)=0.00774 11; \alpha(M)=0.001428 20$ $\alpha(N)=0.0002334; \alpha(O)=1.059\times10^{-5} 15$ $E_{\gamma}: \text{ others: } 126.07 19 (1965Ev05), 126.55 (1964An07).$
139.92 5	0.35 4	139.92	(0,1)	0.0	1-	[D]	0.10 4	I _y : others: 18.0 <i>15</i> (1977KaXX), 33.4 (1965Ev05). Mult.: α (K)exp=0.064 <i>13</i> (1970An30). α (K)=0.08 <i>4</i> ; α (L)=0.010 <i>5</i> ; α (M)=0.0019 <i>8</i> α (N)=0.00031 <i>14</i> ; α (O)=1.5×10 ⁻⁵ <i>7</i> E is other: 130.72 <i>30</i> , placed from a level at 215 by 1065Ev05
151.88 <i>5</i>	0.61 5	151.86	(1)+	0.0	1-	E1	0.0439	I_{γ} : other: 139.72 30, placed from a fever at 215 by 1905Ev05. I_{γ} : others: 0.45 7 (1977KaXX), 1.2 (1965Ev05). $\alpha(K)=0.0384$ 6; $\alpha(L)=0.00452$ 7; $\alpha(M)=0.000834$ 12 $\alpha(N)=0.0001364$ 20; $\alpha(O)=6.32\times10^{-6}$ 9 E_{γ} : other: 151.55 30 (1965Ev05).
154.00 <i>10</i> 158.87 <i>5</i>	0.061 <i>15</i> 3.2 2	154.00 158.80	(0,1) 1 ⁺	0.0 0.0	1- 1-	[D,E2] [E1]	0.17 <i>12</i> 0.0386	I _γ : others: 0.81 4 (1977KaXX), 2.5 (1965Ev05). Mult.: from the Adopted Gammas. I _γ =0.16 3 (1977KaXX). α (K)=0.0338 5; α (L)=0.00397 6; α (M)=0.000732 11 α (N)=0.0001199 17; α (O)=5.58×10 ⁻⁶ 8 E _γ : others: 158.77 34 (1965Ev05), 158.1 5 (1964An07). I _γ : other: 8.2 (1965Ev05).

4

[†] From 1992Si11.
[‡] From ce data in this study, adopted in the Adopted Gammas.
[#] For absolute intensity per 100 decays, multiply by 0.52 *3*.
[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁰⁰Pd ε decay (3.63 d) 1992Si11,1965Ev05,1977KaXX

