⁹⁹Ru(α,2npγ) **1984Ma30**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh and Jun Chen	NDS 172, 1 (2021)	31-Jan-2021				

1984Ma30: E=30-55 MeV alpha beams were produced from the Buenos Aires Synchrocyclotron. Target was a 2 mg/cm² powder of 98% enriched ⁹⁹Ru fixed to a 4- μ m mylar foil. γ rays were detected with three Ge(Li) detectors and a high-resolution x-ray detector. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(t)$, $\gamma(\theta)$, excitation functions. Deduced levels, isomer T_{1/2}. 1984Ma30 use this measurement for the basic line identification, the observation of a new isomer, and a first tentative scheme. Most data reported in 1984Ma30 are from the ⁹⁸Mo(⁶Li,4n γ) measurement at BNL with improved sensitivity. See that dataset for more details. All data are from 1984Ma30, unless otherwise noted.

100Rh Levels

E(level) [†]	Jπ‡	T _{1/2}	Comments			
0.0	1-#					
32.7 10	$(2)^{-\#}$	27.6 [#] ns 6				
74.9 10	$(2)^{+\#}$	214.3 [#] ns 20				
107.6 15	(5 ⁺) [#]	4.6 [#] min 2	%IT \approx 98.3; % ε +% β ⁺ \approx 1.7			
219.4 <i>16</i>	(7^{+})	135 ns 20	$T_{1/2}$: from (135.7 γ)(111.9 γ)(t).			
243.4 17	(6)					
357.5 17	(6)					
438.5 16	(7)					
887.1 <i>18</i>	(8)					
1270.4 18	(8)					
1403.4 21	(9)					
1800.9 23	(10)					
2127.5 25	(11)					
2596 <i>3</i>	(12)					
3064 <i>3</i>	(13)					
3490 <i>3</i>	(14)					
3948 4	(15)					

[†] From least-squares fit to $E\gamma$ data, assuming $\Delta E\gamma$ =0.2 keV or 1 keV if $E\gamma$ stated as integer.

[‡] As proposed by 1984Ma30 based on their $\gamma(\theta)$ data.

[#] From the Adopted Levels.

$\gamma(^{100}\text{Rh})$

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.
32.7 [#]		32.7	(2) ⁻	0.0	1-	
74.9 ^{@‡}	120 [@] 10	74.9	$(2)^{+}$	0.0	1-	
74.9 ^{@‡}	120 [@] 10	107.6	(5^+)	32.7	$(2)^{-}$	[E3]
81.1	21 4	438.5	(7)	357.5	(6)	
111.9	100 5	219.4	(7^{+})	107.6	(5^{+})	
133.0	83 10	1403.4	(9)	1270.4	(8)	
135.7	40 6	243.4	(6)	107.6	(5^{+})	
195.1	81 14	438.5	(7)	243.4	(6)	
219.1	16 7	438.5	(7)	219.4	(7^{+})	
249.9	30 5	357.5	(6)	107.6	(5^{+})	
326.6	27 4	2127.5	(11)	1800.9	(10)	
330.9	10 3	438.5	(7)	107.6	(5^{+})	
383.2	10 4	1270.4	(8)	887.1	(8)	

Continued on next page (footnotes at end of table)

⁹⁹Ru(α,2npγ) **1984Ma30** (continued)

$\gamma(^{100}\text{Rh})$ (continued)

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	E_{γ}^{\dagger}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$
397.5 426 [#] 448.4 458	40 5 40 4 5 3	1800.9 3490 887.1 3948	(10) (14) (8) (15)	1403.4 (9) 3064 (13) 438.5 (7) 3490 (14)	468.2 [@] 468.2 [@] 1051.1	30 [@] 5 30 [@] 5 32 5	2596 3064 1270.4	(12) (13) (8)	2127.5 (11) 2596 (12) 219.4 (7 ⁺)

[†] From (⁶Li, $4n\gamma$) in 1984Ma30.

[‡] Placements from the Adopted Gammas. Transition is from 107.6 isomer through cascades: 74.9-32.7 and 32.7-74.9, with 32.7 γ too weak to be observed in this measurement. See also ⁹⁸Mo(⁶Li,4n γ).

[#] Not seen in the $(\alpha, 2np\gamma)$ measurement in 1984Ma30.

[@] Multiply placed with undivided intensity.

 $^{100}_{45} Rh_{55}$