⁹⁸Mo(⁶Li,4nγ) 1984Ma30

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh and Jun Chen	NDS 172, 1 (2021)	31-Jan-2021				

1984Ma30: E=35-45 MeV ⁶Li beams were produced from the Brookhaven National Laboratory Tandem Van de Graaff. Target was a 4.5 mg/cm² enriched ⁹⁸Mo. γ rays were detected with two large Ge(Li) detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(t)$, $\gamma(\theta)$. Deduced levels, J, π , γ -ray multipolarities, isomer T_{1/2}. Comparisons with theoretical calculations.

1984Ma30 also report data on ¹⁰⁰Rh from ⁹⁹Ru(α ,2np γ), which provides the basic line identification, the observation of a new isomer, and a first tentative scheme while the (⁶Li,4n γ) measurement has improved sensitivity. See ⁹⁹Ru(α ,2np γ) dataset for details.

100Rh Levels

E(level) [†]	J ^π ‡	T _{1/2}	Comments
0.0	1-#		
32.73 17	$(2)^{-\#}$	27.6 [#] ns 6	
74.87 17	$(2)^{+\#}$	214.3 [#] ns 20	
107.6 <i>3</i>	$(5^+)^{\#}$	4.6 [#] min 2	$\%$ IT \approx 98.3; $\%$ ε + $\%\beta^+$ \approx 1.7
219.5 <i>3</i>	(7^{+})	120 ns 5	$T_{1/2}$: from (135.7 γ)(111.9 γ)(t).
243.4 <i>3</i>	(6)		
357.5 <i>3</i>	(6)		
438.6 <i>3</i>	(7)		
887.1 4	(8)		
1270.4 <i>3</i>	(8)	<0.1 ps	$T_{1/2}$: from Doppler broadening of 1050 γ peak (1984Ma30).
1403.5 4	(9)		
1800.9 4	(10)		
2127.5 5	(11)		
2595.8 <i>5</i>	(12)		
3064.2 5	(13)		
3490.2 11	(14)		
3948.2 15	(15)		
4389.2 18	(16)		

 † From least-squares fit to Ey data.

[‡] As proposed by 1984Ma30 based on their $\gamma(\theta)$ data, unless otherwise noted. The assignments in the Adopted Levels are generally the same, except that parities are assigned for most levels based on other studies.

[#] From the Adopted Levels.

$\gamma(^{100}\text{Rh})$

A₂ and A₄ values are from (⁶Li,4n) and/or (α ,2np γ).

${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	Comments
32.7 ^{@‡} 2	30@	32.73	(2)-	0.0 1-		
32.7 ^{@‡&} 2	30 [@]	107.6	(5 ⁺)	74.87 (2)+	[M3]	
42.1 [‡] 2	6	74.87	$(2)^{+}$	32.73 (2)-		
74.9 ^{@‡} 2	66 [@] 5	74.87	$(2)^{+}$	$0.0 1^{-}$		
74.9 ^{@‡} 2	66 [@] 5	107.6	(5^{+})	32.73 (2)-	[E3]	
81.1 2	19 <i>3</i>	438.6	(7)	357.5 (6)	D+Q	$A_2 = -0.47 8; A_4 = -0.05 10$
111.9 2	100 5	219.5	(7^{+})	107.6 (5 ⁺)		$A_2 = +0.12 \ 3; \ A_4 = -0.02 \ 3$

Continued on next page (footnotes at end of table)

98 Mo(6 Li,4n γ) 1984Ma30 (continued)

$\gamma(^{100}\text{Rh})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	Comments
133.0 2	85 8	1403.5	(9)	1270.4 (8)	D+Q	$A_2 = -0.38 4; A_4 = +0.01 5$
135.7 2	80 5	243.4	(6)	107.6 (5+)		$A_2 = -0.15 \ 19; A_4 = +0.03 \ 17$
138.0 2	35 <i>3</i>	357.5	(6)	219.5 (7+)	D(+Q)	$A_2 = -0.09 6; A_4 = -0.02 6$
195.1 2	68 7	438.6	(7)	243.4 (6)	D(+Q)	$A_2 = -0.33 4$; $A_4 = +0.08 5$
219.1 2	11 2	438.6	(7)	219.5 (7 ⁺)		
249.9 2	39 4	357.5	(6)	107.6 (5+)	D+Q	$A_2 = -0.44 \ 4; \ A_4 = +0.02 \ 5$
326.6 2	54 6	2127.5	(11)	1800.9 (10)	D(+Q)	$A_2 = -0.31 \ 4; \ A_4 = 0.00 \ 5$
330.9 2	11 2	438.6	(7)	107.6 (5 ⁺)		
383.2 2	17 <i>3</i>	1270.4	(8)	887.1 (8)		$A_2 = +0.17 6; A_4 = +0.03 8$
397.5 2	88 8	1800.9	(10)	1403.5 (9)	D(+Q)	$A_2 = -0.33 5; A_4 = +0.07 6$
426 1	38 4	3490.2	(14)	3064.2 (13)		
441 <i>1</i>		4389.2	(16)	3948.2 (15)		
448.4 2	59 6	887.1	(8)	438.6 (7)	D(+Q)	$A_2 = -0.18 \ 3; \ A_4 = 0.00 \ 4$
458 <i>1</i>	14 <i>3</i>	3948.2	(15)	3490.2 (14)		
468.2 [@] 2	81 [@] 9	2595.8	(12)	2127.5 (11)	D(+Q)	$A_2 = -0.26 5; A_4 = +0.09 7$
468.2 [@] 2	81 [@] 9	3064.2	(13)	2595.8 (12)	D(+Q)	
516.4 2	29 4	1403.5	(9)	887.1 (8)		
723 1	28 4	2127.5	(11)	1403.5 (9)		
831.8 2	21 4	1270.4	(8)	438.6 (7)		
936.9 2	27 4	3064.2	(13)	2127.5 (11)		
1051.1 2	77 4	1270.4	(8)	219.5 (7 ⁺)	D+Q	$A_2 = -0.485; A_4 = +0.015$

[†] From 1984Ma30.

⁴ From 1984Ma30. ⁴ Placements from the Adopted Gammas. These are transitions from 107.6 isomer through cascades: 74.9-32.7, 32.7-74.9 and 32.7-42.1-32.7. See also ¹⁰⁰Rh IT decay (4.6 min) for details. [#] From $\gamma(\theta)$ data in 1984Ma30, with negative A₂ typically for $\Delta J=1$, dipole or dipole+quadrupole transitions.

[@] Multiply placed with undivided intensity.
[&] Placement of transition in the level scheme is uncertain.

 $^{100}_{45} Rh_{55}$

3

⁹⁸Mo(⁶Li,4nγ) 1984Ma30 Legend Level Scheme (continued) $\begin{array}{l} \bullet \quad I_{\gamma} < \ 2\% \times I_{\gamma}^{max} \\ \bullet \quad I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \bullet \quad I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ Intensities: Relative $I_{\boldsymbol{\gamma}}$ & Multiply placed: undivided intensity given ا کوره هوه 45' 6 45' ç, $(2)^+$ 74.87 214.3 ns 20 ŝ $\frac{(2)^{-}}{1^{-}}$ 32.73 27.6 ns 6 0.0

 $^{100}_{45} Rh_{55}$