Adopted Levels

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh and Jun Chen	NDS 172, 1 (2021)	31-Jan-2021		

 $Q(\beta^{-})=13574\ 21;\ S(n)=3197\ 20;\ S(p)=14780\ SY;\ Q(\alpha)=-10510\ SY$ 2017Wa10

Estimated uncertainties (2017Wa10): 400 for S(p), 300 for Q(α).

 $S(2n)=8021\ 25$, $S(2p)=32580\ 400\ (syst)$, $Q(\beta^-n)=8203\ 20\ (2017Wa10)$. $Q(\beta^-2n)=4033\ 20\ (deduced by evaluators from masses in 2017Wa10)$.

- The ¹⁰⁰Rb isotope produced and identified by mass separation from fission of ²³⁵U with neutrons (1986Wa17,1982Kr11,1979Pe01, 1978Ko29) and protons (1979Az01). 2001Lh02 produced this isotope from fission of ²³⁸U by 600-MeV protons at the ISOLDE facility.
- 2011Ni01: ¹⁰⁰Rb nuclide produced in ⁹Be(²³⁸U,F) reactions at E=345 MeV/nucleon produced by the cascade operation of the RIBF complex of accelerators at RIKEN. Target=550 mg/cm². Identification of ¹⁰⁰Rb made on the basis of magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted in a nine-layer double-sided silicon-strip detector (DSSSD). Correlations were recorded between the heavy ions and β rays. The half-life of ¹⁰⁰Rb isotope was measured from the correlated ion- β decay curves and maximum likelihood analysis technique. In the analysis of the decay curve, β -detection efficiency, background rate, daughter and granddaughter (including those populated in delayed neutron decays) half-lives, and β -delayed neutron emission probabilities were considered. Comparison of measured half-lives with FRDM+QRPA and KTUY+GT2 calculations.

Additional information 1.

- An isomer with possible $J^{\pi}=(6^+)$ is proposed by 1995Pf04 on the basis of an apparent β^- feeding of a (6^+) level in ¹⁰⁰Sr and β^- n feeding of an $11/2^+$ level in ⁹⁹Sr from ¹⁰⁰Rb decay. Possible configuration= $\pi 3/2[431] \otimes \nu 9/2[404]$ (1995Pf04). On the other hand, 2001Lh02 (same authors as those of 1995Pf04) proposed a low-spin isomer 1⁻ with configuration= $\pi 3/2[431] \otimes \nu 5/2[532]$. But none of these activities have been confirmed so far.
- Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for eight primary references, four dealing with nuclear structure calculations and four with decay modes and half-lives.

¹⁰⁰Rb Levels

E(level)	J^{π}	T _{1/2}	Comments
0	(4-)	52 ms 2	$\%\beta^-=100; \%\beta^-n=5.6\ 12; \%\beta^-2n=0.15\ 5$ $J^{\pi}:$ from configuration= $\pi 3/2[431] \otimes v5/2[532]$ and proposed by 2001Lh02, based on ground-state configurations of neighboring nuclides. For this configuration, Gallagher-Moszkowski favors 4 ⁻ g.s. and 1 ⁻ at higher energy. $J^{\pi}=(3^+)$ was also suggested earlier in 1995Pf04 by the same authors as 2001Lh02, on the basis that there seemed to be a strong β^- feeding to a 2 ⁺ level in ¹⁰⁰ Sr and that the possible configuration could be $\pi 3/2[431] \otimes v3/2[411]$. T _{1/2} : weighted average of 48 ms 3 (2011Ni01, (ion) β -correlated decay curve); 53 ms 2 (1987PfZX, β and n decay); 59 ms 10 (1986RezU, β and n decay, β n-coin, 55 ms 18 in 1986Wa17 is groups and the set of

superseded by 1986ReZU); 51 ms 17 (1979Pe01, n decay); 50 ms 10 (1978Ko29, β and γ decay). % β^- n: weighted average of 8 2 (1987PfZX) and 5.0 10 (1986ReZU). others: \approx 35 (2010MaZS), 26 8 (2001Lh02, from gamma-ray intensities and assuming no β feeding to ¹⁰⁰Sr g.s.).

(2001Lh02, from gamma-ray intensities and assuming no β feeding to 2^{-5} s g.s.). β^{-2} n: from measured β^{-2} n/ β^{-n} =0.027 7 (1981JoZV), and adopted β^{-n} =5.6 12. Additional information 2.

Mass measurements: 2017De18, 2016Kl04, 2013Ma81.