¹⁰⁰Ag ε decay (2.01 min) 1983Ra10,1980Ha20,1995Ba25

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 172, 1 (2021)	31-Jan-2021

Parent: ¹⁰⁰Ag: E=0.0; $J^{\pi}=(5)^+$; $T_{1/2}=2.01 \text{ min } 10$; $Q(\varepsilon)=7075 \ 18$; $\%\varepsilon+\%\beta^+$ decay=100.0

 100 Ag-J^{π},T_{1/2}: From 100 Ag Adopted Levels.

¹⁰⁰Ag-Q(ε): From 2017Wa10.

1983Ra10: ¹⁰⁰Ag source was produced in ⁹²Mo(¹²C,p3n) with E≈80 MeV ¹²C beam from the Manchester University Heavy-Ion Linear Accelerator and in ¹⁰²Pd(p,3n) with E=39 MeV proton beam from the Harwell Variable Energy Cyclotron. *γ* rays were detected with Ge(Li) detectors and positrons were detected with a HPGe detector. Measured E*γ*, I*γ*, E(ce), I(ce), *γγ*-coin, *γγ*(*θ*), *xγ*-coin, *β⁺γ*-coin, *γγ*(t). Deduced levels, J, *π*, parent T_{1/2}, decay branching ratios, log *ft*, conversion coefficients, *γ*-ray multipolarities.

1980Ha20: ¹⁰⁰Ag source was produced in ⁹²Mo(¹²C,p3n) with 40 MeV proton beam from the McGill synchrocyclotron. γ rays were detected with two Ge(Li) detectors and positrons were detected with a plastic Δ E-E counter telescope. Measured E γ , I γ , $\gamma\gamma$ -coin, $\beta^+\gamma$ -coin, $\gamma(t)$. Deduced levels, J, π , parent T_{1/2}, decay branching ratios, log *ft*. The results are in general agreement with those from 1983Ra10, but the authors had difficulty in separating γ -ray intensities between the two isomers.

1995Ba25: ¹⁰⁰Ag ions was produced in ⁵⁰Cr(⁵⁸Ni,X) with 290 MeV ⁵⁸Ni beam from the accelerator at GSI and separated by the GSI Online Mass Separator. γ rays were detected with a total-absorption gamma spectrometer (TAGS) consisting of a large-volume NaI crystal, a disk-shape NaI and a BGO detector; positrons were detected with a Si(Li) detector. Measured total absorption γ -ray spectrum. Deduced β -strength functions in the 0-6750 energy range. Comparisons with theoretical calculations.

Others: 1980Wi20, 1980VeZN, 1971In03, 1970Hn03, 1967Ba26, 1967Do06, 1966Bu05. In the earlier studies of 100 Ag decay, the T_{1/2} was given as 8 min *l* (1967Ba26), 9 min (1966Bu05),7.5 min *l* (1967Do06).

Total decay energy deposit of 6343 keV 99 calculated by RADLIST code is lower than the expected value of 7075 keV 18. The large gap (\approx 3.2 MeV) between the highest observed level and the Q-value could indicate that the decay scheme is incomplete. Total absorption measurement (1995Ba25) also suggest that a significant fraction of ε and β^+ feeding is missing in the decay scheme.

E(level) [†]	$J^{\pi #}$	E(level) [†]	$J^{\pi #}$	E(level) [†]
0.0	0+	2679.4 10	$(0^+ \text{ to } 4^+)$	4.38×10 ³ [‡] 12
665.69 10	2+	2694.50 24	(4)	4.63×10 ³ [‡] 12
1416.49 14	4+	2821.80 24	(4)	4.88×10 ³ [‡] 12
1587.98 12	$2^{(+)}$	2879.92 20	(4 ⁺)	5.13×10 ³ [‡] 12
1926.21 14	3 ⁽⁺⁾	2920.54 16	$(4)^+$	5.38×10 ³ [‡] 12
2056.42 16	(4 ⁻)	3079.97 18	$(4^+, 5^+, 6^+)$	5.63×10 ³ [‡] 12
2189.72 16	6+	3236.2 4	$(2^+, 3^+)$	5.88×10 ³ [‡] 12
2279.01 16	5 ⁽⁺⁾	3311.75 22	(4,5,6)	6.13×10 ³ [‡] <i>12</i>
2351.05 20	(4+)	3.63×10 ³ [‡] 12		6.38×10 ³ [‡] 12
2470.36 16	6(+)	3824.0 4	(4,5,6)	6.63×10 ³ [‡] 12
2532.30 24	(2^{+})	3.88×10 ³ [‡] 12		>6.75×10 ³ ‡
2621.7 5	$(1^{-} \text{ to } 4^{+})$	4.13×10 ^{3‡} 12		

¹⁰⁰Pd Levels

[†] From least-squares fit to $E\gamma$ data.

^{\ddagger} Pseudo-level introduced by evaluators based on ε , β^+ feeding reported in 1995Ba25. These levels are not included in the Adopted Levels, Gammas dataset.

[#] From the Adopted Levels.

¹⁰⁰Ag ε decay (2.01 min) 1983Ra10,1980Ha20,1995Ba25 (continued)

ε, β^+ radiations

β^+ , $(\beta^+)(\gamma)$ data: 1983Ra10, 1980Ha20, 1980VeZN.

 $Q(\varepsilon)$ from $(\beta^+)(\gamma)$: 7170 250 (1983Ra10), 7.0×10³ 2 (1980Ha20), 7080 90 (1980VeZN). From singles β^+ spectrum, 1980Ha20 obtained β^+ (end-point)=5.4×10³ 2 indicating little direct β^+ feeding to g.s.

A large fraction ($\approx 30\%$) of $\varepsilon_{\beta}\beta^{+}$ feeding proceeds to levels above 3500 as suggested by total absorption data of 1995Ba25. Precise energies and decay mode of these levels are not yet known.

E(decay)	E(level)	Ιβ ⁺ †‡	$I\varepsilon^{\dagger\ddagger}$	$\log ft^{\dagger}$	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(325 18)	>6750		< 0.04		<0.04	I($\varepsilon + \beta^+$): <0.04% to levels >6750 (1995Ba25) from total γ -absorption.
(4.5×10 ² 12)	6630		0.11	4.6	0.11	εK =0.856 5; εL =0.116 4; εM +=0.0284 11 I($\varepsilon + \beta^+$): 0.11% to levels from 6500-6750 (1995Ba25) from total γ -absorption.
(7.0×10 ² 12)	6380		0.22	4.7	0.22	ε K=0.8601 <i>17</i> ; ε L=0.1125 <i>13</i> ; ε M+=0.0274 4 I(ε + β ⁺): 0.22% to levels from 6250-6500 (1995Ba25) from total γ -absorption.
(9.5×10 ² 12)	6130		0.61	4.5	0.61	ε K=0.8621 9; ε L=0.1109 7; ε M+=0.02700 18 I($\varepsilon + \beta^+$): 0.61% to levels from 6000-6250 (1995Ba25) from total γ -absorption.
$(1.20 \times 10^3 \ 12)$	5880		1.25	4.4	1.25	εK=0.8630 <i>12</i> ; $ε$ L=0.1100 <i>6</i> ; $ε$ M+=0.02674 <i>14</i> I($ε+β^+$): 1.25% to levels from 5750-6000 (1995Ba25) from total γ-absorption.
$(1.45 \times 10^3 \ 12)$	5630	0.02	2.5	4.3	2.5	av E β =194 53; ε K=0.856 12; ε L=0.1085 18; ε M+=0.0263 5 I(ε + β ⁺): 2.5% to levels from 5500-5750 (1995Ba25) from
$(1.70 \times 10^3 \ l2)$	5380	0.14	2.8	4.4	2.9	total γ-absorption. av Eβ=302 53; εK=0.82 3; εL=0.104 4; εM+=0.0252 10 I(ε+β ⁺): 2.9% to levels from 5250-5500 (1995Ba25) from total γ-absorption.
(1.95×10 ³ 12)	5130	0.40	2.6	4.5	3.0	av $E\beta = 41154$; $\varepsilon K = 0.755$; $\varepsilon L = 0.0947$; $\varepsilon M + = 0.022916$ I($\varepsilon + \beta^+$): 3.0% to levels from 5000-5250 (1995Ba25) from total γ -absorption.
(2.20×10 ³ 12)	4880	0.90	2.6	4.6	3.5	av E β =521 54; ε K=0.64 6; ε L=0.081 8; ε M+=0.0196 18 I(ε + β ⁺): 3.5% to levels from 4750-5000 (1995Ba25) from total γ -absorption.
(2.45×10 ³ 12)	4630	1.4	2.2	4.8	3.6	av E β =632 55; ε K=0.53 6; ε L=0.066 8; ε M+=0.0159 18 I(ε + β ⁺): 3.6% to levels from 4500-4750 (1995Ba25) from total γ -absorption.
(2.70×10 ³ 12)	4380	1.7	1.5	5.1	3.2	av E β =745 55; ε K=0.41 6; ε L=0.052 7; ε M+=0.0126 16 I(ε + β ⁺): 3.2% to levels from 4250-4500 (1995Ba25) from total γ -absorption.
(2.95×10 ³ 12)	4130	2.0	1.2	5.2	3.2	av E β =859 56; ε K=0.32 5; ε L=0.040 6; ε M+=0.0098 13 I(ε + β ⁺): 3.2% to levels from 4000-4250 (1995Ba25) from total γ -absorption.
(3.20×10 ³ 12)	3880	2.7	1.1	5.3	3.8	av E β =973 56; ε K=0.25 4; ε L=0.031 5; ε M+=0.0076 10 I(ε + β ⁺): 3.8% to levels from 3750-4000 (1995Ba25) from total γ -absorption.
(3251 18)	3824.0	0.6 1	0.2 1	6.1 <i>1</i>	0.8 2	av E β =999.2 83; ε K=0.236 5; ε L=0.0295 6; ε M+=0.00714 13 I(ε + β ⁺): 3.8% to levels from 3750-4000 (1995Ba25) from
(3.45×10 ³ <i>12</i>)	3630	2.5	0.72	5.6	3.2	total γ-absorption. av Eβ=1089 57; εK=0.195 25; εL=0.024 4; εM+=0.0059 8 I(ε+β ⁺): 3.2% to levels from 3500-3750 (1995Ba25) from total γ-absorption.

Continued on next page (footnotes at end of table)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^+$ †‡	$\mathrm{I}\varepsilon^{\dagger\ddagger}$	$\log ft^{\dagger}$	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(3763 18)	3311.75	1.4 1	0.28 2	6.08 4	1.7 1	av E β =1236.9 84; ε K=0.1440 25; ε L=0.0179 3; ε M+=0.00434 8 I(ε + β ⁺): 4.3% to levels from 3250-3500 (1995Ba25) from total γ -absorption.
(3839 [#] 18)	3236.2	0.9 5	0.17 9	6.3 <i>3</i>	1.1 6	av E β =1272.2 85; ε K=0.1344 23; ε L=0.0167 3; ε M+=0.00405 7 log ft is too low for ΔJ^{π} involved. Apparent β^{+} feeding deduced from γ -ray intensity balance may be due to unobserved γ transitions to this level. I(ε + β^{+}): 12.6% to levels from 3000-3250 (1995Ba25) from total γ -absorption.
(3995 18)	3079.97	4.7 4	0.73 7	5.72 5	5.4 5	av E β =1345.3 85; ε K=0.1170 19; ε L=0.01455 24; ε M+=0.00352 6 I(ε + β ⁺): 12.6% to levels from 3000-3250 (1995Ba25) from total <i>y</i> -absorption
(4154 18)	2920.54	≈13	≈1.8	≈5.4	≈15	av E β =1420.2 85; ε K=0.1020 16; ε L=0.01268 20; ε M+=0.00307 5 I(ε + β^+): deduced from I(γ +ce)=22.2% to levels in 2750-3000 range from total γ -absorption (1995Ba25) and γ +ce feedings to 2822 and 2880 levels. γ -intensity balance in the present level scheme gives total apparent feeding of 39.5% 15. The large difference between the value from the total absorption and that from intensity balance could be accounted for by unobserved γ feedings from higher-lying levels within the large gap (\approx 3.2 MeV) between Q-value and the highest excitation energy observed in 1983Ra10 and 1980Ha20 due to Pandemonium effect. E(decay): E(β^+ -endpoint)=3378 400 from (β^+)(450 γ) (1983Ra10) gives Q(ε)=7320 400. 1980VeZN obtain
(4195 18)	2879.92	3.5 4	0.44 6	5.98 6	3.9 5	Q(ε)=7080 90 from (β^+)(1504 γ ,731 γ ,450 γ). av E β =1439.3 85; ε K=0.0985 15; ε L=0.01225 19; ε M+=0.00297 5 I(ε + β^+): 22.2% to levels from 2750-3000 (1995Ba25)
(4253 18)	2821.80	3.0 4	0.37 4	6.07 6	3.4 4	from total γ -absorption. av E β =1466.6 85; ε K=0.0939 15; ε L=0.01167 18; ε M+=0.00283 5 I(ε + β ⁺): 22.2% to levels from 2750-3000 (1995Ba25) from total α absorption
(4381 18)	2694.50	3.6 6	0.39 7	6.1 <i>1</i>	4.0 7	av E β =1526.7 85; ε K=0.0846 13; ε L=0.01052 16; ε M+=0.00255 4 I(ε + β ⁺): 11.8% to levels from 2500-2750 (1995Ba25) from total α absorption
(4396 18)	2679.4	0.36 9	0.039 <i>10</i>	7.1 1	0.40 10	av E β =1533.8 86; ε K=0.0836 13; ε L=0.01039 16; ε M+=0.00252 4 I(ε + β ⁺): 11.8% to levels from 2500-2750 (1995Ba25) from total <i>x</i> -absorption
(4453 [#] 18)	2621.7	0.6 5	0.06 5	6.9 <i>4</i>	0.7 5	av E β =1561.1 86; ε K=0.0799 12; ε L=0.00992 15; ε M+=0.00240 4 I(ε + β ⁺): 11.8% to levels from 2500-2750 (1995Ba25) from total γ -absorption.
(4543 [#] 18)	2532.30	3.7 4	0.34 <i>3</i>	6.16 5	4.0 4	av E β =1603.3 86; ε K=0.0745 11; ε L=0.00925 13; ε M+=0.00224 4 I(ε + β ⁺): 11.8% to levels from 2500-2750 (1995Ba25) from total γ -absorption.

Continued on next page (footnotes at end of table)

$^{100}{\rm Ag}\,\varepsilon$ decay (2.01 min) 1983 Ra10,1980 Ha20,1995 Ba25 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Ιβ ⁺ †‡	$I\varepsilon^{\dagger\ddagger}$	$\log ft^{\dagger}$	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
						$(\beta^+)(1116\gamma)$ (1980VeZN). log <i>ft</i> is too low for ΔJ^{π} involved. Apparent β^+ feeding deduced from γ -ray intensity balance may be due to
(4605 18)	2470.36	2.4 17	0.21 15	6.4 <i>3</i>	2.6 18	unobserved γ transitions to this level. av E β =1632.7 86; ε K=0.0710 10; ε L=0.00882 13; ε M+=0.00214 3
(4724 18)	2351.05	2.8 6	0.22 5	6.4 <i>1</i>	3.0 7	I(ε+β'): 10.9% to levels from 2250-2500 (1995Ba25) from total γ-absorption. av Eβ=1689.2 86; εK=0.0649 9; εL=0.00806 11; εM+=0.00195 3
(4796 18)	2279.01	4.8 5	0.37 4	6.18 5	5.2 5	I(ε+β'): 10.9% to levels from 2250-2500 (1995Ba25) from total γ-absorption. av Eβ=1723.4 86; εK=0.0615 9; εL=0.00764 11; εM+=0.001850 25
(4885 18)	2189.72	3.2 16	0.23 11	6.4 2	3.4 17	I(ε+β ⁺): 10.9% to levels from 2250-2500 (1995Ba25) from total γ-absorption. av Eβ=1765.9 86; εK=0.0577 8; εL=0.00716 10; εM+=0.001734 23
(5019 18)	2056.42	6.1 7	0.39 4	6.19 6	6.5 7	I(ε+β ⁺): 5.3% to levels from 2000-2250 (1995Ba25) from total γ-absorption. av Eβ=1829.3 86; εK=0.0525 7; εL=0.00651 9; εM+=0.001577 20 I(ε+β ⁺): 5.3% to levels from 2000-2250 (1995Ba25)
(5149 [#] <i>18</i>)	1926.21	3.9 5	0.23 3	6.45 6	4.1 5	from total γ-absorption. av Eβ=1891.4 86; εK=0.0480 6; εL=0.00595 8; εM+=0.001442 18
						 I(ε+β⁺): 1.8% to levels from 1750-2000 (1995Ba25) from total γ-absorption. log <i>ft</i> is too low for ΔJ^π involved. Apparent β⁺ feeding deduced from γ-ray intensity balance may be due to unobserved γ transitions to this level.
(5487 [#] 18)	1587.98					I(ε+β ⁺): γ-intensity balance gives apparent (%ε+%β ⁺) feeding of 2.2% 6, but Δ J=3,4 suggests no feeding. Also total γ-absorption study (1995Ba25) gives total feeding as <2% to levels from 0-1750 excitation range, most of which is assigned to 1416.5 level (see also
(5659 [#] 18)	1416.49	<2	<0.08	>7.0	<2	comment there). av $E\beta$ =2135.3 87; εK =0.0346 4; εL =0.00429 5; εM +=0.001038 12 E(decay): 5700 300 measured from (β^+)(751 γ) (1983Ra10). I β^+ ,I ε : total γ absorption 1995Ba25 give total feeding <2% to levels from 0-1750 excitation range. γ -intensity balance gives apparent ε + β^+ feeding of 7% 5, which could be accounted for by unobserved γ feedings from higher-lying levels within the large gap (\approx 3.2 MeV) between Q-value and the highest excitation energy observed in 1983Ra10 and 1980Ha20 due to Pandemonium effect.
(6409 [#] 18)	665.69					I(ε+β ⁺): γ-intensity balance gives I(ε+β ⁺)<5%, total γ-absorption study (1995Ba25) gives total feeding as <2% to levels from 0-1750 excitation range. Δ J=3 requires that ε feeding should be zero.

¹⁰⁰Ag ε decay (2.01 min) 1983Ra10,1980Ha20,1995Ba25 (continued)

ε, β^+ radiations (continued)

- [†] Quoted values should be considered as approximate due to incompleteness of the observed decay scheme in 1983Ra10 and 1980Ha20. Total feeding of $(\varepsilon + \beta^+)$ is deduced from I(γ +ce) intensity balance at each level where deexciting γ transitions are observed and from total absorption measurement in 1995Ba25 for the pseudo levels, unless otherwise noted.
- [‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

$\gamma(^{100}\text{Pd})$

I γ normalization: From I(γ +ce)(666 γ)+I(γ +ce)(1588 γ)=100, assuming no γ +ce feeding to 0⁺ g.s. from other levels due to high ΔJ (\geq 3).

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	α [@]	Comments
190.5 5	0.44 4	2470.36	6 ⁽⁺⁾	2279.01	5 ⁽⁺⁾	[M1]		0.0647 11	
222.5 2	1.0 3	2279.01	5 ⁽⁺⁾	2056.42	(4 ⁻)	[E1]		0.0157	E_{γ} : other: 222.5 3 (1980Ha20).
									I_{γ} : weighted average of 0.8 3 (1980Ha20) and 1.2 3 (1983Ra10).
280.7 2	9.4 11	2470.36	6(+)	2189.72	6+	(M1)		0.0234	E_{γ} : weighted average of 280.7 2 (1980Ha20) and 280.6 2 (1983Ra10).
									I_{γ} : unweighted average of 10.5 5 from (1980Ha20) and 8.3 5 from (1983Ra10).
^x 348.3	0.8								E_{γ} : γ reported by 1980Wi20 only. Suggested placement with 2880 level is not supported in later work by 1983Ra10.
353.0 5	0.98 14	2279.01	5(+)	1926.21	3(+)				E_{γ} : weighted average of 353.0 5 (1980Ha20) and 352.9 6 (1983Ra10).
									I_{γ} : unweighted average of 0.6 2 (1980Ha20) and 1.03 7 (1983Ra10).
450.2 <i>1</i>	18.3 10	2920.54	$(4)^+$	2470.36	6 ⁽⁺⁾				E_{γ} : other: 450.3 2 (1980Ha20).
									I_{γ} : weighted average of 19.1 <i>11</i> (1980Ha20) and 17.6 <i>10</i> (1983Ra10).
(510)		1926.21	3 ⁽⁺⁾	1416.49	4+				This γ is expected to exist because of the $(751\gamma)(353\gamma)$ -coin
50001		2070.02		0051.05	(1+)				relationship. It is obscured by the annihilation radiation.
528.9 1	2.2.2	2879.92	(4+)	2351.05	(4+)				E_{γ} : other: 528.9 5 (1980Ha20).
569.5 3	0.75.5	2920.54	$(4)^+$	2351.05	(4^{+})				Γ_{γ} : weighted average of 2.5.2 (1980Ha20) and 2.0.2 (1985Ka10). E_{γ} , I_{ν} : other: E_{γ} =568.5.3, I_{ν} =0.6.3 (1980Ha20).
609.6 1	2.8 4	3079.97	$(4^+, 5^+, 6^+)$	2470.36	6(+)				E_{y} : other: 609.7 2 (1980Ha20).
									I _y : weighted average of 2.4 3 (1980Ha20) and 3.1 3 (1983Ra10).
614 ^{&}	0.20 16	3236.2	(2+,3+)	2621.7	(1 ⁻ to 4 ⁺)				E_{γ}, I_{γ} : this γ is not reported in the decay of ¹⁰⁰ Ag g.s. but reported in the decay of 2.24-min isomer (2.24 min). Quoted intensity is deduced by evaluators from the branching ratio in ¹⁰⁰ Ag a decay (2.24 min)
639.9.1	846	2056 42	(4^{-})	1416 49	4+				F_{ac} : other: 639.9.2 (1980Ha20)
00000	0.1 0	2050.12	(•)	1110.19					I_{ν} : weighted average of 8.5 7 (1980Ha20) and 8.3 6 (1983Ra10).
665.7 1	100	665.69	2+	0.0	0^{+}	E2		0.00271	E_{γ} : other: 665.7 2 (1980Ha20).
					- 1				Mult.: α (K)exp=0.0023 2 (1983Ra10) gives mult=M1,E2.
730.9 1	7.7 6	2920.54	(4)+	2189.72	6+				E_{γ} : other: 730.9 2 (1980Ha20).
									I_{γ} : weighted average of 7.9 12 (1980Ha20) and 7.6 6 (1983Ba10)
750.8 1	82 4	1416.49	4+	665.69	2+	E2		0.00199	E_{γ} : other: 750.8 2 (1980Ha20).
									I_{γ} : weighted average of 84 4 (1980Ha20) and 79 5 (1983Ra10).
773.3 1	23.4 11	2189.72	6+	1416.49	4 ⁺	E2		0.0018 5	É _γ : other: 773.3 2 (1980Ha20).
									I_{ν} : weighted average of 23.0 11 (1980Ha20) and 24.5 18

6

				100 Ag ε decay (2.01 min)		1983Ra10,1980Ha20,1995Ba25 (continued)			
						,	$\gamma(^{100}\text{Pd})$ (continue	d)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α [@]	Comments
									(1983Ra10). Mult.: α(K)exp=0.0016 2 (1983Ra10) gives mult=M1,E2.
862.5 1	3.7 3	2279.01	5(+)	1416.49	4+	(M1+E2)	-0.14 5	1.56×10^{-3}	E_{γ} : other: 862.5 2 (1980Ha20). I _{\gamma} : weighted average of 3.9 5 (1980Ha20) and 3.6 3 (1983Pa10)
890.4 2	2.7 3	3079.97	(4 ⁺ ,5 ⁺ ,6 ⁺)	2189.72	6+				E_{γ} : weighted average of 890.5 2 (1980Ha20) and 890.3 2 (1983Ra10). I_{γ} : weighted average of 3.6 8 (1980Ha20) and 2.6 2 (1983Pa10)
922.3 1	1.3 5	1587.98	2 ⁽⁺⁾	665.69	2+	(E2+M1)	-1.77 +32-43	$1.24 \times 10^{-3} 2$	E_{γ} : other: 922.2 2 (1980Ha20). 1980Ha20 assigned this γ ray to $^{100}Ag \varepsilon$ decay (2.24 min) only.
953.3 5	0.11 3	2879.92	(4 ⁺)	1926.21	3(+)				E_{γ} : other: 955.0 5 (1980Ha20). I_{γ} : weighted average of 0.2 <i>I</i> (1980Ha20) and 0.10 <i>3</i> (1983Ra10).
960.7 <i>1</i> 1053.9 <i>1</i>	1.7 <i>1</i> 13.6 8	3311.75 2470.36	(4,5,6) $6^{(+)}$	2351.05 1416.49	(4 ⁺) 4 ⁺				E_{γ}, I_{γ} : other: $E_{\gamma}=960.8 \ 2, \ I_{\gamma}=1.9 \ 4 \ (1980\text{Ha20}).$ E_{γ} : other: 1053.8 2 (1980\text{Ha20}).
									I_{γ} : weighted average of 15.4 8 (1980Ha20) and 15.9 11 (1983Ra10). (1054 γ)(751 γ)(θ) data (1983Ra10) consistent with I(2470)=4.5.6 with somewhat better v^2 fit for I=5.6.
1115.8 2	4.0 4	2532.30	(2 ⁺)	1416.49	4+	(E2)			E_{γ} : other: 1115.7 2 (1980Ha20). I _{γ} : weighted average of 4.3 4 (1980Ha20) and 3.4 6 (1983Ra10).
1260.5 <i>1</i> 1278 0 2	5.2 <i>4</i> 4 0 7	1926.21 2694 50	$3^{(+)}$	665.69 1416 49	$2^+_{4^+}$	(E2+M1) D(+O)	$-2.36\ 30$ $-0\ 37\ +45-63$		E_{γ}, I_{γ} : other: $E_{\gamma}=1260.15$, $I_{\gamma}=5.210$ (1980Ha20).
1270.0 2	1.0 7	2071.50	()	1110.19		D(1Q)	0.57 115 05		I_{γ} : unweighted average of 3.4 4 (1980Ha20) and 4.7 5 (1983Ra10).
1405.3 2	3.4 4	2821.80	(4)	1416.49	4+	D+Q	-0.66 +51-97		E_{γ} : also from 1980Ha20. I _{γ} : weighted average of 3.6 4 (1980Ha20) and 3.3 4 (1082D = 10)
1503.8 2	13.2 9	2920.54	$(4)^{+}$	1416.49	4+	(M1+E2)	-0.7 +5-11		(1983Ra10). E_{γ} : weighted average of 1503.9 2 (1980Ha20) and 1503.7 2 (1983Ra10).
									I_{γ} : weighted average of 13.6 7 (1980Ha20) and 11.4 15 (1983Ra10).
									$(1504\gamma)(751\gamma)(\theta)$ (1983Ra10) consistent with J(2921)=4,5,6.
^x 1523.2 5 1587.9 2	0.9 2 0.9 3	1587.98	2 ⁽⁺⁾	0.0	0^{+}				E_{γ} , I_{γ} : from 1980Ha20 only. E_{γ} : other: 1587.7 3 (1980Ha20). 1980Ha20 assigned
^x 1639.0 2	0.4 2								this γ ray to ¹⁰⁰ Ag ε decay (2.24 min) only. E _{γ} : other: 1639.0 <i>3</i> (1980Ha20). I _{γ} : unweighted average of 1.0 <i>2</i> (1980Ha20) and 0.4 <i>2</i>

7

 $^{100}_{46}\mathrm{Pd}_{54}$ -7

$\gamma(^{100}\text{Pd})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Comments
1685.8 <i>3</i>	7.7 6	2351.05	(4 ⁺)	665.69	2+	E_{γ} : weighted average of 1686.0 3 (1980Ha20) and 1685.6 3 (1983Ra10).
						I_{γ} : weighted average of 8.1 6 (1980Ha20) and 7.1 7 (1983Ra10).
1767.7 <i>3</i>	0.8 2	3824.0	(4,5,6)	2056.42	(4 ⁻)	E_{γ} : weighted average of 1767.9 4 (1980Ha20) and 1767.6 3 (1983Ra10).
						I_{γ} : weighted average of 1.0 3 (1980Ha20) and 0.7 2 (1983Ra10).
1819.8 <i>4</i>	1.0 5	3236.2	$(2^+, 3^+)$	1416.49	4+	E_{γ} : weighted average of 1820.8 8 (1980Ha20) and 1819.7 3 (1983Ra10).
						I_{γ} : unweighted average of 1.5 3 (1980Ha20) and 0.5 2 (1983Ra10).
1956.0 4	0.9 4	2621.7	$(1^{-} \text{ to } 4^{+})$	665.69	2+	E_{γ} : other: 1956.0 7 (1980Ha20).
						I_{y} : unweighted average of 1.3 3 (1980Ha20) and 0.5 2 (1983Ra10).
2013.3 10	0.4 1	2679.4	$(0^+ \text{ to } 4^+)$	665.69	2^{+}	\vec{E}_{γ} : weighted average of 2013.0 10 (1980Ha20) and 2013.7 10 (1983Ra10).
			. ,			I_{y} : weighted average of 0.3 2 (1980Ha20) and 0.4 <i>I</i> (1983Ra10).
^x 2119.0 5	2.9 4					E_{γ} . I _y : from 1980Ha20 only.
2214.3 <i>3</i>	1.6 4	2879.92	(4^{+})	665.69	2+	E_{γ} : weighted average of 2214.8 5 (1980Ha20) and 2214.1 3 (1983Ra10).
						I_{y} : unweighted average of 1.9 3 (1980Ha20) and 1.2 2 (1983Ra10).

[†] From 1983Ra10, unless otherwise stated.

[‡] From the Adopted Gammas. Assignments from this study are given under comments, if available, based on ce data in 1983Ra10 normalized to $\alpha(K)=0.0019$ for 750 γ treated as E2.

[#] For absolute intensity per 100 decays, multiply by 0.988 3.

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 ∞

 $^{100}_{46}\mathrm{Pd}_{54}$

9

¹⁰⁰₄₆Pd₅₄