50 Cr(58 Ni,4p $\alpha\gamma$), 70 Zn(36 S,6n γ) 2001Pe05

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh and Jun Chen	NDS 172, 1 (2021)	31-Jan-2021				

2001Pe05 report data from two different measurements.

2001Pe05: ⁵⁰Cr(⁵⁸Ni,4p $\alpha\gamma$). E=261 MeV ⁵⁸Ni beam was produced from the tandem accelerator of the Niels Bohr Institute. Target was 96.8% enriched gold-backed ⁵⁰Cr. γ rays were detected with the NORDBALL detector array consisting of 15 BGO-shielded Ge detectors, 21 Δ E-type Si detectors, 11 liquid scintillators, and an inner ball of 30 BaF2 crystals. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$. Deduced levels, J, π , band structures, configurations, γ -ray multipolarities for levels up to 8303 level. Comparisons with shell-model calculations.

2001Pe05: ⁷⁰Zn(³⁶S,6n γ). E=130 MeV ³⁶S beam was produced from the Vivitron accelerator of IRes, Strasbourg. Target was two stacked 440 μ g/cm² thick self-supporting ⁷⁰Zn foils (70% enriched). γ -rays were detected with the EUROGAMM-II spectrometer consisting of 30 tapered coaxial and 24 clover Ge detectors, all in BGO Compton-suppression shields. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$ (DCO), $\gamma($ lin pol). Deduced levels, J, π , band structures, configurations, γ -ray multipolarities for level above 8303 level.

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	J ^{π‡}
0#	0^{+}	4053.95 [@] 18	9-	5918.44 ^b 21	14+	11211.0 3	22-
665.40 [#] 10	2+	4092.72 ^a 18	9-	6133.73 23		11527.9 <i>3</i>	
1416.00 [#] 15	4+	4145.81 20	10^{+}	6458.99 ^c 21	15+	11652.6 ^d 5	22^{+}
2054.58 ^{&} 18	(4 ⁻)	4634.92 ^{&} 20	(10 ⁻)	6704.51 [@] 21	15^{-}	11685.8 4	
2189.24 [#] 17	6+	4761.46 [#] 20	12^{+}	6938.40 [#] 22	16+	11820.9 [@] 3	23-
2469.71 20	6+	4779.61 23		7085.43 ^b 22	(16 ⁺)	12620.2? 4	(24-)
2505.27 ^a 17	5-	4863.37 [@] 18	11^{-}	7340.3 4		12879.0 <i>3</i>	
2987.91 [#] 18	8+	4926.04 ^b 21	12^{+}	7644.72 [@] 23	17^{-}	12945.7 <mark>°</mark> 6	(23 ⁺)
3021.61 ^{&} 17	(6 ⁻)	4946.4 ^{<i>a</i>} 3	11-	7970.40 24		13204.9 [@] 3	25-
3178.13 18	8+	5078.03 22	12^{+}	8303.41 [#] 24	(18^{+})	13438.5 7	
3231.19 ^a 17	7-	5452.53 ^c 21	13+	8715.92 [@] 24	19-	13503.8 ^d 6	(24^{+})
3439.70 21	8+	5573.3 4		9871.5 5		15014.9 ^e 6	(25^+)
3869.05 [#] 19	10^{+}	5669.21 [@] 20	13-	10103.9 [@] 3	21^{-}	16107.9 6	
3879.01 ^{&} 18	(8-)	5706.60 [#] 21	14+	10452.4 ^d 5	20^{+}		

¹⁰⁰Pd Levels

[†] From least-squares fit to $E\gamma$ data.

[‡] As proposed by 2001Pe05 based on $\gamma(\theta)$ and $\gamma(\text{lin pol})$ data and band assignments. The assignments in the Adopted Levels are the same, except that many are given in parentheses there due to lack of strong supporting arguments.

[#] Band(A): g.s band. The 18⁺ state probably corresponds to configuration= $\nu (d_{5/2}g_{7/2})^4 \otimes \pi g_{9/2}^{-2}$. The terminating state at 22⁺

will have a break-up of second pair of $g_{9/2}$ protons.

^(a) Band(B): Band based on 9⁻. The 25⁻ state probably corresponds to terminating state with configuration= $[\nu(d_{5/2}g_{7/2})^3h_{11/2}]\otimes \pi g_{9/2}^{-4}$.

[&] Band(C): Band based on $(4^{-}), \alpha = 0$.

- ^{*a*} Band(c): Band based on $(5^{-}), \alpha = 1$.
- ^b Band(D): Band based on $(12^+), \alpha = 0$.
- ^{*c*} Band(d): Band based on $(13^+), \alpha = 1$.
- ^d Band(E): Band based on 20⁺. The 24⁺ (terminating) state probably corresponds to configuration= $\nu(g_{7/2}^3 h_{11/2}) \otimes \pi(g_{9/2}^{-3} p_{1/2}^{-1}).$
- ^{*e*} Band(e): Band based on (23⁺). The (25⁺) (terminating) state probably corresponds to configuration= $v(g_{7/2}^2 d_{5/2} h_{11/2}) \otimes \pi(g_{9/2}^{-3} p_{1/2}^{-1}).$

50 Cr(58 Ni,4p $\alpha\gamma$), 70 Zn(36 S,6n γ) 2001Pe05 (continued)

$\gamma(^{100}\text{Pd})$

All γ -ray data up to 8303, (18⁺) level excluding γ (lin pol) are from the 50 Cr(58 Ni,4p $\alpha\gamma$) reaction and all γ -ray data above that plus all $\gamma(\text{lin pol})$ data are from the ⁷⁰Zn(³⁶S,6n γ) reaction (2001Pe05), unless otherwise noted..

 $R_{ang}=I\gamma(at 143^{\circ})/I\gamma(79^{\circ} \text{ or } 101^{\circ})$ from ⁵⁰Cr(⁵⁸Ni,4pa γ). A value of 1.5 indicates $\Delta J=2$, Q or $\Delta J=0$, dipole; and 0.8 for $\Delta J=1$, dipole. Values for mixed M1+E2 transitions can range from 0.3 to 1.8.

 $R_{DCO}=I\gamma(22^{\circ}+158\gamma, 90^{\circ} \text{ gate})/I\gamma(90^{\circ}, 22^{\circ}+159^{\circ} \text{ gate})$ are from ⁷⁰Zn(³⁶S,6n γ). A value of 1.00 is expected for $\Delta J=2$,

quadrupole, 0.70 for $\Delta J=1$, dipole and 1.14 for $\Delta J=0$, dipole when gated by a stretched quadrupole transition.

Positive value of pol indicates electric nature and negative value indicates magnetic nature for a stretched transition (2001Pe05), unless otherwise noted.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	Comments
190.3 <i>1</i>	16.1 7	3178.13	8+	2987.91	8+	M1 ^{&}	Mult.: assigned by 2001Pe05 based on pol=+1.4 10 for ΔJ =0.
200.2.2	1.2.1	2221 10		2021 (1		D	$R_{ang} = 1.44$ 7.
209.3 2	1.3 1	3231.19	7	3021.61	(6)	D	$R_{ang} = 0.89$ 19.
213.77	0.5 1	4092.72	9-	3879.01	(8 ⁻)		
254.1 1	0.3 1	5706.60	14-	5452.53	13*		
261.6 2	1.4 <i>I</i>	3439.70	8+	3178.13	8+	0	
276.6 2	3.2 2	4145.81	10^{+}	3869.05	10^{+}	DX	R _{ang} =1.47 14.
280.4 2	1.5 2	2469.71	6^{+}	2189.24	6^{+}	D ^{&}	$R_{ang} = 1.43 \ 20.$
311.4 4	0.3 1	4946.4	11-	4634.92	(10^{-})		
374.6 2	1.4 <i>1</i>	5452.53	13^{+}	5078.03	12^{+}	D	R _{ang} =0.78 17.
450.7 2	0.7 1	2505.27	5-	2054.58	(4 ⁻)	D	$R_{ang} = 0.77 \ 30.$
465.9 <i>1</i>	6.8 4	5918.44	14^{+}	5452.53	13+	M1	$R_{ang} = 0.68 \ 6. \ POL = -0.30 \ 34.$
479.4 <i>1</i>	5.8 2	6938.40	16+	6458.99	15+	M1	$R_{ang} = 0.63 \ 15. \ POL = -0.64 \ 59.$
516.3 <i>1</i>	1.6 2	3021.61	(6 ⁻)	2505.27	5-		-
526.5 1	1.3 <i>I</i>	5452.53	13+	4926.04	12^{+}		
540.5 1	1.3 <i>3</i>	6458.99	15^{+}	5918.44	14^{+}	D	R _{ang} =0.85 27.
542.2 2	0.6 1	4634.92	(10^{-})	4092.72	9-	(D)	R _{ang} =0.9 3.
558.1 [‡] 1	2.6 [‡] 4	13503.8	(24^{+})	12945.7	(23 ⁺)		
584.7 ^{‡#} 2	1.6 [‡] 4	13204.9	25^{-}	12620.2?	(24^{-})		
591.2 2	0.1 1	5669.21	13-	5078.03	12^{+}		
609.9 [‡] 1	6.5 [‡] 3	11820.9	23-	11211.0	22^{-}	D	R _{DCO} =0.52 6.
614.3 2	1.7 2	4053.95	9-	3439.70	8+	D	$R_{DCO} = 0.65 \ 12.$
615.8 <i>3</i>	0.4 1	4761.46	12+	4145.81	10^{+}		
626.4 [#] 2	1.0 3	7085.43	(16^{+})	6458.99	15^{+}		
626.9 <i>3</i>	0.4 1	5573.3		4946.4	11-		
633.8 1	1.3 3	4779.61		4145.81	10^{+}		
638.5 2	0.9 <i>3</i>	2054.58	(4 ⁻)	1416.00	4+		
647.8 <i>1</i>	0.8 1	3879.01	(8-)	3231.19	7-	D	R _{ang} =0.78 35.
665.4 <i>1</i>	100 7	665.40	2+	0	0^{+}	E2	$R_{ang} = 1.48 \ 8. \ POL = +0.73 \ 20.$
681.2 <i>1</i>	3.3 1	6133.73		5452.53	13+		-
691.2 2	8.7 5	5452.53	13+	4761.46	12^{+}	M1	$R_{ang}=0.70$ 6. POL= -0.7 4.
706.4 2	2.6 1	7644.72	17^{-}	6938.40	16+		-
717.5 1	2.3 1	4863.37	11-	4145.81	10^{+}		
726.0 1	8.7 8	3231.19	7-	2505.27	5-	Q	$R_{ang} = 1.55 \ 16.$
750.6 1	86 <i>6</i>	1416.00	4+	665.40	2+	E2	R _{ang} =1.44 3. POL=+0.61 19.
752.4 1	8.7 7	6458.99	15^{+}	5706.60	14^{+}		
755.9 [#] 1	0.2 1	4634.92	(10^{-})	3879.01	(8-)		
770.7 1	1.0 <i>I</i>	4863.37	11-	4092.72	9-	Q	R _{ang} =1.55 28.
773.2 1	66 5	2189.24	6+	1416.00	4+	E2	R _{ang} =1.47 3. POL=+0.56 27.
786.0 2	1.9 <i>1</i>	6704.51	15-	5918.44	14+		
798.6 <i>1</i>	53 4	2987.91	8+	2189.24	6+	E2	$R_{ang}=1.45$ 6. POL=+0.6 4.

Continued on next page (footnotes at end of table)

50 Cr(58 Ni,4p $\alpha\gamma$), 70 Zn(36 S,6n γ) **2001Pe05** (continued)

$\gamma(^{100}\text{Pd})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult.@	Comments
799.3 ^{‡#} 4	1.9 [‡] 7	12620.2?	(24^{-})	11820.9 23-		
805.8 <i>1</i>	35.5 16	5669.21	13-	4863.37 11-	E2	$R_{ang} = 1.41$ 5. POL=+1.0 4.
809.4 1	33.9 16	4863.37	11-	4053.95 9-	E2	$R_{ang} = 1.51 5. POL = +0.59 31.$
822.8 2	5.0 <i>3</i>	4053.95	9-	3231.19 7-	Q	$R_{ang} = 1.64 \ 15.$
853.7 2	1.6 2	4946.4	11-	4092.72 9-	Q	$R_{ang} = 1.66\ 27.$
857.4 [#] 1	0.2 1	3879.01	(8 ⁻)	3021.61 (6-))	
861.8 2	4.6 4	4092.72	9-	3231.19 7-	Q	$R_{ang} = 1.44 \ 10.$
875.91	27.4 13	4053.95	9 ⁻	31/8.13 8+	El	$R_{ang} = 0.77$ 4. POL=+0.96 19.
881.1 1	38 3	3869.05	10	2987.91 8	E2	$R_{ang} = 1.43$ 9. POL=+0.6 3.
892.4 I 007.0 2	23.0 10	4/01.40	12	3809.03 10 4761.46 12 ⁺	E2 D	$R_{ang} = 1.44 \ I2. \ POL = +0.98 \ 55.$
940 2 1	36.8.15	7644 72	$13 \\ 17^{-}$	4701.40 12 $6704 51 15^{-1}$	E2	$R_{ang} = 0.55$. $R_{ang} = 1.42.7$ POI = $\pm 1.0.3$
945.0.2	15 2 9	5706.60	14^{+}	4761.46 12+	E2 F2	$R_{ang} = 1.427.10 D = +1.05.$
967.0 1	0.1 1	3021.61	(6^{-})	2054.58 (4-)	(0)	$R_{ang} = 1.64$.
970.0 2	1.1 1	3439.70	8+	2469.71 6+	0 O	$R_{ang} = 1.5 4$
988.9 1	14.2 6	3178.13	8+	2189.24 6+	E2	$R_{ang} = 1.48 \ 12. \ POL = +1.1 \ 7.$
992.4 <i>1</i>	3.2 2	5918.44	14^{+}	4926.04 12+		mB
994.3 <i>1</i>	1.9 2	4863.37	11-	3869.05 10+		
997.9 <i>1</i>	0.6 1	6704.51	15-	5706.60 14+		
1006.5 1	1.3 1	6458.99	15^{+}	5452.53 13+		
1032.0 1	3.7 3	7970.40	1	6938.40 16+	50	D 146 10 DOL 0.01 35
1035.3 1	35.5 15	6704.51	15-	5669.21 13	E2	$R_{ang} = 1.46$ 19. POL=+0.81 35.
1042.0 1	1.4 2	3231.19	/ 6+	2189.24 6		
1055.8 2	2.0 5	2409.71 4026.04	0 12 ⁺	1410.00 4 3860.05 10 ⁺	0	P = -1.42.16
1065 5 2	185	4920.04	9 ⁻	2987 91 8+	Q	$R_{ang} = 1.42$ 10.
1003.52	$37.1^{\ddagger}.21$	8715.02	10-	7644 72 17-	F2	$P = -1.28.7$ $P_{P = 0.0} = 1.01.5$ $POI = +0.8.4$
1071.2 1	1099	2505 27	5-	$1416\ 00\ 4^+$	E2 F1	$R_{ang} = 1.26$ 7. $R_{DCO} = 1.01$ 5. $10L = \pm 0.8$ 4. $R_{ang} = 0.77$ 9. POL = ± 1.3 10
1009.5 T $1093 0^{\ddagger \#} 3$	$24^{\ddagger}6$	16107.9	5	15014.9 (25 ⁴	+)	Rang-0.77 7. 10L-11.5 10.
1107.1^{\ddagger} /	$9.7^{\ddagger}3$	11211.0	22-	$10103.9 \ 21^{-1}$	D	Rpco=0.66.6
$1155.6^{\ddagger}.4$	4 5 8	9871 5		8715.92 10-	2	
1156.7.3	2.0.3	5918.44	14+	4761.46 12+		
1167.0 <i>I</i>	2.6 3	7085.43	(16^{+})	5918.44 14+		
1200.3 [‡] 2	5.8 [‡] 8	11652.6	22+	10452.4 20+	Q	R _{DCO} =1.02 9.
1209.1 2	4.2 2	5078.03	12^{+}	3869.05 10+	Q	$R_{ang} = 1.52 \ 29.$
1231.8 <i>I</i>	4.8 2	6938.40	16^{+}	5706.60 14+	E2	$R_{ang} = 1.5 \ 4. \ POL = +1.0 \ 7.$
1293.0 [‡] 1	3.2 [‡] 3	12945.7	(23^{+})	11652.6 22+		
1351.0 ^{‡#} 1	2.3 [‡] 3	12879.0		11527.9		
1365.0 <i>1</i>	2.9 1	8303.41	(18^{+})	6938.40 16 ⁺		
1378.8 1	2.8 3	7085.43	(16^{+})	5706.60 14+	Q	$R_{ang} = 1.4 \ 4.$
1384.0+ 1	4.8+ 3	13204.9	25-	11820.9 23-	Q	R _{DCO} =1.06 <i>19</i> .
1388.0+ 1	24.2+ 14	10103.9	21-	8715.92 19-	E2	$R_{DCO}=0.91$ 6. POL=+1.2 5.
1421.83	3.4 12	/340.3		5918.44 14		
1424.0 ¹ <i>I</i>	2.9° 3	11527.9	(25^{+})	10103.9 21		D 0.52.16
1511.0 ⁺ 1	$3.3^{+}.5$	13014.9	(23.)	10102 0 21-) D	K _{DCO} =0.33 10.
1381.97 3	3.9 ⁺ 8	11083.8		10103.9 21		
1/16.9* 3	4.8 ⁺ 8	11820.9	23	10103.9 21	D ⁴	
1/36.5* 4	6.5 ⁺ 7	10452.4	20*	8715.92 19-	El	$R_{ang} = 0.65 \ 12. \ POL = +1.2 \ 11.$
1752.6+ 5	3.2+ 6	13438.5		11685.8		
1852.0+ 4	2.9 * 4	13503.8	(24^{+})	11652.6 22+		

Continued on next page (footnotes at end of table)

50 Cr(58 Ni,4p $\alpha\gamma$), 70 Zn(36 S,6n γ) 2001Pe05 (continued)

$\gamma(^{100}\text{Pd})$ (continued)

[†] From ${}^{50}Cr({}^{58}Ni,4p\alpha\gamma)$ reaction in 2001Pe05, unless otherwise noted.

[‡] From ⁷⁰Zn(³⁶S,6n γ) in 2001Pe05. I γ values given in table 2 of 2001Pe05 are renormalized to I γ (1071)=37.1 21 in ⁵⁰Cr(⁵⁸Ni,4p $\alpha\gamma$).

[#] γ not reported in other high-spin studies (2000ApZY,2001Zh26).

^(a) Deduced by evaluators based on $\gamma(\theta)$ and/or $\gamma(\ln \text{ pol})$ data of 2001Pe05. Explicit assignments are not given by 2001Pe05 for most of transitions. $\gamma(\theta)$ and/or $\gamma(\ln \text{ pol})$ data are consistent with $\Delta J=2$ for Mult=Q (E2 if polarization data are available) and with $\Delta J=1$ for Mult=D (E1 or M1 polarization data are available), unless otherwise noted.

& $\gamma(\theta)$ and/or $\gamma(\text{lin pol})$ data consistent with $\Delta J=0$, dipole or dipole+quadrupole.

 $^{100}_{46}\mathrm{Pd}_{54}$

6

 $^{100}_{46}\mathrm{Pd}_{54}\text{-}6$

$\frac{{}^{50}{\rm Cr}({}^{58}{\rm Ni},\!4p\alpha\gamma),{}^{70}{\rm Zn}({}^{36}{\rm S},\!6n\gamma) \qquad 2001{\rm Pe05}$

 $^{100}_{46}\mathrm{Pd}_{54}$

