¹⁰⁰Mo(t,³He) **1979Aj03**

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh and Jun Chen	NDS 172, 1 (2021)	31-Jan-2021	

1979Aj03: E(t)=23 MeV triton beam was produced from the LASL three-stage Van de Graaff facility. Target was 338 μ g/cm² self-supporting molybdenum (95.9% enriched in ¹⁰⁰Mo). Reaction products were momentum-analyzed with a Q3D magnetic spectrometer (FWHM \approx 25 keV).Measured $\sigma(\theta)$, θ =25°, 30°, 35°. Deduced levels, mass excess=-79480 keV 30 for ¹⁰⁰Nb from Q value.

2017Mi06: E(t)=115 MeV/nucleon beam produced in ${}^{9}Be({}^{16}O,X),E=115 \text{ MeV/nucleon}$ at NSCL, MSU, followed by separation of triton fragments using A1900 fragment separator. Reaction target= ${}^{100}Mo$ 10 mg/cm² thick. Measured and analyzed ${}^{3}\text{He}$ scattered particles using S-800 magnetic spectrograph, neutrons from excited ${}^{100}Nb$ states by plastic and scintillation detectors, (${}^{3}\text{He}$)n-coin, double-differential $\sigma(\theta)$. FWHM=500 keV. Multipole decomposition analysis (MDA) for L-transfers for two energy sections: 2.0 to 2.5 MeV, and 3.0-5.0 MeV. deduced B(GT)=0.04 *3* for excitations below 0.5 MeV, and 0.77 *15* for excitations up to 4 MeV. Deduced isovector spin giant monopole resonance (IVSGMR), and ${}^{3}\text{He}$ spectrum up to 20 MeV with L=0,1 and 2. Excitation and decay of the spin-isospin excitations. Comparison with pn-(R)QRPA and pn-RQTBA calculations.

¹⁰⁰Nb Levels

E(level) [†]	$d\sigma/d\Omega$ (µb/sr)	Comments	
0+x	0.090	E(level): the ground state in Table I of 1979Aj03, with $Q_0 = -6690 \ 30$ in (t, ³ He) seems to corresponds to 314 keV 23, which is the energy of the 2.99-s, (5 ⁺) isomer measured by 2007Ri01 and 2007Ha32 in precise mass measurements of g.s. and isomer of ¹⁰⁰ Nb. If x=314, then 314, 348, 521, and 735 populated in 12.4- μ s isomer decay match with 0+x, 25+x, 210+x and 410+x levels from (t, ³ He), respectively, as noted by 1999Ge01.	
25+x 10	0.093		
131+x 10	0.080		
210+x? ^{&} 15			
348+x 15	0.19		
410+x 15			
450+x [‡] 20			
520+x [‡] 20			
565+x 10			
595+x? [‡] 20			
680+x 20	0.28		
720+x? [#] 20			
784+x 20			
$820 + x^{+} 20$			
865+x ⁺ 20			
893+x 20			
945+x ⁺ 20			
$1040 + x^{+} 20$			
$1075 + x^{+} 20$			
$1136 + x^{\#} 20$			
$1180 + x^{\#} 25$			
1260+x [@] 30			
1300+x [@] 30			

[†] Many states are suggested from the observation of 23 groups in 1979Aj03, several of which are unresolved structures. Measured Q value= $-6690 \ 30$ for the lowest excitation energy was assigned to the g.s. by 1979Aj03. But this Q value disagrees with Q= $-6377 \ 6$ (deduced from mass differences in 2017Wa10). However it agrees better if the first level populated in (t,³He) is identified with the 2.99-s, (5⁺) isomer at 314 25 (2007Ri01). Mass excess=79480 keV 30 deduced by 1979Aj03 agrees well with

¹⁰⁰Mo(t,³He) **1979Aj03** (continued)

¹⁰⁰Nb Levels (continued)

measured mass excess= $-79488 \ 10 \ (2007Ha32)$ for the 2.99-s isomer of ¹⁰⁰Nb. For the ground state, 2007Ha32 measured mass excess of $-79802 \ 20 \ \text{keV}$. However, it remains unclear why a high-spin ((5⁺) isomer) would be preferentially populated in a charge-exchange reaction such as ¹⁰⁰Mo(t,³He) instead of the 1⁺ ground state or other known 1⁺ states through Gamow-Teller transitions.

[‡] Unresolved structure.

[#] Resolved at one angle only.

[@] Kinematically observable at one angle only.

& Observed at one angle only, but weak group of unresolved levels seen at all angles.