	Histo	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 172,1 (2021)	31-Jan-2021
$Q(\beta^{-})=-172.1 \ 14; \ S(n)=8294.2 \ 4; \ S(p)=$ $S(2n)=14219.7 \ 3, \ S(2p)=19484 \ 8, \ Q(2\beta^{-})=$	11147 12; $Q(\alpha) = -3179.1 \ 3$ 2)=3034.36 17 (2017Wa10).	2017Wa10	
Other reactions: Giant-dipole resonances, (γ, X) reactions:	1980St26, 1974Be33, 1974Ca0	5. (p,p') reaction at E	(p)=200 MeV (1982Dj04).
Additional information 1. Giant-quadrupole resonances, $^{100}Mo(\alpha, \alpha')$	'), ¹⁰⁰ Mo(³ He, ³ He'): 1976Yo02,	1978Mo10, 1979Mo	12. Resonance at 13.76 MeV with
Γ =5.2 MeV.			
Low energy octupole resonances, ¹⁰⁰ Mo((α, α') : 1978Mo10.		
100 Mo(20 Ne,F) E=146 MeV: 1984Na12.			
100 Mo(58 Ni, 58 Ni) E=137.5 MeV: 1995Re	e06 , measured $\sigma(\theta)$.		
¹⁰⁰ Mo(³² S, ³² S): 1995He17, measured cro	oss section.		
¹⁰⁰ Mo(¹⁴ C, ¹⁴ C') E=71 MeV: 1982Ma30,	$\sigma(\theta)$ for g.s. and first 2 ⁺ .		
¹⁰⁰ Mo(¹² C, ¹² C') E=48 MeV: 1981Vi01,	1980Lo01.		
¹⁰⁰ Mo(e,e') E=120, 200, 274 MeV: 1975	Dr06, charge radii and charge d	istributions deduced.	Other: 1972EhZZ.
¹⁰⁰ Mo(t,t) E=12 MeV: 2006Ch64, measu	red $\sigma(\theta)$, deduced optical model	parameters.	
Mesic atoms, ${}^{100}Mo(\mu^-,X)$: 1978Du21, 1	980Sc01. Theory: 1980Ba56, 19	976Le08.	
Antiprotonic atoms, ¹⁰⁰ Mo(antiproton,x):	1999Sc35, 1994Ha51, 1986Ka0	08, 1985K102.	
Isotope-shift measurements: 1986Ol03, 1	985Go10, 1984Br09, 1978Au05		
Mass measurements: 2015Gu09, 2012Ka	13, 2008Ra09, 2006Jo14, 2004k	642, 1963Bi12, 1963	Ri07.

Measurements of half-life of $\beta\beta$ decay of ¹⁰⁰Mo:

T_{1/2}(2νββ)(to ¹⁰⁰Ru g.s.): 7.12×10¹⁸ y +2*1*−17 (2020Ar09, CUPID-Mo, Modane, earlier value of 6.90×10¹⁸ y *15*(stat) 37(syst) in 2017Ar18); 6.81×10¹⁸ y *I*(stat) +38−40(syst) (2019Ar04, earlier value: 7.17×10¹⁸ y *I*(stat) 54(syst) in 2011F106, NEMO-3, also 2006Ar01,2005Ar27,2005Sa07, 2005Si06, 2004Ar29); 7.15×10¹⁸ y 37(stat) 66(syst) (2014Ca46, NIIC, Russia); 2.1×10¹⁸ y 3 (2004Hi19, geochemical); 7.6×10¹⁸ y +22−*14* (1997Al02); 11.5×10¹⁸ y +30−20 (1991Ej05,1996Ej04, 1991Ej02); 9.5×10¹⁸ y 4 (stat) *9* (syst) (1995Da37, NEMO-2); 11.6×10¹⁸ y +34−8 (1991E104, also 1987E113); 0.33×10¹⁹ y +20−*10* (1990Va10). A small contribution of ≈1% to total half-life is made by T_{1/2}(2νββ)(to 1130,0⁺ level in ¹⁰⁰Ru)=7.5×10²⁰ y 6(stat) 6(syst) (2014Ar08); 6.9×10²⁰ y +10−8(stat) 7(syst) (2010Be34); 5.7×10²⁰ y +15−12 (2007Ar02); 6.0×10²⁰ y +20−13 (2009Ki04,2006Ho17,2006Ba35); 6.1×10²⁰ y +18−11 (1995Ba29). Decay modes of 2*ν*ββ to other excited states in ¹⁰⁰Ru, and 0*ν*ββ modes make almost no contributions.

T_{1/2}(0ν,ββ to g.s.): >2.6×10²² y (2017Ar18); >1.1×10²⁴ y (2014Ar08,2011Ba55,NEMO-3, 90% εL; also >1.0×10²⁴ y in 2012Si23 and 2011Fl06), >4.6×10²³ y (2005Ar27,NEMO-3); >5.5×10²² y (2002Fu05,2001Ej03,ELEGANT-5); >4.9×10²¹ y (2001As06, 2001As05); >2.2×10²² y (1997Al02); >5.2×10²² y (1996Ej04); >1.2×10²² y (1995Da37).

 $T_{1/2}(0\nu,\beta\beta,$ Majorana neutrino to g.s.)>5.4×10²¹ y (1996Ej04,1991Ej02), >7.5×10²⁰ y (1995Da37).

Planned $T_{1/2}(0\nu,\beta\beta)$ experiment: CROSS collaboration at Canfranc Underground Laboratory described in a review article by 2020Ce04, and by I.C. Bandac et al., Jour. High Energy Physics 1, 18 (2020).

 $T_{1/2}(0\nu,\beta\beta,Majorana neutrino emission)>2.7\times10^{27}$ y (2006Ar01).

 $T_{1/2}(2\nu+0\nu,\beta\beta$ to 539,2⁺ level)>25×10²⁰ y (2014Ar08).

T_{1/2}(2ν,ββ to 539.5,2⁺ level)>11×10²⁰ y (2007Ar02) (90% confidence limit); >16×10²⁰ y (1995Ba29); >5×10²⁰ y (1992Bl06). T_{1/2}(0ν,ββ to 539.5,2⁺ level)>1.6×10²³ y (2007Ar02) (90% confidence limit); >1.1×10²¹ y (1995Da37).

 $T_{1/2}(2\nu,\beta\beta$ to 1130,0⁺ level)=7.5×10²⁰ y 6(stat) 6(syst) (2014Ar08).

 $T_{1/2}(2\nu+0\nu,\beta\beta$ to 1130,0⁺ level)=6.9×10²⁰ y +10-8(stat) 7(syst) (2010Be34).

 $T_{1/2}(0\nu+2\nu)=6.0\times10^{20}$ y +20-13 (2009Ki04,2006Ho17) for decay to the 1130, 0⁺ state. The statistical uncertainty of +1.9-1.1 and systematic uncertainty of 0.6 have been combined in quadrature. Earlier value from the same group= 5.9×10^{20} y +18-13 in 2001De17.

 $T_{1/2}(2\nu,\beta\beta$ to 1130,0⁺ level)=5.7×10²⁰ y +15-12 (2007Ar02) (90% confidence limit); 6.1×10²⁰ y +18-11 (1995Ba29);

>12×10²⁰ y (1992B106).

 $T_{1/2}(0\nu,\beta\beta$ to 1130,0⁺ level)>8.9×10²² y (2007Ar02) (90% confidence limit); >1.7×10²¹ y (1995Da37).

$$\begin{split} &T_{1/2}(2\nu+0\nu,\beta\beta \text{ to } 1362,2^+ \text{ level}) > 108 \times 10^{20} \text{ y } (2014 \text{Ar08}). \\ &T_{1/2}(\beta\beta) > 44 \times 10^{20} \text{ y at } 90\% \text{ confidence level for decay to } 1362.2 \text{ keV } 2^+ \text{ level } (2009 \text{Ki}04,2006 \text{Ho}17). \\ &T_{1/2}(2\nu,\beta\beta \text{ to } 1362,2^+ \text{ level}) > 13 \times 10^{20} \text{ y } (1995 \text{Ba}29); > 6 \times 10^{20} \text{ y } (1992 \text{Bl}06). \end{split}$$

$$\begin{split} T_{1/2}(2\nu+0\nu,\beta\beta \mbox{ to } 1741,0^+ \mbox{ level}) > 40 \times 10^{20} \mbox{ y } (2014\mbox{Ar08}). \\ T_{1/2}(\beta\beta) > 48 \times 10^{20} \mbox{ y at } 90\% \mbox{ confidence level for decay to } 1741.0 \mbox{ keV } 0^+ \mbox{ level } (2009\mbox{Ki04},2006\mbox{Ho17}). \\ T_{1/2}(2\nu,\beta\beta \mbox{ to } 1741,0^+ \mbox{ level}) > 13 \times 10^{20} \mbox{ y } (1995\mbox{Ba29}). \end{split}$$

 $T_{1/2}(2\nu+0\nu,\beta\beta$ to 1865,2⁺ level)>49×10²⁰ y (2014Ar08).

 $T_{1/2}(2\nu+0\nu,\beta\beta$ to 2051,0⁺ level)>43×10²⁰ y (2014Ar08). $T_{1/2}(\beta\beta)>38\times10^{20}$ y at 90% confidence level for decay to 2051.7 keV 0⁺ level (2009Ki04,2006Ho17).

 $T_{1/2}(\beta\beta) > 40 \times 10^{20}$ y at 90% confidence level for decay to 2387.2 keV 0⁺ level (2009Ki04,2006Ho17).

Measurements of $\beta\beta$ decay of ¹⁰⁰Mo: 2020Ar09, 2019Ar04, 2017Ar18, 2014Ar05, 2014Ar08, 2014Ca46, 2012Si23, 2011Ba55, 2011Fl06, 2010Be34, 2010Si06, 2009Da25, 2009Ki04, 2009KoZY, 2008KoZV, 2007Ar02, 2006Ho17, 2006Ba35, 2006Ar01 (also 2005Ar27,2005Ba01,2005Ba33,2005Sa07,2005Si06, 2004Ar29,2004Ba27,2004Ba97,2004Ko61,2003Ba22,2003Oh07,2002As05, 2002Ba52,2001As05,2001As06,2001Va34,2000Ar16,1999As01,1999As09, 1999Bb18,1999Bb19,1999Pi08,1999Sa02,1998As04); 2004Hi19 (geochemical method); 2002Fu05 (also 2002Ej05,2001Ej01, 2001Ej03,2000Ej01,2000Ku21,1998Ku09,1997Ej01); 2001Be19 (also 2000Be57); 1997Al02 (also 1993Al11,1989Al20), 1996Ej04 (also 1996Ej06, 1992Ku18,1991Ej05,1991Ej02,1988Ok01), 1995Ba29 (also 1996Bb02,1990Ba63,1990Ba52), 1995Da37 (also 1994La42,1992Bl06), 1991El04 (also 1987El13), 1990Va10. Others: 1997De40, 1993Ko28, 1984Fi16 (also 1982Be20), 1983Zd01, 1955Wi33, 1954Se93, 1952Fr23.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 342 primary references, 136 dealing with nuclear structure calculations and 206 with double-beta decay nuclear matrix elements and half-life for 100 Mo 2 β decay.

¹⁰⁰Mo Levels

Cross Reference (XREF) Flags

		A B C D E F	¹⁰⁰ Nb β ⁻ decay (1.4 s) ¹⁰⁰ Nb β ⁻ decay (2.99 s) ¹⁰⁰ Tc ε decay (15.65 s) ⁹ Be(¹⁰⁹ Tc,xγ) ⁹⁶ Zr(⁷ Li,p2nγ) ⁹⁸ Mo(t,p),(t,pγ)	G H J K L	100 Mo(γ, γ') 100 Mo(n,n') 100 Mo(n,n' γ) 100 Mo(p,p') 100 Mo(α, α') 100 Mo(d,d')	M N O P Q R	Coulomb excitation ${}^{100}Mo({}^{136}Xe,X\gamma)$ ${}^{102}Ru({}^{14}C,{}^{16}O)$ ${}^{104}Ru(d,{}^{6}Li)$ ${}^{110}Pd({}^{86}Kr,X\gamma)$ ${}^{168}Er({}^{30}Si,X\gamma)$
E(level)	$J^{\pi \#}$	T _{1/2} ‡	XREF				Comments
0.0 ⁹	0+	7.01×10 ¹⁸ y +2.	<i>I-17</i> ABCDEFGHIJKLMN	OPQR	$%2β^-=100$ J ^π : measurem T _{1/2} : T _{1/2} =7. g.s. obtaine (2020Ar09, y 40 in 201 (2019Ar04, NEMO-3, s 7.15×10 ¹⁸ (2001As06,	ent by 01×10 cd from 7Ar13 earlie see als y 76 (Gram	y optical method (1951Ar29). p^{18} y +21-17 for $2\nu\beta\beta$ decay to 100 Ru m weighted average of 7.05×10^{18} y +21-17 PID-Mo, Modane, earlier value of 6.90×10^{18} 8); 6.81×10^{18} y 1(stat) +38-40(syst) er value of 7.17×10^{18} y 54 in 2011F106, so previous papers e.g. 2005Ar27); (2014Ca46, NIIC, Russia); 7.2×10^{18} y 20 a Sasso, see also 2002As05,2001As05 and

¹⁰⁰Mo Levels (continued)

E(level) [†]	J π #	T _{1/2} ‡	XREF	Comments
				previous papers); 7.6×10 ¹⁸ y 26 (1997Al02, Silver mine at Osburn, Idaho); 6.82×10 ¹⁸ y 86 (1997De40, Valve house, Hoover Dam, USA; note that value listed in 2015Ba11 evaluation from 1997De40 is for ¹⁵⁰ Nd 2 <i>νββ</i> decay, not for ¹⁰⁰ Mo). Half-life in 2015Ba11 evaluation is: 7.1×10 ¹⁸ y 4, where some of the original values taken from literature seemed erroneous. About 1% 2 <i>νββ</i> decay is found to proceed to the 1130, 0 ⁺ level in ¹⁰⁰ Ru with weighted averaged partial T _{1/2} =6.9×10 ²⁰ y 9, obtained from 7.5×10 ²⁰ y 9 (2014Ar08, NEMO-3); 6.9×10 ²⁰ y 12 (2010Be34, ARMONIA, Gran Sasso); 6.0×10 ²⁰ y +20-13 (2009Ki04, TUNL, ITEP); 6.1×10 ²⁰ y +18-11 (1995Ba29, Soudan mine, Minnesota). Value is 6.7×10 ²⁰ y +5-4 in 2015Ba11 evaluation which included somewhat different set of measurements. Note that in all cases, evaluators combined statistical and systematic uncertainties in quadrature. Decays to other excited states of ¹⁰⁰ Ru make almost no contribution, as suggested by recent measurements by 2014Ar08 (NEMO-3) and 2009Ki04 (TUNL, ITEP). Additional information 2. Evaluated rms charge radius <r<sup>2>^{1/2}=4.4468 fm 25 (2013An02). Evaluated δr^2(¹⁰⁰Mo,⁹²Mo)=+1.177 fm² 1 (2013An02). Measured <math>\delta < r^2 > (100Mo,92Mo)=+1.139 fm2 39 (2009Ch09); uncertaintyis systematic. Laser spectroscopy technique at JYFL.Measured Isotope shift(100Mo,92Mo)=-2645 MHz 33 (2009Ch09); totaluncertainty is given; statistical uncertainty is 1. Laser spectroscopytechnique at JYFL.$\delta < r^2 > (96Mo - 100Mo) = -0.525 fm2 6 (1985Go10).$ From experimental studies of one-neutron removal reactions (d,p), (p,d), (³He,<i>α</i>) and proton removing reaction (³He,d) on ¹⁰⁰Mo target, 2017Fr08 deduced following values of neutron and proton vacancies in the g.s. of ¹⁰⁰Mo: 0.33 2 for v2s_{1/2}, 3.40 7 for v1d, 2.48 19 for v0g_{7/2}, 1.89 13 for v0h_{11/2}, 1.49 7 for π1p, 0.47 2 for π0f_{5/2} and 5.94 30 for π0g_{9/2} orbitals, with a total vacancy of 8.09 29 for neutrons and 7.89 31 for protons, compared with expected value</math></r<sup>
535.59 ^b 4	2+	12.4 ps <i>3</i>	AB DEFGHIJKLMNOPQR	μ =+0.94 7 (2001Ma17,2014StZZ) Q=-0.25 7 (2011Wr01,2016St14) J ^π : L(t,p)=L(p,p')=L(α,α')=2 from 0 ⁺ . T _{1/2} : weighted average of 13.6 ps 7 (recoil-distance Doppler-shift method in Coul. ex.,1975Bo39), and half-lives of 12.56 ps 22 (1976Pa13), 12.2 ps 6 (1972Ba90), 10.5 ps 12 (1962Ga13), 10.2 ps 16 (1962Er05), 10.5 ps 11 (1958St32) and 9.7 ps 15 (1956Te26), deduced from respective B(E2)↑ values determined in the measurement of Coulomb excitation yields. Others: 13.9 ps 4, deduced by evaluators from B(E2) in 2012Wr03, where 13.6 ps 7 (1975Bo39) was used as input data in their GOSIA analysis of Coul. Ex. data; 10.3 ps +51-35 (DSAM in ⁹ Be(¹⁰⁹ Tc,Xγ), 2017Ra05); 16 ps 5 (2013RuZX, γγ(t) fast-timing technique in study of prompt γ rays from neutron-induced fission of actinides). 2016Pr01 evaluation gives T _{1/2} =12.1 ps 5, from the same original data as here but using ≈5% uncertainty in the value given by 1976Pa13. μ : from g-factor=+0.471 33, value adopted by 2001Ma17 from weighted average of g=+0.515 42 (transient-field technique,2001Ma17) and g=+0.404 52 (original g=+0.43 6 from 1978HaYJ re-evaluated by 2001Ma17 for consistent field parameters). Other: 0.34 18 (IMPAC

¹⁰⁰Mo Levels (continued)

E(level) [†]	$J^{\pi #}$	T _{1/2} ‡	XREF	Comments
695.13 ^e 4	0+	1.62 ns 4	AB FGHIJ LM P	method, 1969He11, using $T_{1/2}(536 \text{ level})=10.3 \text{ ps } 10$. Q: reorientation effect in Coul. ex. Other measurements: -0.39 8 or -0.13 8 (1977Na06); -0.42 9 or $-0.10 9 (1976Pa13)$. $\beta_2=0.20 \text{ (from } (p,p') \text{ and } (\alpha,\alpha'))$. $J^{\pi}: L(t,p)=L(p,p')=L(d,d')=0 \text{ from } 0^+; \text{ E0 transition to } 0^+.$ $T_{1/2}:$ weighted average of 1.58 ns $4 (\beta\gamma\gamma(t) \text{ in } \beta \text{ decay of } 1.5\text{ s}$ $^{100}\text{Nb}, 1990\text{Ma01}$, 1.65 ns $4 (\beta\gamma(t) \text{ quoted by } 1990\text{Ma01}$ from a later report of 19890hZY), 1.7 ns 2 (p ce(t) in (p,p' γ) 1972AnZP, 2.2 ns 3 (B(E2) in Coul. ex., 1972Ba90). Others: 1.52 ns +5-8, deduced by evaluators from B(E2) in 2012Wr03, where 1.580 ns 40 (1990\text{Ma01}) was used as input data in their GOSIA analysis of Coul. Ex. data; 1.53 ns 30 (2013RuZX, $\gamma\gamma(t)$) fast-timing technique in study of prompt γ rays from neutron-induced fission of actinides). Value of 3.0 ns 1 from (proton)(ce)(t) in (p,t) (1987Es01) seems discrepant.
1063.82 ^d 4	2+	6.6 ps <i>6</i>	AB FGHIJKLM R	$\begin{aligned} J^{\pi}: \ L(t,p) = L(p,p') = L(\alpha,\alpha') = 2 \ \text{from } 0^+. \\ T_{1/2}: \ \text{others: } 5.0 \ \text{ps } 5 \ \text{from } B(E2) \ \text{value from } 1972Ba90 \ \text{in Coul.} \\ \text{ex.; } 5.3 \ \text{ps } +3-4, \ \text{deduced by evaluators from } B(E2) \ (\text{from } 536,2^+ \\ \text{level}) \ \text{in } 2012Wr03, \ \text{where } 6.45 \ \text{ps } 58 \ (1985Mu09) \ \text{was used as} \\ \text{input data in their } \text{GOSIA analysis of Coul. ex. data.} \\ \beta_2 = 0.037 \ (\text{from } (p,p') \ \text{and } (\alpha,\alpha')). \end{aligned}$
1136.02 ^{<i>p</i>} 4	4+	3.8 ps <i>3</i>	AB DEF HIJKLMN QR	J ^π : L(t,p)=L(p,p')=4 from 0 ⁺ . T _{1/2} : others: 4.9 ps +19–14 (DSAM in ⁹ Be(¹⁰⁹ Tc,Xγ), 2017Ra05); 3.67 ps +12–16, deduced by evaluators from B(E2) (from 536,2 ⁺ level) in 2012Wr03, where 3.83 ps 34 (1985Mu09) was used as input data in their GOSIA analysis of Coul. ex. data. β_4 =-0.027 (from (p,p')). B(E4)(W.u.)=0.99 21 (from (p,p') and (d d') 1992Pi08).
1463.93 ^e 5	2+	2.9 ps 7	AB FGHIJ LM	J^{π} : L(t,p)=L(p,p')=2 from 0 ⁺ . $T_{1/2}$: other: 2.25 ps +9–10, deduced by evaluators from B(E2) (from 695, 0 ⁺ level) in 2012Wr03, where 2.93 ps 68 (1985Mu09) was used as input data in their GOSLA evaluates of Coult or data
1504.66 6	0+		A F IJ L	EXAMPLE 1 Substituting the second strain term second strain the second strain term second stra
1607.37 ^d 5	(3+)		AB IJ L R	XREF: J(?) J^{π} : 471.4 γ to 4 ⁺ , 543.6 γ to 2 ⁺ , and no γ to 0 ⁺ suggests 3, 4 ⁺ .
1766.52 11	(2+)		hIJ l	Absence in Coul. ex. and systematics support 3^+ . XREF: h(1770)J(1770)l(1768) J ^{π} : L(p,p')=(2); possible γ to 0 ⁺ . In (n,n' γ), 1997Ko62 propose (0 ⁺) based on the comparison of experimental and calculated populations of this state. In that case level in (p,p') must be different and possible α to 0 ⁺ will not exist
1771.44 5	(4+)	2.5 ps 4	B hI 1M	 XREF: h(1770)I(1768) J^π: γs to 2⁺, 4⁺ and population in Coul. ex., probably through a two-step process from 2⁺ and 4⁺ states. T_{1/2}: other: 1.78 ps +17-19, deduced by evaluators from B(E2) in Coul. Ex.(from 1064,2⁺ level) in 2012Wr03, where 2.45 ps 41 (1985Mu09) was used as input data in their GOSIA analysis.
1847.17 ^b 8	6 ^{+<i>a</i>}	1.20 ps <i>17</i>	BE IJ MN QR	XREF: I(?) T _{1/2} : other: 1.21 ps +9-8, deduced by evaluators from B(E2) (from 1136,4 ⁺ level) in 2012Wr03, where 1.20 ps 17 (1985Mu09) was used as input data in their GOSIA analysis of Could are data.
1908.19 ^C 6	3-	14 ps 3	F HIJKLM P R	J^{π} : L(p,p')=L(α,α')=3 from 0 ⁺ .

¹⁰⁰Mo Levels (continued)

E(level) [†]	$J^{\pi \#}$		XREF		Comments
					B(E3)=0.143 12 (2002Ki06, evaluation).
					$T_{1/2}$: weighted average of 12 ps 3 (RDDS in Coul. ex.) and 20 ps 5 (B(E3)
					values in Coul. ex.). 2012Wr03 in Coul. Ex. used 12.0 ps 30 (1985Mu09) in
					their GOSIA analysis to deduce several matrix elements.
1077 24 7	$(1, 2^{+})$		C T		$\beta_3=0.17$ ((p,p') and (α, α')).
1977.34 7	$(1,2^{+})$	A	GI		XKEF: $G(2)$
					J. 1201.87 to 0, 1 Tayofed by 1997 Rooz using comparison of experimental and calculated yields in $(n n'x)$ reaction
2037 60 17	0^{+}	Α	FG TIKL		$XREF \cdot E(2035)G(2033)I(2)I(2040)$
2037.00 17	0		10 1510		I^{π} : $\gamma\gamma(\theta)$ in ¹⁰⁰ Nb β^{-} (1.5 s): L(t p)=0
2042.78 7	$(2)^{+}$		G IJ		XREF: $G(2040)J(2046)$
					J^{π} : L(p,p')=2 from 0 ⁺ ; 2042.9 γ to 0 ⁺ .
2082 10			FHJ		XREF: F(2082)H(2100)J(2070?)
					E(level): This group may correspond to the 2087 level but $L(t,p)=(0,1)$ and
					L(p,p')=(3,5) are mutually inconsistent as well as inconsistent with
					$J^{\pi}(2086)=0^+$. If L-transfers are correct, there are two levels near 2082 in
					addition to the 2086 level. $L(t,p)=(0)$ could correspond to 2086, 0^+ level. In (n,n'), $J^{\pi}=2^+$ is deduced.
2086.33 15	0^{+}	Α	I		J ^{π} : $\gamma\gamma(\theta)$ in ¹⁰⁰ Nb β^{-} (1.5 s). Parity from RUL. See also J^{π} comment for
					2082 level.
2103.13 9	4+	В	F IJKL		XREF: K(2121)
					J^{π} : L(p,p')=L(α, α')=4 from 0 ⁺ .
2156 2	1^{-}		JL		J^{n} : L(p,p')=L(d,d')=1 from 0 ⁺ .
2189.56 15	$(0^+, 1, 2)$	Α	± ljk		XREF: $f(2186)I(?)J(2192?)$
2201.22 11	(2 ⁻)		f IJkL		$J^{*:}$ 1125.8 γ and 1653.9 γ to 2 [*] ; β feeding (log $f = 3.8$) from 1 [*] parent. XREF: f(2186)J(2200)
					J^{π} : $\sigma(\theta)$ in (p,p') and (d,d'), but L(t,p)=2 for a group at 2186.
2286.47 17	2+		FIJL		J^{π} : L(t,p)=L(p,p')=2 from 0 ⁺ .
2289.5 4	$(4,5^{+})$	В		R	J^{π} : 682.1 γ to (3 ⁺); log <i>ft</i> =6.3 from (5) ⁺ .
2310 2	6+		JL		J^{n} : L(p,p')=L(d,d')=6 from 0 ⁺ .
2310.12 ^{<i>a</i>} 20	(4+)	В			J^{π} : log $ft=5.9$ from (5) ⁺ ; 1246.4 γ to 2 ⁺ .
2320.3 3	$(0^+, 1, 2)$	Α	F		XREF: F(2312)
2220 8 C /	$(\overline{r}-)$		F 11 3771	0.0	J [*] : 856.3 γ and 1257.0 γ to 2'; β feeding (log <i>ft</i> =5.8) from 1' parent.
2559.8 4	(5)		F H JKL	QK	AKEF: $F(2534)H(2530)K(2530)$ $I^{\pi}: I(n n') = 5$ But $I(n n') = 2$ is also reported. Also $I(n n') = 2$
					J . $L(p,p) = 3$. But $L(p,p) = 2$ is also reported. Also $L(u,u) = 2$. E(level): The partially resolved group in (t p) at 2334 with $I = 0$ may be a
					different level
2369.68 11	3-		FIJL		J^{π} : L(t,p)=L(p,p')=3.
2397.0 3	(1^{-})		F IJKL		XREF: F(2392)I(?)K(2384)
					E(level): from particle transfer reactions.
					J ^{π} : from L(p,p')=(1). However, L(t,p)=2 and L(α, α')=5 are inconsistent with
					this assignments. It is possible that there are different levels near this energy.
2416.58 22	(4^{+})	В	F IJKL		J^{π} : log ft=5.4 from (5) ⁺ ; γ to 2 ⁺ . Also L(p,p')=L(d,d')=(4). But L(α, α')=3
					and L(p,p')=3 in one of the studies suggest 3 ⁻ also. $(1280\gamma)(600\gamma)(\theta)$
					measurement in ¹⁰⁰ Nb β^{-} decay (2.99 s) gives unrealistic δ (M2/E1)<-0.28
2422.2	1-		717		for $J^{*}(2416)=3$. There may be two closely spaced levels near this energy.
2432 2	1		JK		AKEF: K(2444) $I^{\pi}: I(n n') = 1$
2464 20	<i>A</i> +		v		J : L(p,p) = 1. $I^{\pi} : I(\alpha, \alpha') = A$
2514 5	(4^+)		f II.		XREF: f(2518)
	(.)				J^{π} : L(p,p')=4. Other: L(t,p)=2 for a group at 2518 15. probably a doublet.
2527 5	(2^{+})		f JL		XREF: f(2518)
					J^{π} : L(p,p')=(2). Other: L(t,p)=2 for a group at 2518 15, probably a doublet.
2564.20 14	$(4)^{+}$	В	F IJKL		J^{π} : log <i>ft</i> =5.2 from (5) ⁺ ; L(p,p')=4, assuming the levels populated in (p,p') at 2563 5 and in β^- decay are the same.

¹⁰⁰Mo Levels (continued)

E(level) [†]	$J^{\pi \#}$	$T_{1/2}$ ‡		XREF			Comments
2580.89 22	$(1,2^+)$				I		J^{π} : 1886.0 γ to 0 ⁺ .
2607 5	$(4^+, 5^-)$			F	JKL	Р	XREF: F(2602)P(2600)
							J^{π} : L(α, α')=L(d, ^o Li)=L(t,p)=4. Although L(t,p)=5,6 also reported (1981Fl06) and L(p,p')=5.
2627.5 ^b 5	8+ <i>a</i>	0.58 ps 9		Ε	MN	QR	$T_{1/2}$: from B(E2) = 0.34 5 (1985Mu09) in Coul. ex.
2628 5	(2 ⁺)				JL		J^{π} : L(p,p')=(2).
2632.4 3	$(1)^{\alpha}$	0.51 ps 10	-	G			
2652.87 21	$(4^+, 5^+)$ (1^-)		В	F	זאר		J [*] : log $ft=5.5$ from (5) ⁺ ; γ s to 4 ⁺ and (3 ⁺).
2039 3	(1)			r	JKL		E(level): unresolved in (t,p). This level may correspond to 2663 from (n n'a)
							J^{π} : in (p,p'), 1987Fr07 assign 4 ⁻ , treating this as an unnatural
							parity state. But L(t,p)=2 for a 2652 group is in disagreement.
					-		Also, $L(\alpha, \alpha') = (4,5)$. $L(p,p') = 1$.
2662.6? 3					1		
2738.02 22	(2^{+})			F	IK	Р	XREF: K(2707)P(2730)
							J^{π} : L(t,p)=2; however, L(d, ⁶ Li)=(4) is inconsistent.
2747 5	4+				JL		J^{π} : L(p,p')=4.
2791.3 5	(A^{\pm})				זער	R	J^{π} : 944.1 γ to (6 ⁺).
2807 3	(4.)			г	JKL		I^{π} . $L(t n) = L(\alpha \alpha') = (4)$
2822.21 11	2+				IJ L		XREF: I(?)
							J^{π} : L(p,p')=2.
2838 5				F	JK	Р	XREF: $F(2835)J(?)K(2852)P(2830)$ $\pi \cdot I_{(2,2)} = 4 \cdot I_{(2,2)} + I_{(2,2)} $
							J^{-1} : $L(\alpha, \alpha') = 4$, $L(1, p) = (4)$ suggest (4 ⁻¹), but $L(p, p') = (5)$ suggests
2843.2 [°] 4	(7^{-})					OR	J^{π} : γ s to (5^{-}) and (6^{+}) .
2858 5	(3-)			F	JKL		XREF: F(2873)K(2869)
	.+						J^{π} : L(p,p')=3. But L(α, α')=(2) suggests (2 ⁺).
2901 5	4+				JK		XREF: K(2882) I^{π} , I (α, α') = 4
2901.05.10	(1) &	0.32 ps 4		C			$J : L(u, u) \rightarrow f$
2905 75 10	$(1)^{(1)}$	0.32 ps 4		G			
2924 5	4+	0.57 p5 7		Ŭ	JL		J^{π} : L(p,p')=4.
2928.7 5	(7-)					R	J^{π} : γ from (9 ⁻) and to (5 ⁻).
2934.8 10	(4^{+})		Α	F	J		XREF: F(2923)
2961.2 <i>3</i>	2+				IJ L		$J^{*}: L(t,p)=(4); L(p,p^{*})=4.$ But $L(p,p^{*})=(3)$ is also reported. XREF: I(?)
2070 1 4	4 +		٨	F	ти		J'': L(p,p')=2.
2970.14	+		А	r	IK		J^{π} : L(α, α')=4.
2984 5	(6+)				JL		J^{π} : L(p,p')=(6).
2996.31 <i>21</i>	$(4^+, 3^-)$				Ij l		XREF: I(?)
							J ^{\prime} : L(p,p ^{\prime})=4 suggests 4 ⁺ for 2996 or 3004. But L(p,p ^{\prime})=3 is also
3004.4 10	$(4^+, 3^-)$		А	F	Ii l		XREF: F(2994)I(?)
					5		J^{π} : L(p,p')=4 suggests 4 ⁺ for 2996 or 3004. But L(p,p')=3 is also
							reported.
3021 5	(4+)				JK		XREF: K(3029) $I^{\pi_{1}}$ L ($\alpha \alpha'$)=(6) suggests (6 ⁺) but L ($\alpha \alpha'$)=(4)
3039.4 10	(4^{+})		A	F	к		J = L(a,a) = (0) suggests (0) but $L(p,p) = (4)$. XREF: $F(3039)K(3041)$
	· /				- T		J^{π} : $L(\alpha, \alpha') = 4$.
3041 5	(5 ⁻)				JL		J^{π} : L(p,p')=5.

¹⁰⁰Mo Levels (continued)

E(level) [†]	J π #	$T_{1/2}^{\ddagger}$	Х	REF		Comments
3042.2? 6				I		E(level): possible γ to 2 ⁺ suggests that this level is different from 3041, (5 ⁻).
3053.70 <i>21</i> 3062.60 <i>25</i>	$(\leq 4)^{@}$ (0 ⁺ ,1,2)	0 207 10	f A f	I		XREF: I(?) J^{π} : 2527 γ to 2 ⁺ ; β feeding (log <i>ft</i> =5.8) from 1 ⁺ parent.
3068 <i>5</i> 3070.2 <i>4</i> 3085 5	$(1)^{+}$ (5^{-}) $(0^{+},1,2)$ (4^{+})	0.207 ps 19	A F	J L		J^{π} : L(p,p')=5. J^{π} : 2535 γ to 2 ⁺ ; β feeding (log <i>ft</i> =5.7) from 1 ⁺ parent. XREF: F(3106)K(3085)
3112 5	(3 ⁻)		F	JKL		J^{π} : L(p,p')=4 but L(α , α')=5. XREF: F(3119)K(3114)
3129.6 <i>4</i> 3140 <i>5</i> 3143 0 8	$(0^+, 1, 2)$ (1^-)		A	JL	D	J^{π} : L(p,p')=3. J^{π} : 1666 γ to 2 ⁺ ; β feeding (log <i>ft</i> =6.1) from 1 ⁺ parent. J^{π} : L(p,p')=1.
3154 5	(3 ⁻)		F	JKL	K	XREF: $F(3148)K(3153)$ J^{π} : $L(p,p')=3$.
3172 5	(3 ⁻)			JL		E(level): multiplet in (t,p). J^{π} : L(p,p')=3. E(level): multiplet in (t,p).
3190 5	(4 ⁺)			JKL		XREF: K(3196) J^{π} : L(α, α')=L(p,p')=4.
3198.4 <i>4</i> 3217 <i>5</i> 3237 <i>5</i>	$(1)^{\&}$ (1^{-}) (3^{-})	0.23 ps 4	G F	J JKL		J^{π} : L(p,p')=1. XREF: F(3235)K(3216)
3242.76 <i>10</i> 3265 <i>5</i> 3282 <i>5</i>	$1^{\&}$ (3 ⁻) (3 ⁻)	0.138 ps 7	G F	J L JKL		$J : L(\alpha, \alpha') = 3.$ $J^{\pi}: L(p,p') = 3.$ XREF: F(3263)K(3276)
3290.27 <i>9</i> 3294 <i>5</i>	$1^{(+)}$ & (2 ⁺)	43 fs 6	G F	JL		J ^{π} : L(p,p')=3 but L(α, α')=(5) suggests (5 ⁻). J ^{π} : parity from Alaga rule (2006Ru06). XREF: F(3282)
3299.2 ^c 6 3311 5 3324 5	(9 ⁻)		F	JL	R	J^{π} : L(p,p')=2. J^{π} : γ to (7 ⁻).
3342.06 <i>10</i> 3354 <i>15</i>	$(1)^{\&}$ (2^+)	0.175 ps 20	G F	JL		J^{π} : L(t,p)=2.
3367.0 ^b 8 3376 5 3406 5	$(10^+)^a$ (3 ⁻) (4 ⁺)		E F	N J JKL	QR	J^{π} : L(p,p')=3. XREF: F(3409)K(3398)
3437 <i>5</i> 3448 <i>5</i>	(5 ⁻) (0 ⁺)		F	J J L		J^{n} : L(p,p')=L(α, α')=4. J^{π} : L(p,p')=5. XREF: F(3445) J^{π} : L(p,p')=(0).
3468 5 3479 5	(2^+) (2^+)		F	J L J L		J^{π} : L(p,p')=2. XREF: F(3475) J^{π} : L(p,p')=2.
3483.82 7 3529 5 3537 5	$(1^+)^{\&}$ (3 ⁻) (2 ⁺)	8.3 fs 8	G	J J L		J^{π} : parity from Alaga rule (2006Ru06). J^{π} : L(p,p')=3. J^{π} : L(p,p')=2.
3557 5 3557 15	(3 ⁻) (2 ⁺)		F F	JL		XREF: F(3535) J^{π} : L(p,p')=3. E(level), J^{π} : partially resolved. L(t,p)=2 for one component.

E(level) [†]	J ^{π#}	T _{1/2} ‡	X	REF		Comments
3570.77 10	(1) ^{&}	18.9 fs 15	G			
3586 5 3595 5	(3-)			J L J L		J^{π} : L(p,p')=3.
3599.87 20	(1) &	0.18 ps 3	G			
3606 5	(4^{+})		F	JKL		XREF: F(3587)K(3603) I^{π} : L($\alpha \alpha'$)=3 and L(t p)=(3): but L(p p')=(4)
3615.57 20	1 &	56 fs 6	G			$\mathcal{L}(\mathbf{x},\mathbf{x}) = \mathcal{L}(\mathbf{x},\mathbf{p}) (\mathbf{y},\mathbf{y}) (\mathbf{y},$
3626.5 5	(4+,5,6)		В	JL		J ^π : 1779γ to 6 ⁺ ; β feeding (log <i>ft</i> =5.8) from (5) ⁺ .
3627.3 <i>3</i> 3647.3 6	$(1)^{\circ}$ (5^{-})	32 fs 3	G B F	JL		XREF: J(3652)L(3652)
	()					J^{π} : L(p,p')=5; γ to 6 ⁺ , assuming that the levels in (p,p') and in β^- decay are the same.
3658.96 22	$1^{(+)}$	18 fs 3	G	11/1		J^{π} : parity from Alaga rule (2006Ru06).
3082 3	(5)		F	JKL		J^{π} : L(α, α')=5.
3718 5	(4^+)			J		J^{π} : L(p,p')=4.
3743 5	(3) (4^+)			JL		$J^{*}: L(p,p) = 3.$ $J^{\pi}: L(p,p') = 4.$
3747 5	(5 ⁻)		_	JL		J^{π} : L(p,p')=5.
3773 5	(3-)		F	JL		XREF: $F(37/1)$ I^{π} : L(n n')=3 but L(t n)=5.6
3783.5 9					R	
3797 5	(4^+) (4^+)			J		$J^{\pi}: L(p,p')=4.$ $J^{\pi}: L(p,p')=(4)$
3823 5	(5^{-})			JL		$J^{\pi}: L(p,p') = (5).$
3887.98 <i>10</i> 3894 <i>5</i>	1&		G	JL		
3896.68 10	(1)&		G			
3915 5 3925 5	(2^{+})			JL		J^{π} : L(p,p')=(2).
3925.98 10	(1) ^{&}		G			
3947 5 4026 5	(3^{-})			JL		I^{π} . I (n n')=(3)
4032.7 [°] 8	(11^{-})			5 2	R	$J^{\pi}: \gamma \text{ to } (9^{-}).$
4043 5	(4 ⁺)			JL		J^{π} : L(p,p')=(4).
4062.6 ⁰ 9	$(12^+)^a$		E	N	QR	
4081.59 10	1&		G			
4158.5 5	(3^{-})		G	L		J^{π} : L(d,d')=3.
4205 5	(2+)			JL		J^{π} : L(p,p')=(2).
4217.60 10	12		G			
4232.10 20	(1) ^{X}		G	1 1		
4243 5	(3-)			L		J^{π} : L(d,d')=3.
4329.90 20	1 ^{&}		G			
4516.81 10	1 ^{&}		G			
4565.51 10	1 ^X		G			
4583.11 10	1 ^α		G			
4594.91 10	1&		G			
4089.02 10	1~		G			

E(level) [†]	$J^{\pi #}$	XREF	Comments
4730.32 20	1 &	G	
4875.2 ^b 10	$(14^{+})^{a}$	N OR	
4939.8 [°] 9	(13 ⁻)	R	J^{π} : 907.1 γ to (11 ⁻).
4989.63 20	1 &	G	
5007.33 20	1 &	G	
5034.54 20	1&	G	
5062.9 <i>3</i>	(2) ^{&}	G	
5071.24 20	(1) &	G	
5101.3 6	1&	G	
5109.3 9	(1) ^{&}	G	
5136.04 10	(1) ^{&}	G	
5158.3 <i>3</i>	1&	G	
5169.6 <i>3</i>	1&	G	
5181.8 <i>3</i>	1 &	G	
5186.9 15	1	G	
5190.4 5	1&	G	
5204.6 4	(1)	G	
5216.0 8	(1)	G	
5271.2 6	1&	G	
5277.6 <i>3</i>	1	G	
5310.5 4	1	G	
5335.65 20	1	G	
5347.85 10	1	G	
5359.8 <i>3</i>	1	G	
5369.6 6	1	G	
5382.5 10	1	G	
5390.3 6	1	G	
5402.26 10	1	G	
5412.6 8	1	G	
5435.5 6	1	G	
5442.9 6	100	G	
5449.6 6	(1) ^{X}	G	
5502.7 4	1	G	
5519.4 4	100	G	
5532.2 5	1	G	
5547.9 <i>3</i>	1	G	
5554.4 11	100	G	
5584.9 4	12	G	
5596.8 7	100	G	
5604.7 12	100	G	
5612.67 10	100	G	
5618.6 3	100	G	
5656.5 5	(2) ^{x}	G	

E(level) [†]	J ^{π#}	XREF	
5670.67 10	1 &	G	
5680.9 7	(1) ^{&}	G	
5686.5 5	1&	G	
5715.9 <i>3</i>	1 &	G	
5725.3 <i>3</i>	1 &	G	
5732.9 <i>3</i>	1 &	G	
5742.6 7	1 &	G	
5764.0 15	(1) ^{&}	G	
5770.4 4	1 &	G	
5798.2 <i>3</i>	1&	G	
5808.98 10	1&	G	
5826.5 6	(2) &	G	
5840.2 ^b 15	(16 ⁺) ^{<i>a</i>}		N R
5840.7 6	1 &	G	
5879.39 20	1 &	G	
5901.0 6	1 &	G	
5947.79 20	1 &	G	
5957.2 6	1 &	G	
5964.0 6	1 &	G	
5972.99 20	1 &	G	
5988.9 <i>4</i>	1 &	G	
6009.6 4	1 &	G	
6019.5 <i>11</i>	(1) &	G	
6035.5 8	1 &	G	
6061.3 9	(2) ^{&}	G	
6065.9 7	1 &	G	
6082.9 <i>3</i>	1 &	G	
6089.3 4	1&	G	
6122.5 5	1 &	G	
6133.6 7	1 &	G	
6147.1 9	1 &	G	
6174.0 5	1&	G	
6194.51 <i>10</i>	(1) ^{&}	G	
6249.4 5	1 &	G	
6257.61 20	1 &	G	
6270.5 8	1&	G	
6278.71 10	1 &	G	
6293.1 4	1 &	G	
6310.3 <i>15</i>	(1)&	G	
6321.2 9	1 &	G	
6327.6 9	1 &	G	
6337.5 4	1 ^{&}	G	

E(level) [†]	J ^{π#}	$T_{1/2}^{\ddagger}$	XREF	
6354.32 20	1 &		G	
6365.6 19	(1) ^{&}		G	
6375.6 5	1&		G	
6402.0 8	1&		G	
6414.3 <i>4</i>	1 &		G	
6419.4 <i>18</i>	1- &	9 fs 6	G	
6421.4 6	1 &		G	
6426.6 9	(1) ^{&}		G	
6434.1 5	1 &		G	
6459.0 6	1 &		G	
6473.5 6	1 &		G	
6483.2 20	(1) ^{&}		G	
6497.6 6	1 &		G	
6518.5 <i>13</i>	1 ^{-&}	2.5 fs 14	G	
6519.1 5	1 &		G	
6526.6 <i>3</i>	1 &		G	
6570.2 4	1 &		G	
6597.0 <i>4</i>	(2) ^{&}		G	
6622.3 4	(1) ^{&}		G	
6628.3 5	(2) ^{&}		G	
6641.0 <i>3</i>	1 &		G	
6658.2 4	1 &		G	
6669.14 20	1 &		G	
6685.3 4	1 &		G	
6764.1 8	1 &		G	
6772.7 8	1 &		G	
6790.6 10	1 &		G	
6797.5 9	(1) ^{&}		G	
6807.9 10	(2) ^{&}		G	
6829.5 <i>3</i>	(1) ^{&}		G	
6844.6 11	(2) ^{&}		G	
6851.3 15	1 &		G	
6870.0 8	(1) ^{&}		G	
6886.5 8	1 &		G	
6893.2 4	1 &		G	
6906.1 <i>6</i>	1 &		G	
6912.9 <i>11</i>	(1) ^{&}		G	
6919.5 <i>13</i>	1 &		G	
6924.9 10	(1) ^{&}		G	
6934.2 12	(1) &		G	
6949.2 ^b 18	(18 ⁺) ^{<i>a</i>}		Ν	
6949.9 <i>11</i>	1 &		G	

E(level) [†]	J ^{π#}	$T_{1/2}^{\ddagger}$	XREF
6957.7 11	$(2)^{\&}$		G
6974.2 8	1&		G
6981.1 <i>12</i>	(2) ^{&}		G
6994.5 5	(2) ^{&}		G
7001.2 5	1 &		G
7018.3 6	1 &		G
7032.1 5	1&		G
7037.8 10	(1) ^{&}		G
7060.2 11	1 &		G
7068.1 <i>3</i>	1 &		G
7095.4 5	1 &		G
7103.5 7	(1) ^{&}		G
7115.3 3	1 &		G
7136.6 5	1 &		G
7171.7 7	(1) ^{&}		G
7181.5 9	(1) ^{&}		G
7194.4 3	1 &		G
7204.0 7	1 &		G
7219.4 9	(2) ^{&}		G
7225.4 13	(1) ^{&}		G
7299.6 5	1 &		G
7312.3 3	1 &		G
7330.8 <i>3</i>	1 &		G
7357.7 6	1 &		G
7380.3 7	(1) ^{&}		G
7403.3 8	1 &		G
7450.6 10	1 &		G
7471.0 4	1 &		G
7487.2 7	1 &		G
7494.8 11	(1)&		G
7503.5 12	(2) ^{&}		G
7526.1 6	1 &		G
7546.3 20	1 &		G
7559.1 15	(1) ^{&}		G
7577.2 9	1 &		G
7606.9 4	1 &		G
7638.6 10	1- &	3.3 fs 9	G
7744.5 8	1 &		G
7758.4 10	(1) &		G
7771.5 12	1 &		G
7796.9 14	1 &		G
7831.2 8	1&		G

Adopted Levels, Gammas (continued)

¹⁰⁰Mo Levels (continued)

E(level) [†]	J ^{π#}	T _{1/2} ‡	XREF	Comments
7863.1 7	(1)&		G	
7875.4 6	1 &		G	
7887.2 10	1&		G	
7935.7 10	1 &		G	
7955.7 6	1 &		G	
7988.0 7	1&		G	
8002.0 6	1&		G	
8033.5.8	1&		G	
8052.2.6	1&		G	
8063.7.9	1&		G	
8083.3.16	1 1&		G	
8005.0 11	1 1&		G	
8108 1 12	1 1&		G	
8108.172 $8114.2^{b}.20$	$(20^{+})^{a}$		U N	
8114.2 20	(20)		C N	
8127.7 10	1 &		G	
8194.4 9	1 &		G	
8208.8 0	(1)		G	
8218.2 0	(1) ~		G	
8238.6 9	1&		G	
8257.1 14	1		G	
8269.6 6			G	
8283.6 6			G	
8294.5 13	(1) ^{x}		G	
$13.0 \times 10^{-5} 3$	1-	11.6 MeV <i>12</i>	K	J ^{<i>x</i>} : isoscalar giant-dipole resonance (ISGDR). %E1 EWSR=18 3 for ISGDR in (α, α') (2015Yo04).
$13.2 \times 10^3 4$	0^{+}	2.6 MeV 6	К	J ^{π} : isoscalar giant-monopole resonance (ISGMR). %E0 EWSR=32 4 for ISGMR in (α , α') (2020Ho11).
13.60×10 ³ 26	2+	4.75 MeV 38	K	J^{π} : isoscalar giant-quadrupole resonance (ISGQR). %E2 EWSR=79 14 for ISGOR in (α, α') (2015Yo04).
$16.8 \times 10^3 4$	0^+	2.5 MeV 5	К	β^{π} : isoscalar giant-monopole resonance (ISGMR). %E0 EWSR=60 3 for ISGMR in ($\alpha \alpha'$) (2020Hol1).
21.5×10 ³ 4	3-	3.7 MeV 3	K	J^{π} : isoscalar giant-octupole resonance (ISGOR). %E3 EWSR=53 7 for ISGOR in (α, α') (2015Yo04)
30.1×10 ³ 7	1-	12.5 MeV 38	K	J^{π} : isoscalar giant-dipole resonance (ISGDR). %E1 EWSR=47 10 for ISGDR in (α, α') (2015Yo04).

[†] From least-squares fit to $E\gamma$ data, for levels seen in γ -ray studies. In other cases weighted averages of available values.

[‡] For excited states, values are from recoil-distance Doppler-shift (RDDS) method and/or B(E2) values determined from excitation yields in Coulomb excitation unless otherwise stated. For levels populated in (γ, γ') , level half-lives are deduced (by evaluators) from total widths given in different experiments.

Above~3 MeV excitation, the assignments are generally from L(p,p'), L(d,d') or $L(\alpha,\alpha')$. These assignments are given in parentheses due to tentative level associations (in different reactions) and some possibility of S=1 transfer in (p,p') and (d,d') at higher excitation energies.

[@] γ to 2⁺.

& Dipole γ to g.s. from $\gamma(\theta)$ measurements in (γ, γ') . Also in (γ, γ') nuclear resonance fluorescence reaction from 0^+ g.s., main

¹⁰⁰Mo Levels (continued)

population is expected via dipole (E1 or M1) transitions to J=1 states, through scissors mode (for M1) and pygmy dipole resonances (for E1).

- ^{*a*} Member of g.s. band from γ cascade in (⁷Li,p2n γ), ¹⁰⁰Mo(¹³⁶Xe,X γ), ¹¹⁰Pd(⁸⁶Kr,X γ) and ¹⁶⁸Er(³⁰Si,X γ).
- ^b Band(A): $J^{\pi}=0^+$ band. Backbend at 10^+ .
- ^{*c*} Band(B): 3^{-} octupole band.
- ^{*d*} Band(C): Possible $K^{\pi}=2^+$, γ band.
- ^{*e*} Band(D): Possible $K^{\pi}=0^+$ band.

					A	dopted Levels,	Gammas (continued	1)
						<u> </u>	¹⁰⁰ Mo)		
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult.	δ	$\alpha^{\boldsymbol{b}}$	$I_{(\gamma+ce)}$	Comments
535.59	2+	535.61 6	100	0.0 0+	E2		0.004		B(E2)(W.u.)=37.6 9 E _γ : unweighted average 535.666 <i>14</i> from ¹⁰⁰ Nb β ⁻ decay and 535.547 <i>13</i> from (n,n'γ). Others: 535.3 5 in (t,pγ), 535.6 5 in (³⁰ Si,Xγ), 536 <i>1</i> in (¹³⁶ Xe,Xγ). Mult.: Δ J=2, Q from $\gamma(\theta)$ in (n,n'γ); M2 ruled out by RUL.
695.13	0+	159.547 <i>13</i>	100 <i>I</i>	535.59 2+	E2		0.223		B(E2)(W.u.)=89 3 E _y : from (n,n' γ). Others: 159.5 <i>1</i> in ¹⁰⁰ Nb β^- decay, 159.1 5 in (t,p γ). I _y : from Coulomb excitation. Mult.: ΔJ^{π} and T _{1/2} (level) are consistent with only E2, not M2.
		695.1		0.0 0+	EO			15 2	E _γ : from level energy difference. Transition observed only in ce data. I _(γ+ce) : deduced from Ice(K)(695γ)/Ice(K)(159γ)=0.63 8 (unweighted average of 0.62 5 and 0.76 5 from (p,p'γ), and 0.50 3 from (t,pγ)). q_{K}^{2} (E0/E2)=0.61 10, X(E0/E2)=0.014 2, ρ^{2} (E0)=0.036 6 (2005Ki02, evaluation). B(E0)(Wilkinson units)=0.17 2.
1063.82	2+	369.1 1	1.76 20	695.13 0+	[E2]		0.0122		B(E2)(W.u.)=5.7 +14-11 E _{γ} : weighted average of 368.6 5 from ¹⁰⁰ Nb β^- decay (1.5 s) and 369.1 <i>I</i> from (n,n' γ). I _{γ} : weighted average of 1.4 <i>3</i> from ¹⁰⁰ Nb β^- decay (1.5 s), 2.01 2 <i>I</i> from (n,n' γ), and 1.70 20 from Coulomb excitation.
		528.248 18	100.0 <i>16</i>	535.59 2+	E2+M1	+4.4 +15-9	0.004		B(E2)(W.u.)=52 7; B(M1)(W.u.)=0.0008 +6-4 E _γ : weighted average of 528.263 <i>18</i> from ¹⁰⁰ Nb β ⁻ decay (1.5 s), 528.263 <i>18</i> from ¹⁰⁰ Nb β ⁻ decay (2.99 s), 528.4 5 from (t,p), 528.21 2 from (n,n'γ), and 528.4 5 from (³⁰ Si,Xγ). I _γ : from (n,n'γ). Others: 100.0 20 from Coul. ex., 100.0 22 from ¹⁰⁰ Nb β ⁻ decay (1.5 s), 100 <i>13</i> from ¹⁰⁰ Nb β ⁻ decay (2.99 s). Mult.: from γγ(θ) in ¹⁰⁰ Nb β ⁻ decay, γ(θ) in (n,n'γ); M2 ruled out by RUL. δ: from γγ(θ) in ¹⁰⁰ Nb β ⁻ decay (1.5 s). Other: +3.4 4 from γ(θ) in (n,n'γ).
		1063.78 5	38.0 4	$0.0 0^+$	E2				B(E2)(W.u.)=0.62 6

 $^{100}_{42}\mathrm{Mo}_{58}$ -15

	Adopted Levels, Gammas (continued)											
						<u>)</u>	v(¹⁰⁰ Mo) (co	ontinued)				
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	δ	$\alpha^{\boldsymbol{b}}$	Comments				
	_							E _γ : weighted average of 1063.7 <i>I</i> from ¹⁰⁰ Nb β ⁻ decay (1.5 s), 1063.7 <i>2</i> from ¹⁰⁰ Nb β ⁻ decay (2.99 s), 1064.1 <i>I</i> from (γ,γ'), 1063.76 <i>3</i> from (n,n'γ), and 1064 <i>I</i> from (³⁰ Si,Xγ). I _γ : weighted average of 36.3 22 from ¹⁰⁰ Nb β ⁻ decay (1.5 s), 42 <i>9</i> from ¹⁰⁰ Nb β ⁻ decay (2.99 s), 38.1 <i>4</i> from (n,n'γ), 58 25 from (³⁰ Si,Xγ), and 38.0 <i>10</i> from Coulomb excitation.				
1126.02	4+	(00.40.2	100	525.50 2+			0.002	Mult.: Q from $\gamma(\theta)$ in $(n, n'\gamma)$ and $\gamma\gamma(\theta)$ in ¹⁰⁰ Nb β^- decay (1.5 s); M2 ruled out by RUL.				
1136.02	4.	600.40 2	100	535.59 2	(E2)		0.003	B(E2)(W.U.)=69 δ E _γ : weighted average of 600.5 <i>I</i> from ¹⁰⁰ Nb β ⁻ decay (1.5 s), 600.5 <i>I</i> from ¹⁰⁰ Nb β ⁻ decay (2.99 s), and 600.39 2 from (n,n'γ). Others: 599.8 5 from (t,p), 601 <i>I</i> from (136 Xe,Xγ), and 600.3 5 from (30 Si,Xγ).				
1463.93	2+	327 1	3.5 15	1136.02 4+	[E2]		0.0181 4	Mult.: from $\Gamma_{1/2}(\text{level})$, ΔJ^{*} and ROL. B(E2)(W.u.)=36 +34-20 E _{γ} : from ¹⁰⁰ Nb β^{-} decay (1.5 s).				
		400.17 9	5.2 7	1063.82 2+				E_{γ} : from (n,n' γ). Other: 400 <i>I</i> from ¹⁰⁰ Nb β^- decay (1.5 s). I_{γ} : weighted average of 5 <i>3</i> from ¹⁰⁰ Nb β^- decay (1.5 s), 4.9 7 from I_{γ} : I_{γ} :				
		768.77 3	100.0 <i>10</i>	695.13 0+	E2			B(E2)(W.u.)=15 +5-3 E _γ : weighted average of 768.7 <i>1</i> from ¹⁰⁰ Nb β ⁻ decay (1.5 s), 768.8 2 from ¹⁰⁰ Nb β ⁻ decay (2.99 s), and 768.77 <i>3</i> from (n,n'γ). I _γ : from Coulomb excitation. Other: 100.0 <i>13</i> from (n,n'γ), 100 9 from ¹⁰⁰ Nb β ⁻ decay (1.5 s).				
		928.34 <i>3</i>	72.9 9	535.59 2+	M1+E2	-0.27 2		 Mult.: Q from γ(θ) in (n,n'γ) and γγ(θ) in ¹⁰⁰Nb β⁻ decay (1.5 s); M2 ruled out by RUL. B(M1)(W.u.)=0.0036 +13-8; B(E2)(W.u.)=0.28 +15-9 E_γ: weighted average of 928.3 <i>I</i> from ¹⁰⁰Nb β⁻ decay (1.5 s), 928.4 2 from ¹⁰⁰Nb β⁻ decay (2.99 s), and 928.34 <i>3</i> from (n,n'γ). I_γ: weighted average of 74 <i>3</i> from ¹⁰⁰Nb β⁻ decay (1.5 s), 71 <i>8</i> from ¹⁰⁰Nb β⁻ decay (2.99 s), 72.8 <i>9</i> from (n,n'γ), and 73.0 <i>10</i> from Coulomb excitation 				
1504.66	0^{+}	440.84 5	37 4	1063.82 2+				Mult., δ : from $\gamma\gamma(\theta)^{100}$ Nb β^- decay (1.5 s) and RUL. Other: -0.36 7 from $\gamma(\theta)$ in (n,n' γ). E_{γ} : weighted average of 440.9 <i>I</i> from ¹⁰⁰ Nb β^- decay (1.5 s) and 440.83 5 from (n,n' γ). I_{γ} : unweighted average of 41.2 <i>I9</i> from ¹⁰⁰ Nb β^- decay (1.5 s) and 33.6 2 <i>I</i> from (n n' γ).				
		969.07 7	100 8	535.59 2+	(E2)			E_{γ} : weighted average of 969.1 <i>I</i> from ¹⁰⁰ Nb β^- decay (1.5 s) and 969.06				

 $^{100}_{42}\mathrm{Mo}_{58}$ -16

L

						А	dopted Levels, Gammas (continued)
							γ ⁽¹⁰⁰ Mo) (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π} 1	Mult.	Comments
1607.37	(3+)	471.37 9	17 2	1136.02	4+		7 from $(n,n'\gamma)$. Mult.: $\gamma\gamma(\theta)$ in ¹⁰⁰ Nb β^- decay (1.5 s), ΔJ^{π} and RUL ($\beta\gamma$ coin in ¹⁰⁰ Nb β^- decay (1.5 s) suggests 1504.6 level has T _{1/2} <50 ns). E _{γ} : weighted average of 471 <i>I</i> from ¹⁰⁰ Nb β^- decay (1.5 s), 471.2 <i>3</i> from ¹⁰⁰ Nb β^- decay (2.99 s), and 471.39 9 from $(n,n'\gamma)$.
		543.58 8	100 7	1063.82	2+		I _γ : weighted average of 23 <i>14</i> from ¹⁰⁰ Nb β ⁻ decay (1.5 s), 18 7 from ¹⁰⁰ Nb β ⁻ decay (2.99 s), and 16.8 20 from (n,n'γ). E _γ : weighted average of 543.4 2 from ¹⁰⁰ Nb β ⁻ decay (1.5 s), 543.2 2 from ¹⁰⁰ Nb β ⁻ decay (2.99 s), 543.62 6 from (n,n'γ), and 544.1 5 from (³⁰ Si,Xγ). L _γ : from ¹⁰⁰ Nb β ⁻ decay (1.5 s). Others: 100.8 from (n n'γ), 100.15 from ¹⁰⁰ Nb β ⁻ decay
		1071.77 [°] 3	74 1	535.59	2+		(2.99 s). E_{γ} : weighted average of 1071.6 2 from ¹⁰⁰ Nb β^- decay (1.5 s) and 1071.77 3 from (n,n' γ). Others: 1071.6 3 from ¹⁰⁰ Nb β^- decay (2.99 s) and 1071.9 5 from ($^{30}Si_{,}X\gamma$). I_{γ} : weighted average of 69 13 from ¹⁰⁰ Nb β^- decay (2.99 s), 74.0 12 from (n,n' γ), and 52 16 from ($^{30}Si_{,}X\gamma$); the transition mainly deexcites the 1607 level. Other: 116 19 from ¹⁰⁰ Nb β^-
1766.52	(2 ⁺)	702.7 1	100	1063.82	2+		decay (1.5 s) is in disagreement. E_{γ} : from (n,n' γ).
		1071.77 ^{ca} 3		695.13	0^{+}		E_{γ} : from $(n,n'\gamma)$.
1771.44	(4+)	635.31 4	55 3	1136.02	4+		E_{γ} : from (n,n'γ). Other: 635.4 <i>3</i> from ¹⁰⁰ Nb β ⁻ decay (2.99 s). I _γ : weighted average of 53 8 from ¹⁰⁰ Nb β ⁻ decay (2.99 s), 55 <i>3</i> from (n,n'γ), and 55 <i>3</i> from Coulomb excitation.
		707.68 3	100 2	1063.82	2+ ((E2)	B(E2)(W.u.)=30 +7-5 E _{γ} : weighted average of 707.5 2 from ¹⁰⁰ Nb β^- decay (2.99 s) and 707.68 3 from (n,n' γ). I _{γ} : from (n,n' γ) and Coulomb excitation. Other: 100 <i>14</i> from ¹⁰⁰ Nb β^- decay (2.99 s). Mult.: from T _{1/2} (level), ΔJ^{π} and RUL.
1847.17	6+	711.15 6	100	1136.02	4+ ((E2)	B(E2)(W.u.)=94 +16-12 E _γ : weighted average of 711.0 2 from ¹⁰⁰ Nb β ⁻ decay (2.99 s), 711.16 6 from (n,n'γ), 711 1 from (¹³⁶ Xe,Xγ), and 711.1 5 from (³⁰ Si,Xγ). Mult from T _{1/2} Λ J ^π and BUL
1908.19	3-	844.37 4	100.0 10	1063.82	2+	[E1]	B(E1)(W.u.)= $2.5 \times 10^{-5} + 8 - 5$ E_{γ} : from (n,n' γ). Other: 844.5 5 from (³⁰ Si,X γ).
		1372.1 7	46 4	535.59	2+	[E1]	I_{γ} : from Coulomb excitation. Others: 100 14 from (~S1,X\gamma), \approx 100 in (n,n γ). B(E1)(W.u.)=2.7×10 ⁻⁶ +10-6 E _{γ} : unweighted average of 1372.73 4 from (n,n' γ) and 1371.4 5 from (³⁰ Si,X γ).
		1908.2 5	4.6 10	0.0	0+ [[E3]	I _{γ} : from Coulomb excitation. Other: 20 6 in ¹⁶⁸ Er(³⁰ Si,X γ), 36.1 15 from (n,n' γ). B(E3)(W.u.)=48 +29-18 E _{γ} : from (n,n' γ). I _{γ} : from Coulomb excitation. Other: 3.6 7 from (n,n' γ).

From ENSDF

 $^{100}_{42}\mathrm{Mo}_{58}\text{--}17$

17

 $^{100}_{42}\mathrm{Mo}_{58}$ -17

γ (¹⁰⁰Mo) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	$\alpha^{\boldsymbol{b}}$	Comments
1977.34	(1.2^{+})	513.2 [‡] 2	74 19	1463.93	2+			
	(-,-)	913.70 9	79 4	1063.82	2+			E_{γ} : weighted average of 913.2 5 from ¹⁰⁰ Nb β ⁻ decay (1.5 s) and 913.72 9 from (n,n'γ).
		1001 0		<0 	0.±			I_{γ} : from (n,n' γ). Other: 70 30 from ¹⁰⁰ Nb β^- decay (1.5 s).
		1281.8 5	52 15	695.13	0^+			
		1441.6/ /	100 5	535.59	21			E_{γ} : weighted average of 1441.5 2 from ¹⁰⁰ Nb β decay (1.5 s) and 1441.69 / from (n, γ y).
2027 (0	0+	572 ct 2	(())	1462.02	2+			I_{γ} : from (n,n' γ). Other: 100 22 from ¹⁰⁰ Nb β decay (1.5 s).
2037.60	01	5/3.6# 2	6.6 9	1463.93	2+	$(\mathbf{F}\mathbf{a})$		
		1502.2 3	100 /	535.59	2.	(E2)		E_{γ} : unweighted average of 1501.9 <i>I</i> from 100 Nb β decay (1.5 s) and 1502.4 <i>2</i> from (n,n' γ).
								Mult.: $\gamma\gamma(\theta)$ in ¹⁰⁰ Nb β^- decay (1.5 s), ΔJ^{π} and RUL ($\beta\gamma$ coin in ¹⁰⁰ Nb β^- decay (1.5 s) suggests 1504.6 level has T _{1/2} <50 ns).
2042.78	$(2)^{+}$	435.5 [@] 2	24 [@] 5	1607.37	(3^{+})			
		578.8 [@] 1	100 [@] 10	1463.93	2+			
		978.95 [@] 9	71 [@] 5	1063.82	2+			
		1507.5 [@] 4	29 [@] 7	535.59	2+			
		2042.9 [@] 2	68 [@] 10	0.0	0^{+}			
2086.33	0^{+}	622.5 [‡] 2	31 6	1463.93	2^{+}	(E2)	0.003	Mult.: see comment for 1022.5γ .
		1022.5 3	100 12	1063.82	2+	(E2)		Mult.: $\gamma\gamma(\theta)$ in ¹⁰⁰ Nb β^- decay (1.5 s), ΔJ^{π} and RUL ($\beta\gamma$ coin in ¹⁰⁰ Nb β^- decay (1.5 s) suggests 1504.6 level has $T_{1/2} < 50$ ns).
		1550.5 [‡] 3	14 2	535.59	2^{+}			
2103.13	4+	$495.4^{\ddagger d}$ 9	3.5.23	1607.37	(3^{+})			
2100110	·	639.1 2	25 3	1463.93	2^+			E_{γ} : weighted average of 639.0 3 from ¹⁰⁰ Nb β^- decay (2.99 s) and 639.2 2 from (n,n' γ).
								I_{γ} : weighted average of 22 3 from ¹⁰⁰ Nb β^- decay (2.99 s) and 29 4 from (n,n' γ).
		967.1 <i>1</i>	100 4	1136.02	4+			E_{γ} : weighted average of 966.9 2 from ¹⁰⁰ Nb β ⁻ decay (2.99 s) and 967.1 <i>I</i> from (n,n'γ).
								I_{γ} : from (n,n' γ). Other: 100 11 from ¹⁰⁰ Nb β^{-} decay (2.99 s).
		1567.7 2	53 18	535.59	2+			\dot{E}_{γ} : weighted average of 1567.4 <i>3</i> from ¹⁰⁰ Nb β^- decay (2.99 s) and 1567.8 2 from (n,n' γ).
								I _{γ} : unweighted average of 35 5 from ¹⁰⁰ Nb β^- decay (2.99 s) and 70 4 from (n,n' γ).
2189.56	$(0^+, 1, 2)$	1125.8 [‡] 2	25 5	1063.82	2+			
		1653.9 2	100 8	535.59	2^{+}			
2201.22	(2^{-})	1137.4 <i>1</i>	100 7	1063.82	2+			

18

L

					Adopted L	evels, Gammas (o	continued)
					$\gamma(1)$	¹⁰⁰ Mo) (continued	d)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult.	δ	Comments
2201.22	(2 ⁻)	1665.4 ^{<i>d</i>} 1	84 7	535.59 2+			Placement uncertain since a transition of similar energy is assigned to the 3129 level in ¹⁰⁰ Nb β^- decay.
2286.47	2+	822.7 [@] 3	32 [@] 4	1463.93 2+			
		1750.8 [@] 2	100 [@] 6	535.59 2+			
2289.5	(4,5 ⁺)	682.1 4	100	1607.37 (3)		E_{γ} : weighted average of 681.8 4 from ¹⁰⁰ Nb β ⁻ decay (2.99 s) and 682.5 5 from (³⁰ Si,Xγ).
2310.12	(4+)	538.6 [‡] 4	27 9	1771.44 (4)		
		702.7 [‡] 3	100 14	1607.37 (34)		
		1246.4 [‡] <i>3</i>	48 7	1063.82 2+			
2320.3	$(0^+, 1, 2)$	856.3 [‡] <i>3</i>	44 18	1463.93 2+			
		1257.0 [‡] 6	100 9	1063.82 2+			
2339.8	(5 ⁻)	431.5 5	100 14	1908.19 3-			E_{γ},I_{γ} : from (³⁰ Si,X γ) only.
		1203.6 5	82 9	1136.02 4+			E_{γ} , I_{γ} : from (³⁰ Si, $X\gamma$) only.
2369.68	3-	1305.9 [@] 1	100 [@] 12	1063.82 2+			
		1833.7 ^{^w 3}	56 [@] 9	535.59 2+			
2397.0	(1^{-})	1861.4 ^{@a} 3	100	535.59 2+			
2416.58	(4^{+})	952.5 [‡] 3	21 3	1463.93 2+			100
2564.20	(4)+	1280.7 <i>3</i> 461.1 2	100 <i>11</i> 100 <i>6</i>	1136.02 4 ⁺ 2103.13 4 ⁺	(M1+E2)	-0.7 +10-13	E _γ : weighted average of 1280.4 2 from ¹⁰⁰ Nb β ⁻ decay (2.99 s) and 1280.9 2 from (n,n'γ). I _γ : from ¹⁰⁰ Nb β ⁻ decay (2.99 s). Mult.,δ: from $\gamma\gamma(\theta)$ in ¹⁰⁰ Nb β ⁻ decay (2.99 s). E _γ : weighted average of 461.2 2 from ¹⁰⁰ Nb β ⁻ decay (2.99 s) and
							461.0 2 from $(n,n'\gamma)$.
		702 8 2	51 7	1771 44 (4)		1_{γ} . Itom (100 p) decay (2.99 s). Other: 100 21 from (11,17 γ).
		1428.0 3	51 6	1136.02 4+)		E _{γ} : weighted average of 1427.9 3 from ¹⁰⁰ Nb β^- decay (2.99 s) and 1428.1 3 from (n,n' γ).
							I_{γ} : from ¹⁰⁰ Nb β^{-} decay (2.99 s). Other: 120 20 in (n,n' γ).
		1500.2 ^{#@d} 3	50 [@] 17	1063.82 2+			
2580.89	$(1,2^{+})$	1516.8 [@] 3	100 [@] 20	1063.82 2+			
		1886.0 [@] 3	80 [@] 13	695.13 0+			
2627.5	8+	780.3 5	100	1847.17 6+	(E2)		B(E2)(W.u.)=122 +23-17 E _γ : weighted average of 781 <i>1</i> from (¹³⁶ Xe,Xγ) and 780.1 5 from (³⁰ Si,Xγ). Mult.: from T _{1/2} , ΔJ^{π} and RUL.

From ENSDF

L

						Adopte	ed Levels, Gammas (continued)
							γ ⁽¹⁰⁰ Mo) (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.	Comments
2632.4	(1)	2632.4 3	100	0.0	0^{+}	$(D)^{a}$	
2652.87	$(4^+, 5^+)$	549.7 [‡] 3	50 10	2103.13	4+		
		1045.8 [‡] 6	25 10	1607.37	(3^{+})		
		1516.8 [‡] 3	100 15	1136.02	4+		
2662.6?		1598.8 ^{@d} 3	100 [@]	1063.82	2+		E_{γ} : placement considered uncertain since a transition of similar energy is assigned to the 3062 level in ¹⁰⁰ Nb β ⁻ decay.
2738.02	(2^{+})	1674.3 [@] 3	53 [@] 11	1063.82	2+		
		2202.3 [@] 3	100 [@] 11	535.59	2^{+}		
2791.3		944.1 5	100	1847.17	6+		E_{γ} : from (³⁰ Si,X γ) only.
2822.21	2+	1358.3 ^{@d} 1	100	1463.93	2+		20
2843.2	(7^{-})	503.2 5	100 14	2339.8	(5-)		E_{γ}, I_{γ} : from (³⁰ Si, X γ).
2001.05	(1)	996.3 5	88 8	1847.17	6^+	$(\mathbf{D})^{\mathbf{q}}$	E_{γ}, I_{γ} : from (³⁰ S1, X γ).
2901.03	(1) (1)	2901.01	100	0.0	0^{+}	$(D)^{a}$	
2928.7	(7^{-})	588.8 5	100	2339.8	(5^{-})	(2)	E_{γ} : from (³⁰ Si,X γ).
2934.8	(4 ⁺)	1871 [‡] <i>1</i>	100	1063.82	2+		
2961.2	2+	1897.4 ^{@d} 3	100 [@]	1063.82	2+		
2970.1	4+	1362.5 [‡] 10	75	1607.37	(3^{+})		
		1906.6 [‡] 5	28 10	1063.82	2+		
		2434.1 5	100 8	535.59	2^{+}		E_{γ} : weighted average of 2434.6 5 from ¹⁰⁰ Nb β^- decay (1.5 s) and 2434.0 2 from (n,n' γ).
2996.31	$(4^+, 3^-)$	1532.4 ^{@d} 2	$100^{@}$	1463.93	2^{+}		
3004.4	$(4^+, 3^-)$	1397 [‡] 1	100	1607.37	(3 ⁺)		
3039.4	(4 ⁺)	1432 [‡] <i>1</i>	100	1607.37	(3 ⁺)		
3042.2?		1978.4 ^{@d} 6	100 [@]	1063.82	2^{+}		
3053.70	(≤4)	1989.9 ^{@d} 2	100@	1063.82	2+		
3062.60	$(0^+, 1, 2)$	1598.7 [‡] 3	62 15	1463.93	2+		
		2526.9 [‡] 4	100 15	535.59	2^{+}		
3066.25	(1)	3066.2 2	100	0.0	0^{+}		E_{γ} : from (γ, γ') only.
3070.2	$(0^+, 1, 2)$	2534.6 ⁴ 4	100	535.59	2^{+}		
3129.6	$(0^+, 1, 2)$	1665.7 [‡] 4	100	1463.93	2^{+}		
3143.0	(1)	351.7 5	100	2791.3	0+	$(\mathbf{D})^{\mathbf{q}}$	E_{γ} : from (${}^{\circ\circ}Si,X\gamma$) only.
3242.76	1	3242.7 1	100	0.0	0^{+}	D^{a}	
3290.27	1 ⁽⁺⁾	2595.3 3	21 6	695.13	0^+	(D) ^{<i>a</i>}	

 $^{100}_{42}\mathrm{Mo}_{58}$ -20

L

 $^{100}_{42}\mathrm{Mo}_{58}$ -20

From ENSDF

γ (¹⁰⁰Mo) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult.	Comments
3290 27	1(+)	2755 4 3	21.4	535 59	2+	$(D)^{a}$	
5290.27	1	3290 1 1	100 6	0.0	0^{+}	D^{a}	
3299.2	(9^{-})	370 5 5	66 13	2928.7	(7^{-})	2	E. L. from $({}^{30}$ Si X $\gamma)$ only
5277.2	()	456.1.5	100 17	2843.2	(7^{-})		$E_{y,xy}$. from $(30,51,7y)$ only.
3342.06	(1)	3342.0 1	100 17	0.0	0^{+}	$(D)^{a}$	
3367.0	$(1)^{(1)^+}$	730 5 5	100	2627.5	8 ⁺	(D)	$\mathbf{F} \cdot \mathbf{from} \left(\frac{30}{3} \mathbf{Si} \mathbf{Y}_{0} \right)$
3483 82	(10^{-})	2419.8 1	11 1 12	1063.82	2+		E_{γ} . Holl ($SI_{\gamma}X_{\gamma}$). E. I.: from (γ, γ') only
5105.02	(1)	2948 2 1	12.4.12	535 59	$\frac{2}{2^{+}}$		E_{γ}, E_{γ} from (γ, γ') only E_{γ}, E_{γ} from (γ, γ') only
		3483.9 1	100.0 20	0.0	$\tilde{0}^{+}$	$(D)^{a}$	Ev. L.: from (γ, γ') only.
3570.77	(1)	3570.7 1	100	0.0	0^{+}	$(D)^{a}$	
3599.87	(1)	3599.8 2	100	0.0	0^{+}	(-)	E_{γ} ; from (γ, γ') only.
3615.57	1	3615.5 2	100	0.0	0^{+}	D ^a	
3626 5	$(4^+ 5 6)$	1779 3 5	100	1847 17	6+		
3627.3	(1, 5, 0)	3627.2.3	100	0.0	0^{+}	$(D)^{a}$	
2647.2	(1)	1800 1	100	1947 17	6+	(D)	
2659.06	(5)	2505.2.2	20.5	1047.17	0 2+	Da	
3038.90	1,	2393.3 3	20.5	1005.82	2 · 0+	D^{a}	
2792 5		5058.7 5	100 5	21.42.0	0	D^{*}	$\mathbf{E} = f_{\text{rem}} \left(\frac{30}{2} \mathbf{V}_{\text{rel}} \right)$
3/83.3	1	040.5 3	100	5145.0	0+	ъa	E_{γ} : from (~51, $X\gamma$) only.
2806.68	1 (1)	2806.6.1		0.0	0+	D^{a}	
3025.08	(1) (1)	3025 0 1		0.0	0+	(D)	
4022 7	(1) (11^{-})	722 5 5	100	2200.2	(0^{-})	(D)	$\mathbf{E} \cdot \mathbf{from} \left(\frac{30}{30} \mathbf{S} \mathbf{Y}_{0} \right) $ only
4032.7	(11)	133.3 5	100	2299.2	(9)		E_{γ} . Holli (* 51, X_{γ}) olliy.
4002.0	(12^{+})	095.0 5	100	3307.0	(10^{+})	ъa	E_{γ} : weighted average of 696 <i>T</i> from ($^{**}Ae, A\gamma$) and 695.5 <i>J</i> from ($^{**}Si, A\gamma$).
4081.39	1	4081.3 1		0.0	0	D^{a}	
4130.5	1	4130.4 3		0.0	0+	D^{a}	
4217.00	1 (1)	4217.5 1		0.0	0+	$(D)^{a}$	
4232.10	(1)	4232.0 2		0.0	0+	D^{a}	
4516.81	1	451671		0.0	0^{+}	D^{a}	
4565 51	1	4565 4 1		0.0	0^{+}	D^{a}	
4583 11	1	4583.0 1		0.0	0^{+}	D^{a}	
4594 91	1	4594.8 1		0.0	0^{+}	D^{a}	
4689.02	1	4688.9 1		0.0	0^{+}	D^a	
4730.32	1	4730.2 2		0.0	0^{+}	D^{a}	
4875.2	(14^{+})	812.6.5	100	4062.6	(12^{+})	-	E_{α} : weighted average of 81.3 <i>I</i> from (¹³⁶ Xe, Xy) and 812.5 5 from (³⁰ Si, Xy).
4939.8	(13^{-})	907.1.5	100	4032.7	(11^{-})		F_{a} : from (³⁰ Si X ₂) only
4989.63	1	4989 5 2	100	0.0	0^+	D ^a	<i>Ly</i> , nom (0, <i>x</i>) on <i>j</i> .
5007.33	1	5007.2 2		0.0	0^{+}	D^a	
2007.00	-	2007.22		0.0	~	2	

From ENSDF

 $\gamma(^{100}Mo)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.
5034.54	1	5034.4 2		0.0	0^{+}	D ^a
5062.9	(2)	5062.8 <i>3</i>		0.0	0^{+}	(O) ^{<i>a</i>}
5071.24	(1)	5071.1 2		0.0	0^{+}	$(D)^{a}$
5101.3	1	5101.2 6		0.0	0^{+}	D ^á
5109.3	(1)	5109.2 9		0.0	0^{+}	$(D)^{a}$
5136.04	(1)	5135.9 <i>1</i>		0.0	0^{+}	$(D)^{a}$
5158.3	1	5158.2 <i>3</i>		0.0	0^+	$\mathbf{D}^{\mathbf{a}}$
5169.6	1	5169.5 <i>3</i>		0.0	0^{+}	D ^a
5181.8	1	5181.7 <i>3</i>		0.0	0^+	D ^a
5186.9	1	4651 2	84 <i>13</i>	535.59	2^{+}	
		5187 2	100 15	0.0	0^+	D ^a
5190.4	1	5190.3 5		0.0	0^+	D ^a
5204.6	(1)	5204.5 <i>4</i>		0.0	0^+	(D) <i>a</i>
5216.0	(1)	5215.9 8		0.0	0^+	(D) ^{<i>a</i>}
5271.2	1	5271.1 6		0.0	0^+	D ^a
5277.6	1	5277.5 <i>3</i>		0.0	0^+	D ^a
5310.5	1	5310.3 4		0.0	0^+	D ^a
5335.65	1	5335.5 2		0.0	0^+	D ^a
5347.85	1	5347.7 1		0.0	0^+	D ^a
5359.8	1	5359.6 <i>3</i>		0.0	0^+	D ^a
5369.6	1	5369.4 6		0.0	0^+	D ^a
5382.5	1	5382.3 10		0.0	0^{+}	D ^a
5390.3	1	5390.1 6		0.0	0^{+}	D ^a
5402.26	1	5402.1 <i>1</i>		0.0	0^{+}	D ^a
5412.6	1	5412.4 8		0.0	0^{+}	D ^a
5435.5	1	5435.3 6		0.0	0^+	D^{a}
5442.9	1	5442.7 6		0.0	0^+	D^{a}
5449.6	(1)	5449.4 6		0.0	0^{+}	(D) <i>a</i>
5502.7	1	5502.5 4		0.0	0^{+}	D^{a}
5519.4	1	5519.2 <i>4</i>		0.0	0^{+}	D^{a}
5532.2	1	5532.0 5		0.0	0^{+}	D^{a}
5547.9	1	5547.7 <i>3</i>		0.0	0^{+}	Da
5554.4	1	5554.2 11		0.0	0^{+}	D^{a}
5584.9	1	5584.7 <i>4</i>		0.0	0^{+}	D^{a}
5596.8	1	5596.6 7		0.0	0^{+}	D ^a
5604.7	1	5604.5 12		0.0	0^{+}	D ^a
5612.67	1	5612.5 <i>1</i>		0.0	0^{+}	Da
5618.6	1	5618.4 <i>3</i>		0.0	0^{+}	$D^{\boldsymbol{\mu}}$

22

γ (¹⁰⁰Mo) (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	Comments
5656.5	(2)	5656 3 5		$0.0 0^+$	$(0)^{a}$	
5670.67	1	5670.5 1		$0.0 \ 0^+$	D^{a}	
5680.9	(1)	5680.7 7		$0.0 0^+$	$(D)^{a}$	
5686.5	1	5686.3.5		$0.0 0^+$	D^{a}	
5715.9	1	5715.7 3		$0.0 0^+$	D^a	
5725.3	1	5725.1 3		$0.0 0^+$	D^{a}	
5732.9	1	5732.7 3		$0.0 \ 0^+$	D ^a	
5742.6	1	5742.4 7		$0.0 \ 0^+$	D ^a	
5764.0	(1)	5763.8 15		$0.0 0^+$	$(D)^{a}$	
5770.4	1	5770.2 4		$0.0 \ 0^+$	$\mathbf{D}^{\mathbf{a}}$	
5798.2	1	5798.0 <i>3</i>		$0.0 \ 0^+$	D ^a	
5808.98	1	5808.8 1		$0.0 \ 0^+$	D ^a	
5826.5	(2)	5826.3 6		$0.0 \ 0^+$	$(0)^{a}$	
5840.2	(16^{+})	965 1	100	4875.2 (14 ⁺)		E_{γ} : from (³⁰ Si,X γ) and (¹³⁷ Xe,X γ).
5840.7	1	5840.5 6		0.0 0+	D ^a	
5879.39	1	5879.2 2		$0.0 \ 0^+$	D ^a	
5901.0	1	5900.8 6		$0.0 \ 0^+$	D ^a	
5947.79	1	5947.6 2		$0.0 \ 0^+$	D ^a	
5957.2	1	5957.06		$0.0 \ 0^+$	D ^a	
5964.0	1	5963.8 6		$0.0 \ 0^+$	D ^a	
5972.99	1	5972.8 2		$0.0 \ 0^+$	D ^a	
5988.9	1	5988.7 <i>4</i>		$0.0 \ 0^+$	D ^a	
6009.6	1	6009.4 4		$0.0 \ 0^+$	D ^a	
6019.5	(1)	6019.3 <i>11</i>		$0.0 \ 0^+$	(D) ^{<i>a</i>}	
6035.5	1	6035.3 8		$0.0 \ 0^+$	D ^a	
6061.3	(2)	6061.1 9		$0.0 \ 0^+$	(Q) a	
6065.9	1	6065.7 7		$0.0 \ 0^+$	D ^a	
6082.9	1	6082.7 <i>3</i>		$0.0 \ 0^+$	D ^a	
6089.3	1	6089.1 4		$0.0 \ 0^+$	D ^a	
6122.5	1	6122.3 5		$0.0 \ 0^+$	D ^a	
6133.6	1	6133.4 7		$0.0 \ 0^+$	D ^a	
6147.1	1	6146.9 9		$0.0 \ 0^+$	D ^a	
6174.0	1	6173.8 5		$0.0 \ 0^+$	D^{a}	
6194.51	(1)	6194.3 <i>1</i>		$0.0 \ 0^+$	(D) ^{<i>a</i>}	
6249.4	1	6249.2 5		$0.0 \ 0^+$	D ^a	
6257.61	1	6257.4 2		$0.0 \ 0^+$	D ^a	
6270.5	1	6270.3 8		$0.0 0^+$	D ^a	
6278.71	1	6278.5 1		$0.0 \ 0^+$	D^{a}	

From ENSDF

	Adopted Levels, Gammas (continued)													
						$\gamma(^{100}\text{Mo})$ (continued)							
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ		Comments						
6293.1 6310.3 6321.2 6327.6 6337.5 6354.32 6365.6 6375.6 6402.0 6414.3 6419.4	$ \frac{1}{(1)} $ 1 1 1 1 (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6292.9 4 6310.1 15 6321.0 9 6327.4 9 6354.1 2 6365.4 19 6375.4 5 6401.8 8 6414.1 4 3788 ^d 4 4385 4	7 2 19 4	$\begin{tabular}{ c c c c c }\hline 0.0 & 0^+ \\ 0.0 & 0^+ \\ 0.0 & 0^+ \\ 0.0 & 0^+ \\ 0.0 & 0^+ \\ 0.0 & 0^+ \\ 0.0 & 0^+ \\ 0.0 & 0^+ \\ 0.0 & 0^+ \\ 2632.4 & (1) \\ 2037.60 & 0^+ \end{tabular}$	$\begin{array}{c} D^{a} \\ (D)^{a} \\ D^{a} \\ D^{a} \\ D^{a} \\ (D)^{a} \\ D^{a} \\ D^{a} \\ D^{a} \\ D^{a} \\ D^{a} \end{array}$									
		4444 ^d 4 5355 4 5723 4 5883 4	6 2 11 3 0.8 4 1.2 6	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$) (E1+M2) ^{&}	+0.21 ^{&} 12	B(E1)(W.u.)=1.7×10 ⁻⁶ +60-11							
6421.4 6426.6 6434.1 6459.0 6473.5 6483.2 6497.6 6518.5	1 (1) 1 1 (1) 1 1 ⁻	6418 4 6421.2 6 6426.4 9 6433.9 5 6458.8 6 6473.3 6 6483 2 6497.4 6 3445 ^d 3 4477 3 5055 3	100 <i>15</i> 18 <i>3</i> 23 <i>5</i> 28 <i>5</i>	$\begin{array}{cccc} 0.0 & 0^{+} \\ 0.0 & 0^{+} \\ 0.0 & 0^{+} \\ 0.0 & 0^{+} \\ 0.0 & 0^{+} \\ 0.0 & 0^{+} \\ 0.0 & 0^{+} \\ 3066.25 & (1) \\ 2042.78 & (2)^{+} \\ 1463.93 & 2^{+} \\ 1463.93 & 2^{+} \end{array}$	E1 ^{&} D ^a D ^a D ^a D ^a D ^a D ^a		B(E1)(W.u.)=9×10 ⁻⁵ +22-4							
6519.1 6526.6 6570.2 6597.0 6622.3 6628.3 6628.3	1 1 (2) (1) (2) 1	5455 3 5823 3 5982 3 6517 3 6518.9 5 6526.4 3 6570.0 4 6596.8 4 6622.1 4 6628.1 5 6640.8 3	8 2 10 2 32 5 100 <i>1</i> 5	$\begin{array}{ccccccc} 1063.82 & 2^{+} \\ 695.13 & 0^{+} \\ 535.59 & 2^{+} \\ 0.0 & 0^{+} \\ 0.0 & 0^{+} \\ 0.0 & 0^{+} \\ 0.0 & 0^{+} \\ 0.0 & 0^{+} \\ 0.0 & 0^{+} \\ 0.0 & 0^{+} \\ 0.0 & 0^{+} \\ 0.0 & 0^{+} \end{array}$	$E1^{\&}$ D^{a} D^{a} $(Q)^{a}$ $(D)^{a}$ $(Q)^{a}$ D^{a}		B(E1)(W.u.)=21×10 ⁻⁵ +35–10							

24

L

 $\gamma(^{100}\text{Mo})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.
6658.2	1	6658.0 4		0.0	0^{+}	D^{a}
6669.14	1	6668.9 2		0.0	0^{+}	D ^a
6685.3	1	6685.1 4		0.0	0^{+}	D ^a
6764.1	1	6763.9 8		0.0	0^{+}	D ^a
6772.7	1	6772.5 8		0.0	0^{+}	D ^a
6790.6	1	6790.4 10		0.0	0^{+}	D ^a
6797.5	(1)	6797.3 9		0.0	0^{+}	(D) <i>a</i>
6807.9	(2)	6807.7 10		0.0	0^{+}	$(Q)^{a}$
6829.5	(1)	6829.2 <i>3</i>		0.0	0^{+}	(D) ^{<i>a</i>}
6844.6	(2)	6844.3 <i>11</i>		0.0	0^{+}	$(Q)^{a}$
6851.3	1	6851.0 <i>15</i>		0.0	0^{+}	D ^a
6870.0	(1)	6869.78		0.0	0^{+}	(D) ^{<i>a</i>}
6886.5	1	6886.2 8		0.0	0^{+}	D ^a
6893.2	1	6892.9 4		0.0	0^{+}	D^{a}
6906.1	1	6905.8 <i>6</i>		0.0	0^{+}	D ^a
6912.9	(1)	6912.6 <i>11</i>		0.0	0^{+}	(D) <i>a</i>
6919.5	1	6919.2 <i>13</i>		0.0	0^{+}	D^{a}
6924.9	(1)	6924.6 10		0.0	0^{+}	(D) ^{<i>a</i>}
6934.2	(1)	6933.9 <i>12</i>		0.0	0^{+}	(D) ^{<i>a</i>}
6949.2	(18^{+})	1109 <i>1</i>	100	5840.2	(16^{+})	_
6949.9	1	6949.6 <i>11</i>		0.0	0^{+}	D ^a
6957.7	(2)	6957.4 <i>11</i>		0.0	0^{+}	$(Q)^{a}$
6974.2	1	6973.9 8		0.0	0^{+}	D ^a
6981.1	(2)	6980.8 <i>12</i>		0.0	0^{+}	$(Q)^{a}$
6994.5	(2)	6994.2 <i>5</i>		0.0	0^{+}	$(Q)^{a}$
7001.2	1	7000.9 5		0.0	0^{+}	D^{a}
7018.3	1	7018.0 6		0.0	0^{+}	D^{a}
7032.1	1	7031.8 5		0.0	0^{+}	D ^a
7037.8	(1)	7037.5 10		0.0	0^{+}	$(D)^{a}$
7060.2	1	7059.9 11		0.0	0^{+}	D^{a}
7068.1	1	7067.8 <i>3</i>		0.0	0^{+}	D^{a}
7095.4	1	7095.1 5		0.0	0^{+}	D^{a}
7103.5	(1)	7103.2 7		0.0	0^{+}	$(D)^{a}$
7115.3	1	7115.0 3		0.0	0^{+}	D^{a}
7136.6	1	7136.3 5		0.0	0^{+}	$D^{\boldsymbol{\mu}}$
7171.7	(1)	7171.4 7		0.0	0^{+}	(D) ^{<i>u</i>}
7181.5	(1)	7181.2 9		0.0	0^{+}	(D) ^{<i>u</i>}
7194.4	1	7194.1.3		0.0	0^{+}	D ⁴

25

Adopted Levels, Gammas (continued)												
$\gamma(^{100}$ Mo) (continued)												
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.	δ	Comments				
7204.0	1	7203.7 7		0.0	0^+	D^a						
7219.4	(2)	7219.1 9		0.0	0^+	$(Q)^{a}$						
7299.6	1	7299.3 5		0.0	0^{+}	D^{a}						
7312.3	1	7312.0 3		0.0	0+	$\overline{\mathrm{D}}^{a}$						
7330.8	1	7330.5 3		0.0	0^{+}	D^a						
7357.7	1 (1)	7357.4 6		0.0	0^+	$D^{\boldsymbol{\mu}}$						
7380.3	(1)	7380.07		0.0	0^{+}	$(D)^{a}$						
7450.6	1	7450.3 10		0.0	0^{+}	D^a						
7471.0	1	7470.7 4		0.0	0^{+}	D ^a						
7487.2	1	7486.9 7		0.0	0^+	D^a						
7503.5	(1) (2)	7503 2 12		0.0	0^{+}	$(D)^{a}$						
7526.1	1	7525.8 6		0.0	0^{+}	D^a						
7546.3	1	7546 2		0.0	0^{+}	D ^a						
7559.1	(1)	7558.8 15		0.0	0^+	$(D)^{a}$						
7577.2	1	7576.9 9		0.0	0^+	D^{a}						
7638.6	1 1 ⁻	1000.04	11	3066.25	(1)	D						
/038.0	1	4309 4 5007d 2	4 I 6 2	2632 A	(1)							
		5597 4	51	2032.4	$(1)^{+}$							
		5604 4	5 1	2037.60	0+							
		6176 2	4 1	1463.93	2^+							
		03/4 2	15 5	525.50	2+	(E1, M2)	0.0	$D(T_1)(W_{rr}) = 11 \times 10^{-5} + 7 + 0.002)(W_{rr}) = 0.04 + 7 + 2$				
		7102 2	101 15	0.0	2 0+	$(E1+M2)^{1}$	-0.00** 2	$B(E1)(W,u) = 11 \times 10^{-4} + 7 - 4$, $B(W2)(W,u) = 0.04 + 7 - 5$ $B(E1)(W,u) = 0 \times 10^{-5} + 6 - 3$				
7744.5	1	7744.2 8	100 15	0.0	0^{+}	D^a		$B(E1)(W.u.) = 9 \times 10^{-10} + 0^{-5}$				
7758.4	(1)	7758.1 10		0.0	0^{+}	(D) ^{<i>a</i>}						
7771.5	1	7771.2 12		0.0	0+	D^a						
7796.9	1	7796.6 14		0.0	0^+	D^{a}						
7863.1	(1)	7850.9 8		0.0	0+	$(D)^{a}$						
7875.4	1	7875.1 6		0.0	0^{+}	D^{a}						
7887.2	1	7886.9 10		0.0	0^{+}	D ^a						
7935.7	1	7935.4 10		0.0	0^+	D^{a}						
7988 0	1	7987 7 7		0.0	0+	D^{a}						
1200.0		1201.11		0.0	5	2						

26

 $^{100}_{42}\mathrm{Mo}_{58}\text{-}26$

From ENSDF

 $^{100}_{42}\mathrm{Mo}_{58}\text{--}26$

26

γ ⁽¹⁰⁰ Mo) (conti	nued)
-------------------------------------	-------

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult.
8002.0	1	8001.7 6		0.0	0^{+}	D^{a}	8194.4	1	8194.0 9	$0.0 0^+$	D ^a
8033.5	1	8033.2 8		0.0	0^{+}	D ^a	8208.8	1	8208.4 6	$0.0 \ 0^+$	D ^a
8052.2	1	8051.96		0.0	0^{+}	D^{a}	8218.2	(1)	8217.8 6	$0.0 \ 0^+$	(D) <i>a</i>
8063.7	1	8063.4 9		0.0	0^{+}	D^{a}	8238.6	1	8238.2 9	$0.0 \ 0^+$	\mathbf{D}^{a}
8083.3	1	8082.9 16		0.0	0^{+}	D^{a}	8257.1	1	8256.7 14	$0.0 \ 0^+$	D^{a}
8095.9	1	8095.5 11		0.0	0^{+}	D ^a	8269.6	1	8269.2 6	$0.0 \ 0^+$	D ^a
8108.1	1	8107.7 12		0.0	0^{+}	D ^a	8283.6	1	8283.2 6	$0.0 \ 0^+$	D ^a
8114.2	(20^{+})	1165 <i>1</i>	100	6949.2	(18^{+})		8294.5	(1)	8294.1 <i>13</i>	$0.0 \ 0^+$	(D) ^{<i>a</i>}
8127.7	1	8127.3 10		0.0	0+	D ^a					

[†] For γ -rays from low-spin (J \leq 6 or so) up to 3647, values are from weighted averages of E γ and I γ branching ratios values available from ¹⁰⁰Nb β^- decay (1.5 s), ¹⁰⁰Nb β^- decay (2.99 s), and ¹⁰⁰Mo(n,n' γ), when values of comparable precision are available from more than one datasets. For γ rays from high-spin (J>6) levels, values are mainly from ¹⁶⁸Er(³⁰Si,X γ). For levels above 3647, values are from (γ,γ'). Exceptions are noted. Intensities are photon branching ratios.

[‡] γ reported in ¹⁰⁰Nb β^- decay, but not in (n,n' γ).

[#] Placement considered uncertain by evaluators since no such transition is reported in ¹⁰⁰Nb β^- decay.

[@] From $(n,n'\gamma)$ only.

27

[&] From $\gamma(\theta, \lim \text{pol})$ in (γ, γ') .

^{*a*} From $\gamma(\theta)$ in (γ, γ') .

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with "Frozen Orbitals" approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^c Multiply placed.

^d Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $--- \sim \gamma$ Decay (Uncertain)

 $^{100}_{\ 42} Mo_{58}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level $--- \rightarrow \gamma$ Decay (Uncertain) + °20,3 (D) 0 2004 b 0 (1) 6797.5 -6--6790.6 1 0 668' 1 <u>ي</u> 6772.7 0 6764.1 1 6685.3 1 0 6669.14 1 Q. 1 6658.2 -⁷-79 _0 1 (2) 6641.0 6591 8.9 -0 6570 1 6628.3 $\frac{(-)}{(1)}$ 0 6622.3 653 64 -00 0 6597.0 9 1 6570.2 ŝ 651> 1 6526.6 ē 6519.1 1 0 -86--6518.5 0 2.5 fs 14 64>3 1 (1) -0 6497.6 64331 Q 2 6483.2 6473.5 1 6421 -6459.0 1 1 (1) 6434.1 6426.6 6401 ~______ ~_______~__~____ 1 6421.4 ÷ ____ -0 32-7 3-2 32-3 6419.4 1 9 fs 6 1 1 6414.3 1 4 633,3 J ï 7 -9 1 -1-6402.0 1 ÷ 1
(1) 6375.6 1 6365.6 6310'1 1 ____ -1-6354.32 1 _|_ 1 i 6337.5 1 1 6327.6 1 6321.2 1 (1) 6310.3 1 1 -----(1) <u>3066.25</u> 0.207 ps 19 ¥ Т 1 (1) <u>2632.4</u> 0.51 ps 10 1 (2)+ 2042.78 $\frac{0^+}{(1,2^+)}$ 2037.60 1977.34 V 1463.93 2.9 ps 7 2^{+} 1063.82 6.6 ps 6 2^{+} 0^+ 695.13 1.62 ns 4 2+ 535.59 12.4 ps 3 0.0 7.01×10¹⁸ y +21-17 0^+

 $^{100}_{\ 42} Mo_{58}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{100}_{\ 42} Mo_{58}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{100}_{42} \mathrm{Mo}_{58}$

Legend

Level Scheme (continued)
Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{100}_{\ 42} Mo_{58}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

--- γ Decay (Uncertain)

 $^{100}_{\ 42} Mo_{58}$

Legend

Level Scheme (continued)

 $^{100}_{42}\mathrm{Mo}_{58}$

