	Histo	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 172,1 (2021)	31-Jan-2021

2008Ru04, 2008RuZW, 2006RuZW: E=2-15 MeV bremsstrahlung γ -rays produced when 13.2 MeV electrons bombarded a Nb target, at the superconducting electron accelerator ELBE of the Forschungszentrum Dresden-Rossendorf. Measured E γ , I γ , angular distributions using four HPGe detectors with BGO. Compton-suppression Enriched target. Earlier experiments by this group are described in 2006Ru06, 2006Ru11 and 2005Ru14. Deduced dipole strength distribution. See also 2010Er01, 2009Ru05, 2008Wa07 and 2007Sc39 for discussion of magnetic dipole strengths.

- 2006Ru06 (also 2005Ru14): E=3.2-3.8 MeV bremsstrahlung beam with end-point energy of 3.8 MeV. Measured E γ , I γ , $\gamma(\theta)$, absolute photon scattering cross sections using three large Ge detectors positioned at 90°, 127° and 150° relative to the incident beam. The detector at 127° was equipped with BGO anti-Compton shield.
- 2006Rul1: bremsstrahlung beam with end-point energy of 9.5 MeV. Measured quasi-continuum γ radiation using four large Compton- suppressed Ge detectors positioned at 90° and 127° relative to the incident beam. The dipole strength distribution follows a Porter-Thomas distribution. Enhancements at ≈ 6.5 and 9 MeV are associated with pygmy dipole resonances.
- 1973Mo30: $E\gamma = 7637$ keV, 5187 keV (from Cu(n, γ)); 6517 keV (from V(n, γ)); 6418 keV (from Ti(n, γ) E(n)=thermal). Natural molybdenum target. Measured γ , $\gamma(\theta)$, partial and total radiative widths. 1979Mo19, 1974Wo05 and 1971Mo26 are from the same group.

Others: 1981Sc10, 1994BeZZ.

1994BeZZ: $E\gamma = 6109$ and 5957 from Br(n, γ) E=thermal used to excite similar energy states in ¹⁰⁰Mo, cross sections for (γ , γ') are given copper and vanadium.

Unless otherwise specified, all the data given here are from the latest study by the Dresden group published in 2008Ru04, and private communication 2008RuZW received July 21, 2008 by the evaluators from the first author (G. Rusev) of 2008Ru04. This communication contains the details of the γ -ray data. Their earlier data in 2006Ru06, in the 2236 to 3659 energy region, are listed under comments. Exceptions are: data for 6418, 6517 and 7637 keV are from 1973Mo30, and a tentative level at 6109 is from 1994BeZZ.

¹⁰⁰Mo Levels

Units of Γ are labeled as MeV in column #8, table I of 2006Ru06, which is a misprint, it should be in milli-eV.

E(level) [†]	J^{π}	Γ_0^2/Γ	I _s (eVb) ^{&}	Comments
0.0 535.6 694.8 <i>3</i>	0^+ 2^+ 0^+			
1064.07 <i>10</i> 1462 <i>2</i> 1974? <i>4</i>	2^+ 2^+ $(1,2^+)$	26×10 ⁻³ eV 2	267 17	
2033 <i>3</i> 2040 <i>3</i>	0^+ (2) ⁺			
2632.4 <i>3</i>	(1)	100×10 ⁻⁴ eV 11	16.6 <i>19</i>	 E(level): evaluators assume that 2633.3 <i>I</i> in 2006Ru06 and 2632.4 <i>3</i> in 2008RuZW are the same levels. Integrated σ=1.5 eVb 3 (2006Ru06). T_{1/2}=0.51 ps <i>10</i> from Γ=0.00090 eV <i>18</i> (2006Ru06). B(E1)(↑)=0.14×10⁻⁵ 3, B(M1)(↑)=0.013 3 (2006Ru06).
2901.1 <i>1</i>	(1)	289×10 ⁻⁴ eV 19	40 3	T _{1/2} =0.32 ps 4 from Γ=0.00143 eV 17 (2006Ru06). B(E1)(\uparrow)=0.17×10 ⁻⁵ 2, B(M1)(\uparrow)=0.0152 18 (2006Ru06). Integrated σ =2.0 eVb 2 (2006Ru06).
2905.8 1	(1)	266×10 ⁻⁴ eV 18	36 <i>3</i>	T _{1/2} =0.37 ps 4 from Γ=0.00125 eV 13 (2006Ru06). B(E1)(\uparrow)=0.15×10 ⁻⁵ 2, B(M1)(\uparrow)=0.0132 14 (2006Ru06). Integrated σ =1.70 eVb 18 (2006Ru06).
3066.3 2	(1)	110×10 ⁻⁴ eV 18	14 2	$T_{1/2}=0.207 \text{ ps } 19 \text{ from } \Gamma=0.0022 \text{ eV } 2 \text{ (2006Ru06).}$ B(E1)(\uparrow)=0.22×10 ⁻⁵ 2, B(M1)(\uparrow)=0.0202 19 (2006Ru06).

E(level) [†]	J ^π @	Γ_0^2/Γ	I _s (eVb) ^{&}	Comments
				Integrated σ =2.8 eVb 3 (2006Ru06). I ^{π} · 1 ⁺ in 2005Ru14
3198.4 <i>4</i>	(1)	7.6×10 ⁻³ eV 17	92	$T_{1/2}=0.23$ ps 4 from $\Gamma=0.0020$ eV 3 (2006Ru06).
				$B(E1)(\uparrow)=0.17\times10^{-5}$ 2, $B(M1)(\uparrow)=0.0157$ 20 (2006Ru06).
				Integrated σ =2.2 eVb 3 (2006Ru06).
3242.8 1	1	29×10 ⁻³ eV 2	32 2	$T_{1/2}=0.138$ ps 17 from $\Gamma=0.0033$ eV 4 (2006Ru06).
				$B(E1)(\uparrow)=0.28\times10^{-5}$ 3, $B(M1)(\uparrow)=0.025$ 3 (2006Ru06).
				Integrated σ =3.6 eVb 4 (2006Ru06).
3290.16 10	$(1^+)^{\#}$	30×10 ⁻³ eV 2	32 2	$T_{1/2}$ =43 fs 6 from Γ=0.0107 eV 15 (2006Ru06).
				E(level): this state decays to g.s. and the first excited 0^+ state which indicates that two coexisting configurations are mixed in the 0^+ states (2006Ru06).
				$B(M1)(2595\gamma,1^+ \text{ to excited } 0^+)/B(M1)(3290\gamma,1^+ \text{ to g.s.})=0.45 \ 13$ (2006Ru06).
				Integrated σ =7.6 eVb 6 (2006Ru06).
3342.1 <i>1</i>	1			E(level), J^{π} : level from 2006Ru06 only.
				$T_{1/2}=0.175$ ps 20 from $\Gamma=0.0026$ eV 3 (2006Ru06).
				$B(E1)(\uparrow)=0.20\times10^{-5} 2$, $B(M1)(\uparrow)=0.018 2$ (2006Ru06).
2482 07 10	(1+) #	58×10^{-3} eV 3	55 2	$T = -8.2 \text{ fo } 8 \text{ from } \Gamma = 0.055 \text{ oV } 5 (2000 \text{ Ru06}).$
5465.97 10	(1)	Jox10 . 64 2	55 5	$\Gamma_{1/2}$ = 0.5 18 8 from Γ = 0.055 eV 5 (2000K000). Integrated σ = 43 eVb 3 (2006R006)
3570.8 1	(1)	36×10^{-3} eV 2	33.2	$T_{1/2}=18.9$ fs 15 from $\Gamma=0.0242$ eV 19 (2006Ru06).
	(-)			$B(E1)(\uparrow)=1.52\times10^{-5}$ 12, $B(M1)(\uparrow)=0.138$ 11 (2006Ru06).
				Integrated σ =21.9 eVb <i>16</i> (2006Ru06).
3599.9 2	1			E(level), J^{π} : level from 2006Ru06 only.
				$T_{1/2}=0.18$ ps 3 from $\Gamma=0.0025$ eV 4 (2006Ru06).
				$B(E1)(\uparrow)=0.16\times10^{-5}$ 2, $B(M1)(\uparrow)=0.014$ 2 (2006Ru06).
2615 6 2	1	180, 10-4 -11 17	15 0 15	Integrated σ =2.3 eVb 4 (2006Ru06).
3013.0 2	1	180×10 ° ev 17	15.9 15	$1_{1/2}=50 \text{ Is } 0 \text{ Irom } 1=0.0082 \text{ eV } 3 (2000\text{Ku00}).$ $P(E_1)(\Delta)=0.50\times10^{-5} \text{ 5 } P(M_1)(\Delta)=0.045 \text{ 5 } (2000\text{FL})(6).$
				$D(E1)()=0.00\times10^{-5}$, $D(M1)()=0.045$ 5 (2000K000). Integrated $\sigma=7.3$ eVb. 7 (2006R006)
3627 3 3	(1)	158×10 ⁻⁴ eV 17	13.8.75	$T_{1/2}=32$ fs 3 from $\Gamma=0.0144$ eV 14 (2006Ru06)
5027.5 5	(1)	150/10 07 17	15.0 15	$B(E1)(\uparrow)=0.86 \times 10^{-5} \ 8 \ B(M1)(\uparrow)=0.078 \ 8 \ (2006Ru06)$
				Integrated σ =12.6 eVb <i>12</i> (2006Ru06).
3659.09 22	1 ^{(+)#}	25×10 ⁻³ eV 3	22 3	$T_{1/2}=18$ fs 3 from $\Gamma=0.025$ eV 4 (2006Ru06).
3887.98 10	1	28×10^{-3} eV 2	21.2 15	Integrated 5 = 20.7 0 10 17 (2000(000)).
3896.68 10	(1)	61×10^{-3} eV 3	46 3	
3925.98 10	(1)	34×10^{-3} eV 2	25.0 17	
4081.59 10	1	37×10^{-3} eV 3	25.2 17	
4156.5 3	1	39×10 ⁻³ eV 5	26 3	
4217.60 10	1	50×10 ⁻³ eV 3	32 2	
4232.10 20	(1)	36×10 ⁻³ eV 2	22.9 16	
4329.90 20	1	36×10^{-3} eV 3	21.8 18	
4516.81 10	1	72×10^{-3} eV 4	41 2	
4565.51 10	1	89×10^{-3} eV 5	50 3	
4583.11 10	1	93×10^{-3} eV 5	51 3	
4594.91 10	1	67×10^{-3} eV 5	36 3	
4689.02 10	1	$64 \times 10^{-3} \text{ eV } 4$	34 2	
4730.32 20	1	$60 \times 10^{-3} \text{ eV } 5$	31.2	
4989.63 20	1	$/4 \times 10^{-3} \text{ eV } 13$	34 0 21 6 79	
3007.33 20	1	4/×10 eV 4	21.0 <i>1</i> ð	

E(level) [†]	J ^π @	Γ_0^2/Γ	I _s (eVb) ^{&}
5034.54 20	1	69×10 ⁻³ eV 11	32 5
5062.9 <i>3</i>	(2)	165×10 ⁻⁴ eV 18	12.3 13
5071.24 20	(1)	31×10 ⁻³ eV 3	13.9 12
5101.3 6	1	12×10 ⁻³ eV 2	5.4 10
5109.3 9	(1)	8×10^{-3} eV 2	3.6 10
5136.04 10	(1)	61×10^{-3} eV 4	26.5 17
5158.3.3	1	41×10^{-3} eV 4	17.7 16
5169.6.3	1	32×10^{-3} eV 3	13.8 13
5181.8.3	1	46×10^{-3} eV 4	19.6 16
5187 2	1		1910 10
5190.4 5	1	28×10 ⁻³ eV 3	11.8 13
5204.6 4	(1)	26×10^{-3} eV 3	11.1 73
5216.0.8	(1)	17×10^{-3} eV 3	7.0.13
5271.2.6	1	23×10^{-3} eV 3	9.4 14
5277.6.3	1	$35 \times 10^{-3} \text{ eV } 4$	14 4 14
5310 5 4	1	$32 \times 10^{-3} \text{ eV}$ 3	13 1 73
5335 65 20	1	52×10^{-3} eV 4	23 4 17
5347 85 10	1	$84 \times 10^{-3} \text{ eV} 5$	34.2
5359.8.3	1	$44 \times 10^{-3} \text{ eV} 4$	17615
5369.6.6	1	$24 \times 10^{-3} \text{ eV} 3$	0613
5382 5 10	1	$10 \times 10^{-3} \text{ eV} \Lambda$	7.5.16
5300.3.6	1	$13 \times 10^{-3} \text{ eV} 4$	13.2.16
5402.26.10	1	$33\times10^{-3} eV 6$	13.2 10
5412.6.8	1	$18 \times 10^{-3} \text{ eV} 3$	7013
5412.0 8	1	$10 \times 10^{-3} \text{ eV} 3$	7.013
5435.5 0	1	$23\times10^{-3} \text{ eV}$ 3	9.0 15
5442.90	1 (1)	$30\times10^{-3} eV 4$	11.0 <i>IJ</i> 9 5 <i>14</i>
5502 7 4	(1)	$22\times10^{-3} \text{ eV } 4$	0.5 14
5510 4 4	1	$32\times10^{-3} eV 4$	12.3 13
5522.2.5	1	44×10^{-3} eV 4	10.7 13
5547.0.2	1	54×10^{-3} eV 4	12.0 13
5554 1 11	1	$30\times10^{-3} eV 4$	10.0 IJ 5 6 12
5594.0 1	1	$13 \times 10^{-3} \text{ eV } 4$	3.013
5506 9 7	1	$26 \times 10^{-3} eV 3$	10.4 12
56047 12	1	$21 \times 10^{-3} \text{ eV } 4$	1.8 13
5612 67 10	1	$1/\times 10^{-3} \text{ eV } 4$	0.1 13
5612.07 10	1	41×10^{-3} eV /	15 5
5618.6 3		$80 \times 10^{-3} \text{ eV } 9$	29 3
5656.5 5	(2)	14×10^{-3} eV 2	8.2 12
56/0.6/ 10	1	$/1 \times 10^{-3} \text{ eV } 5$	25.3 18
5680.9 /	(1)	$24 \times 10^{-3} \text{ eV } 5$	8./1/
5686.5 5	1	$51 \times 10^{-3} \text{ eV} 5$	18.2 18
5/15.9 3	1	$34 \times 10^{-3} \text{ eV } 4$	12.0 12
5725.3 3	1	$44 \times 10^{-3} \text{ eV } 4$	15.3 14
5/52.9 3	1	$50 \times 10^{-3} \text{ eV } 4$	17.6 15
5/42.6 7		$1/\times 10^{-3} \text{ eV } 3$	5.9 11
5/64.0 15	(1)	$14 \times 10^{-3} \text{ eV } 5$	4.9 17
5/70.4 4	1	$43 \times 10^{-3} \text{ eV } 6$	15 2
5798.2 3	1	$37 \times 10^{-3} \text{ eV } 4$	12.6 12
5808.98 10	1	99×10 ⁻³ eV 6	34 2

From ENSDF

¹⁰⁰Mo(γ,γ') 2008Ru04,2008RuZW,1973Mo30 (continued)

E(level) [†]	J ^π @	Γ_0^2/Γ	I _s (eVb) ^{&}	Comments
5826.5 6	(2)	15×10 ⁻³ eV 3	8.5 14	
5840.7 6	1	29×10 ⁻³ eV 4	9.9 14	
5879.39 20	1	68×10 ⁻³ eV 6	22.8 18	
5901.0 6	1	25×10 ⁻³ eV 4	8.1 12	
5947.79 20	1	64×10 ⁻³ eV 5	20.9 15	
5957.2 6	1	28×10 ⁻³ eV 5	9.2 15	
5964.0 6	1	29×10 ⁻³ eV 5	9.3 15	
5972.99 20	1	49×10 ⁻³ eV 4	15.6 <i>13</i>	
5988.9 <i>4</i>	1	36×10 ⁻³ eV 4	11.4 <i>13</i>	
6009.6 4	1	82×10 ⁻³ eV 9	26 <i>3</i>	
6019.5 <i>11</i>	(1)	26×10 ⁻³ eV 6	8.2 17	
6035.5 8	1	23×10 ⁻³ eV 4	7.3 12	
6061.3 9	(2)	13×10 ⁻³ eV 3	6.9 17	
6065.9 7	1	43×10 ⁻³ eV 6	13.4 19	
6082.9 <i>3</i>	1	67×10 ⁻³ eV 7	21 2	
6089.3 4	1	60×10 ⁻³ eV 6	18.5 <i>19</i>	
6109?				E(level): level from 1994BeZZ only.
6122.5 5	1	37×10^{-3} eV 5	11.4 <i>13</i>	
6133.6 7	1	30×10^{-3} eV 4	9.2 13	
6147.1 9	1	19×10^{-3} eV 4	5.8 12	
6174.0 5	1	34×10^{-3} eV 4	10.3 13	
6194.51 <i>10</i>	(1)	124×10^{-3} eV 8	37 2	
6249.4 5	1	38×10^{-3} eV 5	11.2 13	
6257.61 20	1	94×10^{-3} eV 7	27.7 19	
6270.5 8	1	23×10^{-3} eV 4	6.8 13	
6278.71 10	1	114×10^{-3} eV 7	33 2	
6293.1 4	1	40×10^{-3} eV 4	11.5 12	
6310.3 15	(1)	16×10^{-3} eV 5	4.7 13	
6321.2 9	1	64×10^{-5} eV 12	18 3	
6327.6 9	1	70×10^{-5} eV 12	20 3	
6337.5 4	1	$70 \times 10^{-3} \text{ eV } 7$	20.1 19	
6354.32 20	1	$96 \times 10^{-3} \text{ eV } 7$	27.2	
6365.6 19	(1)	$1/\times 10^{-3} \text{ eV } 5$	4.7 15	
6375.6 5	1	$5' \times 10^{-3} \text{ eV } 6$	16.1 16	
6402.0 8	1	$20 \times 10^{-3} \text{ eV } 4$	5.6 11	
6414.3 4	1	68×10 ⁵ eV 8	19.2	
6418 2	1-+			$T_{1/2}=9$ fs 6 from $\Gamma=0.050$ eV 35. $\Gamma(g.s.)/\Gamma(total) \le 0.85$ 13 (1974Wo05), ≤ 0.88 (1981Sc10).
6421.4 6	1	68×10 ⁻³ eV 7	19 2	
6426.6 9	(1)	38×10 ⁻³ eV 7	10.7 18	
6434.1 5	1	36×10 ⁻³ eV 5	10.1 14	
6459.0 6	1	36×10 ⁻³ eV 5	9.9 <i>13</i>	
6473.5 6	1	58×10 ⁻³ eV 7	16 2	
6483.2 20	(1)	19×10 ⁻³ eV 6	5.3 17	
6497.6 <i>6</i>	1	39×10 ⁻³ eV 5	10.6 14	
6517 2	1-‡			$T_{1/2}=2.5$ fs 14 from $\Gamma=0.18$ eV 10.
6519.1 5	1	53×10 ⁻³ eV 7	14.4 17	-,-
6526.6 3	1	96×10 ⁻³ eV 8	26 2	
6570.2 4	1	42×10 ⁻³ eV 5	11.1 12	

From ENSDF

¹⁰⁰Mo(γ,γ') 2008Ru04,2008RuZW,1973Mo30 (continued)

E(level) [†]	J ^π @	Γ_0^2/Γ	I _s (eVb) ^{&}
6597.0 4	(2)	27×10 ⁻³ eV 3	11.9 14
6622.3 4	(1)	65×10 ⁻³ eV 7	17.1 17
6628.3 5	(2)	37×10 ⁻³ eV 4	16.1 18
6641.0 <i>3</i>	1	58×10 ⁻³ eV 6	15.1 14
6658.2 4	1	84×10 ⁻³ eV 7	21.9 19
6669.14 20	1	180×10 ⁻³ eV 11	47 <i>3</i>
6685.3 4	1	80×10 ⁻³ eV 7	20.7 16
6764.1 8	1	46×10 ⁻³ eV 8	12 2
6772.7 8	1	57×10 ⁻³ eV 8	14 2
6790.6 10	1	81×10 ⁻³ eV 13	20 3
6797.5 9	(1)	67×10 ⁻³ eV 14	17 <i>3</i>
6807.9 10	(2)	14×10 ⁻³ eV 3	5.9 14
6829.5 <i>3</i>	(1)	103×10 ⁻³ eV 8	25.4 19
6844.6 11	(2)	28×10 ⁻³ eV 5	12 2
6851.3 <i>15</i>	1	30×10 ⁻³ eV 9	72
6870.0 8	(1)	20×10 ⁻³ eV 5	4.8 11
6886.5 8	1	26×10 ⁻³ eV 5	6.3 12
6893.2 4	1	51×10 ⁻³ eV 6	12.4 14
6906.1 6	1	39×10 ⁻³ eV 6	9.3 14
6912.9 <i>11</i>	(1)	50×10 ⁻³ eV 11	12 3
6919.5 <i>13</i>	1	55×10 ⁻³ eV 12	13 <i>3</i>
6924.9 10	(1)	48×10 ⁻³ eV 13	11 3
6934.2 12	(1)	26×10 ⁻³ eV 7	6.1 16
6949.9 <i>11</i>	1	24×10 ⁻³ eV 7	5.8 16
6957.7 11	(2)	16×10 ⁻³ eV 4	6.3 14
6974.2 8	1	37×10 ⁻³ eV 8	8.7 19
6981.1 <i>12</i>	(2)	20×10 ⁻³ eV 5	8 2
6994.5 <i>5</i>	(2)	43×10 ⁻³ eV 5	17 2
7001.2 5	1	48×10 ⁻³ eV 7	11.2 15
7018.3 6	1	35×10 ⁻³ eV 5	8.2 12
7032.1 5	1	45×10 ⁻³ eV 7	10.6 16
7037.8 10	(1)	23×10 ⁻³ eV 6	5.2 14
7060.2 11	1	15×10 ⁻³ eV 5	3.6 10
7068.1 <i>3</i>	1	51×10 ⁻³ eV 6	11.7 13
7095.4 5	1	29×10 ⁻³ eV 5	6.6 11
7103.5 7	(1)	22×10 ⁻³ eV 5	5.1 10
7115.3 <i>3</i>	1	44×10 ⁻³ eV 5	9.9 12
7136.6 5	1	28×10 ⁻³ eV 5	6.4 11
7171.7 7	(1)	32×10 ⁻³ eV 6	7.1 12
7181.5 9	(1)	24×10 ⁻³ eV 5	5.4 12
7194.4 <i>3</i>	1	69×10 ⁻³ eV 7	15.3 15
7204.0 7	1	33×10 ⁻³ eV 6	7.3 12
7219.4 9	(2)	28×10 ⁻³ eV 6	10 2
7225.4 13	(1)	23×10 ⁻³ eV 7	5.0 15
7299.6 5	1	47×10 ⁻³ eV 6	10.2 13
7312.3 <i>3</i>	1	90×10 ⁻³ eV 7	19.3 15
7330.8 <i>3</i>	1	73×10^{-3} eV 7	15.6 14
7357.7 6	1	51×10^{-3} eV 7	10.9 14
7380.3 7	(1)	43×10 ⁻³ eV 6	9.0 13

From ENSDF

100 **Mo**(γ , γ') 2008Ru04,2008RuZW,1973Mo30 (continued)

¹⁰⁰Mo Levels (continued)

E(level) [†]	J ^π @	Γ_0^2/Γ	I _s (eVb) ^{&}	Comments
7403.3 8	1	44×10^{-3} eV 7	9.3 13	
7450.6 10	1	38×10^{-3} eV 7	7.8 14	
7471.0 4	1	84×10^{-3} eV 8	17.3 16	
7487.2 7	1	125×10^{-3} eV 17	26.4	
7494.8 11	(1)	98×10^{-3} eV 14	20.3	
7503.5 12	(2)	31×10^{-3} eV 7	11 2	
7526.1 6	1	66×10 ⁻³ eV 8	13.6 15	
7546.3 20	1	24×10 ⁻³ eV 8	4.9 15	
7559.1 15	(1)	31×10 ⁻³ eV 8	6.2 15	
7577.2 9	1	44×10 ⁻³ eV 7	8.8 14	
7606.9 4	1	91×10^{-3} eV 8	18.0 16	
7637 2	1-‡			$T_{1/2}$ =3.3 fs 9 from Γ=0.14 eV 4 (2006Ru06). Γ(g.s.)/Γ(total)≤0.28 4 (1974Wo05).
7744.5 8	1	59×10 ⁻³ eV 8	11.3 14	
7758.4 10	(1)	46×10 ⁻³ eV 7	8.9 14	
7771.5 12	1	37×10 ⁻³ eV 7	7.0 13	
7796.9 14	1	26×10 ⁻³ eV 6	4.9 12	
7831.2 8	1	44×10 ⁻³ eV 7	8.3 12	
7863.1 7	(1)	64×10 ⁻³ eV 8	12.0 15	
7875.4 6	1	107×10 ⁻³ eV 10	19.9 <i>19</i>	
7887.2 10	1	67×10 ⁻³ eV 9	12.4 16	
7935.7 10	1	38×10 ⁻³ eV 6	7.0 11	
7955.7 6	1	61×10 ⁻³ eV 7	11.1 <i>13</i>	
7988.0 7	1	66×10 ⁻³ eV 8	12.0 13	
8002.0 6	1	66×10 ⁻³ eV 8	11.9 <i>13</i>	
8033.5 8	1	57×10 ⁻³ eV 8	10.2 13	
8052.2 6	1	96×10 ⁻³ eV 10	17.0 18	
8063.7 9	1	65×10 ⁻³ eV 10	11.6 16	
8083.3 16	1	38×10 ⁻³ eV 8	6.7 14	
8095.9 11	1	68×10 ⁻³ eV 11	12 2	
8108.1 12	1	50×10 ⁻³ eV 11	8.7 18	
8127.7 10	1	44×10 ⁻³ eV 7	7.7 12	
8194.4 9	1	53×10 ⁻³ eV 8	9.2 13	
8208.8 6	1	115×10 ⁻³ eV 11	19.6 18	
8218.2 6	(1)	100×10 ⁻³ eV 11	17.0 18	
8238.6 9	1	45×10 ⁻³ eV 7	7.6 11	
8257.1 14	1	36×10 ⁻³ eV 8	6.0 13	
8269.6 6	1	95×10 ⁻³ eV 10	15.9 16	
8283.6 6	1	102×10 ⁻³ eV 11	17.1 17	
8294.5 13	(1)	41×10 ⁻³ eV 10	6.9 16	

[†] All the levels above 2.5 MeV are from 2008RuZW (also 2006Ru06), except that 5187, 6418, 6517 and 7637 levels are from 1973Mo30, and a tentative 6109 level from 1994BeZZ.
[‡] Parity from γ(θ,pol).
[#] Parity assigned by 2006Ru06 based on Alaga Rule.

[@] From $\gamma(\theta)$ for levels above 2040. Others are from the Adopted Levels.

& Integrated cross section from 2008RuZW, and some also from 2006Ru06.

			100 N	Ιο (γ,γ')	/') 2008Ru0		4,2008RuZW,1973Mo30 (continued)			
						$\gamma(1)$	¹⁰⁰ Mo)			
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	Comments			
535.6 1064.07	$2^+_{2^+}$	535.6 1064 1 <i>1</i>		0.0	0^+ 0^+		E_{γ} : rounded value from the Adopted dataset.			
1001.07	2	1001111		0.0	0		established E2 in the Adopted dataset.			
2632.4	(1)	2632.4 3		0.0	0^+	(D)	E _y : 2633.2 in 2006Ru06.			
2901.1	(1)	2901.0 <i>1</i>		0.0	0^+	(D)	$F_{\gamma}(90^{\circ})/F_{\gamma}(127^{\circ})=0.6.3$ (2006Ru06). $F_{\gamma}: 2901.2 I$ (2006Ru06). $F_{\gamma}(90^{\circ})/F_{\gamma}(127^{\circ})=1.22 I2.$			
2905.8	(1)	2905.7 1		0.0	0^+	(D)	Additional information 1. E_{γ} : 2906.3 <i>1</i> (2006Ru06).			
							$1\gamma(90^{\circ})/1\gamma(127^{\circ})=1.19$ 12. Additional information 2			
3066.3	(1)	3066.2 2		0.0	0^+	(D)	E_{γ} : 3065.9 <i>1</i> (2006Ru06).			
2109.4	(1)	2109.2.4		0.0	0+		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.62\ 9\ (2006Ru06).$			
5198.4	(1)	5198.5 4		0.0	0.	(D)	E_{γ} : 5199.0 2 (2006Ru06). I γ (90°)/I γ (127°)=0.66 17 (2006Ru06).			
3242.8	1	3242.7 1		0.0	0^+	D	E _γ : 3242.5 <i>1</i> (2006Ru06).			
							$I\gamma(90^\circ)/I\gamma(127^\circ)=0.91$ 12.			
3200 16	(1^{+})	2505 3 2 3	15 /	60/ 8	0^+	(D)	E + 2595 2 I (2006 Bm06)			
5290.10	(1)	2393.3 5	15 4	094.0	0	(D)	$B(E1)(\downarrow)=0.09\times10^{-5}$ 3, $B(M1)(\downarrow)=0.008$ 3 (2006Ru06).			
							$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.74\ 20\ (2006Ru06).$			
		0755 4 3	15.2	525 6	2+		$I_s=20 \text{ eVb } 2. \Gamma_0^2/\Gamma=11.4 \text{ meV } 12.$			
		2755.4 3	15.3	535.6	21	(D)	E_{γ} : 2/54.7 2 (2006Ru06). Placement from 2006Ru06			
							$\Gamma_0^2/\Gamma(\text{meV})=3.3 \ 9. \ I_s(\text{eVb})=4.9 \ 14.$			
							$B(E1)(\downarrow)=0.07\times10^{-5} 3$, $B(M1)(\downarrow)=0.007 2$ (2006Ru06).			
		2200 1 1	70.4	0.0	0+	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.79$ 19 (2006Ru06).			
		5290.1 1	70 4	0.0	0	D	$B(E_{\gamma}, 5290.17 (2000R000))$ B(E1)(1)=0.20×10 ⁻⁵ 4 B(M1)(1)=0.018 4 (2006R006)			
							$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.72$ 7 (2006Ru06).			
2242 1	1	2242.0.1	100	0.0	0+		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=1.08\ 12.$			
3342.1 3483.97	(1^+)	3342.0 <i>1</i> 2419 8 <i>1</i>	97	0.0 1064 07	2^+		$1\gamma(90^{\circ})/1\gamma(127^{\circ})=0.69$ 13 (2006R006). E _v : γ from 2006R006 only			
5105.57	(1)	2119.01	71	1001.07	2		$B(E1)(\downarrow)=0.34\times10^{-5}$ 7, $B(M1)(\downarrow)=0.031$ 6 (2006Ru06).			
							$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.62$ 12 (2006Ru06).			
		2948.2 <i>I</i>	10 1	535.6	2+		E_{γ} : γ from 2006Ru06 only. $P(E_{\gamma}) = 0.21 \times 10^{-5} 4 P(M_{1}) (1) = 0.018 2 (2006P_{\gamma}) (6)$			
							$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.72$ 13 (2006Ru06).			
		3483.9 1	80.9 16	0.0	0^+	(D)	E _γ : 3483.4 1 (2006Ru06).			
							$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.94$ 7.			
							$B(E1)(\downarrow)=1.02\times10^{\circ}$ 12, $B(M1)(\downarrow)=0.091$ 10 (2006R006). Additional information 4.			
3570.8	(1)	3570.7 1		0.0	0^+	(D)	E_{γ} : 3570.3 <i>I</i> (2006Ru06).			
							$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.96\ 10.$			
3599.9	1	3599 8 2		0.0	0^{+}		Additional information 5. $I_{\nu}(90^{\circ})/I_{\nu}(127^{\circ})=1.0.4$ (2006Ru06)			
3615.6	1	3615.5 2		0.0	0^{+}	D	E_{y} : 3614.7 <i>1</i> (2006Ru06).			
							$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.67$ 14.			
3627 3	(1)	3627 2 3		0.0	0^{+}	(\mathbf{D})	Additional information 6. E.: $3627 \otimes 1$ (2006Ru06)			
5021.5	(1)	5021.2 5		0.0	5		$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.36$ 12.			
		O _					Additional information 7.			
3659.09	$1^{(+)}$	2595.3 ^{&} 3	17 4	1064.07	2^{+}	D	E_{γ} : 2595.2 <i>1</i> (2006Ru06).			
							$I_s = 20 \text{ evb } 2.1 \frac{1}{0}/1 = 11.4 \text{ mev } 12.$			

$\gamma(^{100}\text{Mo})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$E_f J_f^{\pi}$	Mult. [#]	Comments
						$B(E1)(\downarrow)=0.23\times10^{-5}$ 9, $B(M1)(\downarrow)=0.020$ 8 (2006Ru06).
						$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.74\ 20\ (2006Ru06).$
3659.09	$1^{(+)}$	3658.7 <i>3</i>	83 4	$0.0 \ 0^+$	D	E_{γ} : 3658.7 <i>1</i> (2006Ru06).
						$B(E1)(\downarrow)=0.41\times10^{-5} 8$, $B(M1)(\downarrow)=0.036 7$ (2006Ru06).
						$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.8$ 2.
2007.00	1	2007.0.1		0.0.0+	D	Additional information 8. $1.000 \times 10^{-10} \times 10^{-10}$
3887.98	1 (1)	3887.91		$0.0 0^{+}$	D (D)	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.91$ 12. $I_{2}(00^{\circ})/I_{2}(127^{\circ})=0.80$ 7
3025 08	(1)	3025 0 1		$0.0 \ 0^{+}$	(D)	$\Gamma_{\gamma}(90^{\circ})/\Gamma_{\gamma}(127^{\circ}) = 0.89^{\circ}/.$ $\Gamma_{\gamma}(90^{\circ})/\Gamma_{\gamma}(127^{\circ}) = 1.12^{\circ}/.$
4081 59	1	4081 5 1		$0.0 \ 0^{+}$	D	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 0.12$ 13. $I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 0.78$ 10
4156.5	1	4156.4.3		$0.0 0^+$	D	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.61$ 13.
4217.60	1	4217.5 1		$0.0 0^+$	D	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.91$ 9.
4232.10	(1)	4232.0 2		0.0 0+	(D)	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.99$ 12.
4329.90	1	4329.8 2		$0.0 \ 0^+$	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.92$ 13.
4516.81	1	4516.7 <i>1</i>		$0.0 \ 0^+$	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.77$ 6.
4565.51	1	4565.4 <i>1</i>		$0.0 \ 0^+$	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.71$ 6.
4583.11	1	4583.0 1		$0.0 0^+$	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.72$ 6.
4594.91	1	4594.8 1		$0.0 0^+$	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.73$ 8.
4689.02	1	4688.9 1		$0.0 0^+$	D	$1\gamma(90^{\circ})/1\gamma(127^{\circ}) = 0.86$ 9.
4/30.32	1	4/30.2 2		$0.0 0^{+}$	D	$1\gamma(90^{\circ})/1\gamma(127^{\circ}) = 0.89 \ 12.$
4989.05	1	4989.3 2		$0.0 \ 0$ $0.0 \ 0^+$	D	$I\gamma(90)/I\gamma(127) = 0.02.$ $I_{2}(90^{\circ})/I_{2}(127^{\circ}) = 0.73$
5034 54	1	5034.4.2		$0.0 0^{+}$	D	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 0.8.3$
5062.9	(2)	5062.8.3		$0.0 0^+$	(0)	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 0.03.$ $I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 1.8.4$
5071.24	(1)	5071.1 2		$0.0 0^+$	(D)	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 1.4 2.$
5101.3	1	5101.2 6		0.0 0+	Ď	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.7$ 4.
5109.3	(1)	5109.2 9		$0.0 \ 0^+$	(D)	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.6~6.$
5136.04	(1)	5135.9 <i>1</i>		$0.0 \ 0^+$	(D)	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=1.04$ 11.
5158.3	1	5158.2 <i>3</i>		$0.0 \ 0^+$	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.71$ 12.
5169.6	1	5169.5 3		$0.0 0^+$	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.65$ 14.
5181.8	1	5181.7 3		$0.0 0^+$	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.68$ 11.
5187	1	4651 2	84 13	535.6 2+	D	$A_2 = 0.00 \ I0$
5100 4	1	518/2	100 15	$0.0 0^{+}$	D	$A_2 = +0.39 \ 20$
5190.4	1 (1)	5190.5 5		$0.0 0^{+}$	D (D)	$1\gamma(90)/1\gamma(127) = 0.70$ 18. $1\alpha(90^{\circ})/1\alpha(127^{\circ}) = 0.31$ 16
5216.0	(1)	521598		$0.0 \ 0^{+}$	(D)	1/(90)/(127) = 0.51 10.
5271.2	1	5271.1.6		$0.0 0^{+}$	D	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.7.3$
5277.6	1	5277.5 3		$0.0 \ 0^+$	D	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 1.0 2.$
5310.5	1	5310.3 4		0.0 0+	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.65$ 16.
5335.65	1	5335.5 2		$0.0 \ 0^+$	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.67$ 9.
5347.85	1	5347.7 <i>1</i>		$0.0 \ 0^+$	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.87$ 8.
5359.8	1	5359.6 <i>3</i>		$0.0 0^+$	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.60$ 12.
5369.6	1	5369.4 6		$0.0 0^+$	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.5\ 2.$
5382.5	1	5382.3 10		$0.0 0^+$	D	$1\gamma(90^{\circ})/1\gamma(127^{\circ})=0.5$ 4.
5390.3	1	5390.1 6		$0.0 0^{+}$	D	$1\gamma(90^{\circ})/1\gamma(127^{\circ}) = 1.13.$
5402.26	1	5402.1 1		$0.0 0^{+}$	D	$1\gamma(90^{\circ})/1\gamma(127^{\circ})=0.75$ 8. $1_{2}(00^{\circ})/1_{2}(127^{\circ})=0.4.3$
5412.0	1	5412.4 0		$0.0 \ 0^{+}$	D	$\Gamma_{\gamma}(90^{\circ})/\Gamma_{\gamma}(127^{\circ}) = 0.4^{\circ} 3.$
5442.9	1	544276		$0.0 0^{+}$	D	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 0.9.5$. $I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 1.0.3$
5449.6	(1)	5449.4 6		$0.0 \ 0^+$	(D)	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=1.34.$
5502.7	1	5502.5 4		$0.0 0^{+}$	D	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 1.0 2.$
5519.4	1	5519.2 4		0.0 0+	D	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.76\ 13.$
5532.2	1	5532.0 5		$0.0 \ 0^+$	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.81$ 17.
5547.9	1	5547.7 <i>3</i>		$0.0 \ 0^+$	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.85$ 13.
5554.4	1	5554.2 11		$0.0 \ 0^+$	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.4$ 3.

$\gamma(^{100}\text{Mo})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	Comments
5584.9	1	5584.7 <i>4</i>		0.0	0^{+}	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=1.1$ 3.
5596.8	1	5596.67		0.0	0^{+}	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=1.1$ 3.
5604.7	1	5604.5 12		0.0	0^{+}	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.5$ 3.
5612.67	1	5612.5 <i>1</i>		0.0	0^{+}	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=1.0$ 4.
5618.6	1	5618.4 <i>3</i>		0.0	0^{+}	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.84$ 18.
5656.5	(2)	5656.3 5		0.0	0^{+}	(Q)	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=1.9$ 6.
5670.67	1	5670.5 1		0.0	0^{+}	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.75$ 9.
5680.9	(1)	5680.7 7		0.0	0+	(D)	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=1.5$ 6.
5686.5	1	5686.3 5		0.0	0+	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.62$ 12.
5715.9	1	5/15.7 3		0.0	0^+	D	$1\gamma(90^{\circ})/1\gamma(127^{\circ})=0.89$ 18.
5725.3	1	5725.1 3		0.0	0^+	D	$1\gamma(90^{\circ})/1\gamma(127^{\circ})=0.82$ 14.
5732.9	1	5732.7 3		0.0	0^+	D	$1\gamma(90^{\circ})/1\gamma(127^{\circ})=0.82$ 13.
5742.6		5742.4 7		0.0	0^{+}	D	$1\gamma(90^{\circ})/1\gamma(127^{\circ})=0.9$ 4.
5764.0	(1)	5/63.8 15		0.0	0^{+}	(D)	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.3$ 11.
5708.2	1	5770.24		0.0	0^{+}	D	$1\gamma(90^{\circ})/1\gamma(127^{\circ})=0.54.$
5000 00	1	5/98.0 5		0.0	0^{+}	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.82$ 1/.
5000.90	(2)	5000.01		0.0	0+		$\Gamma\gamma(90)/\Gamma\gamma(127) = 0.787$. Le $(00^{\circ})/Le(127^{\circ}) = 1.5.5$
5840.7	(2)	5820.5 0 5840 5 6		0.0	0	(Q)	$I\gamma(90)/I\gamma(127) = 1.5 J.$ $I_{2}(00^{\circ})/I_{2}(127^{\circ}) = 0.02.28$
5870.20	1	5870 2 2		0.0	0+	D	$\Gamma_{\gamma}(90^{\circ})/\Gamma_{\gamma}(127^{\circ}) = 0.92^{\circ}20.$
5001.0	1	5000.8.6		0.0	0+	D	$\Gamma_{\gamma}(90^{\circ})/\Gamma_{\gamma}(127^{\circ}) = 0.8979.$ $\Gamma_{\gamma}(90^{\circ})/\Gamma_{\gamma}(127^{\circ}) = 0.832$
50/7 70	1	5900.8 0		0.0	0+	D	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 0.85.$ $I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 0.92.11$
5057.7	1	5957.0.6		0.0	0+	D	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 0.92$ 11. $I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 0.8$ 3
5964.0	1	5963.8.6		0.0	0+	D	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 0.03$. $I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 0.03$.
5972.99	1	5972.8.2		0.0	0^{+}	D	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 0.73.$
5988.9	1	5988 7 4		0.0	0^{+}	D	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 0.7713.$ $I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 1.1.2$
6009.6	1	6009 4 4		0.0	0^{+}	D	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 0.88.19$
6019.5	(1)	6019 3 11		0.0	0^{+}	(D)	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=1.2.5$
6035.5	1	6035.3.8		0.0	0^{+}	D	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 1.03$
6061.3	(2)	6061.1.9		0.0	0^{+}	(0)	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=4.3.$
6065.9	1	6065.7 7		0.0	0^{+}	D	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.9.3.$
6082.9	1	6082.7 <i>3</i>		0.0	0^{+}	D	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.90$ 15.
6089.3	1	6089.1 4		0.0	0^{+}	D	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.65 \ 13.$
6122.5	1	6122.3 5		0.0	0^{+}	D	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.58$ 17.
6133.6	1	6133.4 7		0.0	0^{+}	D	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.43$ 18.
6147.1	1	6146.9 9		0.0	0^{+}	D	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.7$ 3.
6174.0	1	6173.8 5		0.0	0^{+}	D	$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.71$ 19.
6194.51	(1)	6194.3 <i>1</i>		0.0	0^{+}	(D)	$I\gamma(90^{\circ})/I\gamma(127^{\circ}) = 0.58 5.$
6249.4	1	6249.2 5		0.0	0^{+}	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.69$ 18.
6257.61	1	6257.4 2		0.0	0^{+}	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.84$ 9.
6270.5	1	6270.3 8		0.0	0^{+}	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.7$ 3.
6278.71	1	6278.5 <i>1</i>		0.0	0^{+}	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ}) = 0.79$ 7.
6293.1	1	6292.9 4		0.0	0^{+}	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.77$ 17.
6310.3	(1)	6310.1 <i>15</i>		0.0	0^{+}	(D)	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.9$ 6.
6321.2	1	6321.0 9		0.0	0^{+}	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ}) = 0.8 \ 3.$
6327.6	1	6327.4 9		0.0	0^{+}	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ}) = 1.1 \ 3.$
6337.5	1	6337.3 4		0.0	0^{+}	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.9$ 2.
6354.32	1	6354.1 2		0.0	0^{+}	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.82$ 10.
6365.6	(1)	6365.4 19		0.0	0^{+}	(D)	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.8$ 6.
6375.6	1	6375.4 5		0.0	0+	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=1.05$ 19.
6402.0	1	6401.8 8		0.0	0+	D	$1\gamma(90^{\circ})/1\gamma(127^{\circ})=0.8$ 4.
6414.3	1	6414.1 4		0.0	0*	D	$1\gamma(90^{\circ})/1\gamma(127^{\circ})=0.46$ 15.
6418	1-	3788 ⁴ 4	72	2632.4	(1)		
		4385 4	19 4	2033	0*		$A_2 = +0.579$
		4444 ⁴ 4	62	1974?	$(1,2^{+})$		

00 Mo (γ, γ')	2008Ru04,2008RuZW,1973Mo30 (continued)
---	--

$\gamma(^{100}\text{Mo})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ	Comments
6418	1-	5355 4 5723 4 5883 4	11 <i>3</i> 0.8 <i>4</i> 1.2 <i>6</i>	1064.07 694.8 535.6	2 ⁺ 0 ⁺ 2 ⁺	(E1+M2) [@]	+0.21 12	A ₂ =+0.19 8
6421.4 6426.6 6434.1 6459.0 6473.5 6483.2 6497.6 6517	1 (1) 1 1 (1) 1 1 ⁻	6418 4 6421.2 6 6426.4 9 6433.9 5 6458.8 6 6473.3 6 6483 2 6497.4 6 3445 ^a 3 4477 3 5055 3 5455 3	100 <i>15</i> 18 <i>3</i> 23 <i>5</i> 28 <i>5</i> 8 <i>2</i>	0.0 (0.0 (0.0)))))))))))))))))))))))))))))))))))	0^+ 0^+ 0^+ 0^+ 0^+ 0^+ 0^+ (1) $(2)^+$ 2^+ 2^+ 2^+	E1 [@] D (D) D D (D) D		$\begin{array}{l} A_{2} = +0.51 \ 2 \\ I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 0.70 \ 19. \\ I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 1.2 \ 5. \\ I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 1.1 \ 3. \\ I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 1.1 \ 3. \\ I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 0.49 \ 14. \\ I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 1.1 \ 7. \\ I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 0.9 \ 2. \end{array}$
		5823 <i>3</i> 5982 <i>3</i> 6517 <i>3</i>	10 2 32 5 100 <i>15</i>	694.8 (535.6 2 0.0 (0+ 2+ 0+	E1 [@]		$A_{2} = +0.41 \ 26$ $A_{2} = +0.03 \ 4$ $A_{2} = +0.50 \ 1$
6519.1 6526.6 6570.2	1 1 1 (2)	6518.9 <i>5</i> 6526.4 <i>3</i> 6570.0 <i>4</i> 6506 8 <i>4</i>		$\begin{array}{c} 0.0 & 0 \\ 0.0 & 0 \\ 0.0 & 0 \\ 0.0 & 0 \end{array}$	0^+ 0^+ 0^+	D D D		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.75 \ I7.$ $I\gamma(90^{\circ})/I\gamma(127^{\circ})=1.01 \ I4.$ $I\gamma(90^{\circ})/I\gamma(127^{\circ})=1.0 \ 2.$ $I_{2}(90^{\circ})/I\gamma(127^{\circ})=1.8 \ 4.$
6622.3 6628.3 6641.0	(2) (1) (2) 1	6622.1 <i>4</i> 6628.1 <i>5</i> 6640 8 3		0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.0	0 0 ⁺ 0 ⁺	(Q) (D) (Q) D		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=1.84.$ $I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.47$ 12. $I\gamma(90^{\circ})/I\gamma(127^{\circ})=1.74.$ $I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.93$ 16
6658.2 6669.14 6685.3	1 1 1	6658.0 <i>4</i> 6668.9 <i>2</i> 6685.1 <i>4</i>		0.0 (0.0 (0.0 (0+ 0+ 0+	D D D		$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.80 \ I3.$ $I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.70 \ 6.$ $I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.93 \ I3.$
6764.1 6772.7 6790.6	1 1 1	6763.9 8 6772.5 8 6790.4 <i>10</i>		0.0 (0.0 (0.0 (0+ 0+ 0+	D D D		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.9 \ 4.$ $I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.9 \ 3.$ $I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.9 \ 3.$
6797.5 6807.9 6829.5	(1) (2) (1)	6797.3 9 6807.7 10 6829.2 3		$\begin{array}{c} 0.0 & 0 \\ 0.0 & 0 \\ 0.0 & 0 \\ 0.0 & 0 \\ 0.0 & 0 \\ 0.0 & 0 \\ 0.0 & 0 \\ 0.0 & 0 \\ 0 & 0 \\$	0+ 0+ 0+	(D) (Q) (D)		$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 1.3 \ I0.$ $I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 2.5 \ 22.$ $I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 1.07 \ I4.$
6844.6 6851.3 6870.0	(2) 1 (1)	6844.3 11 6851.0 15 6869.7 8 6886 2 8		0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.0	0^{+} 0^{+} 0^{+}	(Q) D (D)		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=1.6\ 6.$ $I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.6\ 4.$ $I\gamma(90^{\circ})/I\gamma(127^{\circ})=1.4\ 6.$ $I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.9\ 4.$
6893.2 6906.1 6912.9	$1 \\ 1 \\ 1 \\ (1)$	6892.9 <i>4</i> 6905.8 <i>6</i> 6912.6 <i>11</i>		0.0 (0	0 ⁺ 0 ⁺ 0 ⁺	D D (D)		$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.54^{\circ}$. $I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.56^{\circ}$ 15. $I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.7^{\circ}$ 2. $I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=1.0^{\circ}$ 8.
6919.5 6924.9 6934.2	1 (1) (1)	6919.2 <i>13</i> 6924.6 <i>10</i> 6933.9 <i>12</i>		0.0 (0.0 (0.0 (0+ 0+ 0+	D (D) (D)		$I\gamma(90^{\circ})/I\gamma(127^{\circ}) = 0.6 3.$ $I\gamma(90^{\circ})/I\gamma(127^{\circ}) = 1.4 10.$
6949.9 6957.7 6974.2	1 (2) 1	6949.6 <i>11</i> 6957.4 <i>11</i> 6973.9 <i>8</i>		0.0 (0.0 (0.0 (0+ 0+ 0+	D (Q) D		$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.6 \ 4.$ $I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=1.7 \ 9.$ $I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.7 \ 4.$
6981.1 6994.5 7001.2	(2) (2) 1	6980.8 <i>12</i> 6994.2 <i>5</i> 7000.9 <i>5</i>		$\begin{array}{c} 0.0 & 0 \\ 0.0 & 0 \\ 0.0 & 0 \\ 0.0 & 0 \end{array}$	0^+ 0^+ 0^+	(Q) (Q) D		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=2.2$ 13. $I\gamma(90^{\circ})/I\gamma(127^{\circ})=1.7$ 4. $I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.5$ 3. $I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.2$
7018.3 7032.1 7037.8	1 (1)	7018.0 6 7031.8 5 7037.5 10		0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.0	0+ 0+ 0+	D D (D)		$1\gamma(90^{\circ})/1\gamma(127^{\circ})=0.9 5.$ $1\gamma(90^{\circ})/1\gamma(127^{\circ})=0.6 3.$ $1\gamma(90^{\circ})/1\gamma(127^{\circ})=1.0 6.$ $1\gamma(90^{\circ})/1\gamma(127^{\circ})=0.6 4.$
7060.2	1 1	7059.9 11 7067.8 <i>3</i>		0.0 (0 ⁺	D		$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.88$ 19.

$\gamma(^{100}\text{Mo})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} ‡	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	δ	Comments
7095.4	1	7095.1.5		0.0	0^{+}	D		$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.6.3.$
7103 5	(1)	7103 2 7		0.0	0^{+}	(D)		$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 1.1.4$
7115.3	1	7115.0.3		0.0	0^{+}	D		$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 0.8.2$
7136.6	1	7136.3.5		0.0	0+	D		$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.8.3$
71717	(1)	7171 4 7		0.0	0+	(D)		$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ}) = 0.85.$ $I_{\alpha}(00^{\circ})/I_{\alpha}(127^{\circ}) = 1.4.5$
71015	(1)	7191 2 0		0.0	0	(D)		$\Gamma\gamma(90)/\Gamma\gamma(127) = 1.4 J.$
7181.5	(1)	7181.2.9		0.0	0+	(D)		$I\gamma(90)/I\gamma(127) = 1.0.5.$
7194.4	1	/194.1 3		0.0	0.	D		$1\gamma(90^{\circ})/1\gamma(127^{\circ})=0.97$ 19.
7204.0	1	7203.77		0.0	0.	D		$1\gamma(90^{\circ})/1\gamma(127^{\circ})=0.5$ 3.
7219.4	(2)	7219.1.9		0.0	0'	(Q)		$1\gamma(90^{\circ})/1\gamma(127^{\circ})=1.57$
7225.4	(1)	7225.1 13		0.0	0	(D)		$1\gamma(90^{\circ})/1\gamma(127^{\circ})=0.78.$
7299.6	1	7299.3 5		0.0	0^+	D		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.56$ 17.
7312.3	1	7312.0 <i>3</i>		0.0	0^{+}	D		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.67$ 10.
7330.8	1	7330.5 <i>3</i>		0.0	0^{+}	D		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.58 \ 11.$
7357.7	1	7357.4 6		0.0	0^{+}	D		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.70$ 19.
7380.3	(1)	7380.0 7		0.0	0^{+}	(D)		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=1.3$ 4.
7403.3	1	7403.0 8		0.0	0^{+}	D		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.7$ 2.
7450.6	1	7450.3 10		0.0	0^{+}	D		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.6\ 2.$
7471.0	1	7470.7 <i>4</i>		0.0	0^{+}	D		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=1.01$ 17.
7487.2	1	7486.9 7		0.0	0^{+}	D		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.47$ 17.
7494.8	(1)	7494.5 11		0.0	0^{+}	(D)		$I\gamma(90^{\circ})/I\gamma(127^{\circ}) = 1.3 3.$
7503.5	(2)	7503.2 12		0.0	0^{+}	(Q)		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=1.9$ 8.
7526.1	1	7525.8 6		0.0	0^{+}	D		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.9$ 2.
7546.3	1	7546 2		0.0	0^{+}	D		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.8$ 5.
7559.1	(1)	7558.8 15		0.0	0^{+}	(D)		$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=1.1$ 6.
7577.2	ì	7576.9 9		0.0	0^{+}	D		$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.8$ 3.
7606.9	1	7606.6 4		0.0	0^{+}	D		$I_{\gamma}(90^{\circ})/I_{\gamma}(127^{\circ})=0.56$ 10.
7637	1-	4569 ^a 4	41	3066.3	(1)			
	-	5007^{a} 2	6.2	2632.4	(1)			
		5597 4	51	2040	$(2)^+$			$A_2 = +0.28$ 15
								A ₂ for $(5597\gamma + 5604\gamma)(\theta)$.
		5604 <i>4</i>	51	2033	0^{+}			2 (()))))))))))))))))
		6176 2	41	1462	2^{+}			
		6574 2	15.3	1064.07	2^{+}			$A_2 = +0.062$
		7102.2	101 75	535.6	2+	$(F1+M2)^{@}$	-0.06.2	$A_{2} = +0.013.16$
		7102 2	100 15	0.0	2 0+	$(\mathbf{L}\mathbf{I} + \mathbf{W}\mathbf{I}\mathbf{Z})$	0.00 2	$M_2 = 10.015 10$
77445	1	76372	100 15	0.0	0.	EI		$A_2 = +0.495$
7744.5	1	7744.2 8		0.0	0	D (D)		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.82.$
7758.4	(1)	//58.1 10		0.0	0.	(D)		$1\gamma(90^{\circ})/1\gamma(127^{\circ}) = 1.44.$
///1.5	1	7771.2.12		0.0	0^{+}	D		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.94.$
//96.9	1	//96.6 14		0.0	0'	D		$1\gamma(90^{\circ})/1\gamma(127^{\circ})=0.64.$
/831.2	1	/830.9 8		0.0	0	D		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.72.$
/863.1	(1)	/862.8 /		0.0	0'	(D)		$1\gamma(90^{\circ})/1\gamma(127^{\circ})=0.44$ 13.
7875.4	1	7875.1.6		0.0	0'	D		$1\gamma(90^{\circ})/1\gamma(127^{\circ})=0.56$ 12.
7887.2	1	7886.9 10		0.0	0^+	D		$1\gamma(90^{\circ})/1\gamma(127^{\circ})=0.8$ 2.
7935.7	1	7935.4 10		0.0	0	D		$1\gamma(90^{\circ})/1\gamma(127^{\circ})=0.73.$
7955.7	1	7955.4 6		0.0	0+	D		$1\gamma(90^{\circ})/1\gamma(127^{\circ})=0.66$ 16.
7988.0	1	7987.7 7		0.0	0^+	D		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.65$ 16.
8002.0	1	8001.7 6		0.0	0^{+}	D		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.51$ 13.
8033.5	1	8033.2 8		0.0	0+	D		$1\gamma(90^{\circ})/1\gamma(127^{\circ})=0.61$ 16.
8052.2	1	8051.9 6		0.0	0^{+}	D		$I\gamma(90^{\circ})/I\gamma(127^{\circ}) = 0.67$ 13.
8063.7	1	8063.4 9		0.0	0^{+}	D		$I\gamma(90^{\circ})/I\gamma(127^{\circ}) = 0.8 2.$
8083.3	1	8082.9 16		0.0	0^+	D		$1\gamma(90^{\circ})/1\gamma(127^{\circ})=0.5\ 2.$
8095.9	1	8095.5 11		0.0	0+	D		$1\gamma(90^{\circ})/1\gamma(127^{\circ}) = 0.55$ 18.
8108.1	1	8107.7 12		0.0	0^{+}	D		$I\gamma(90^{\circ})/I\gamma(127^{\circ}) = 0.6 3.$
8127.7	1	8127.3 10		0.0	0^{+}	D		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.7$ 2.
8194.4	1	8194.0 9		0.0	0^{+}	D		$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.9$ 3.

100 **Mo**(γ , γ') 2008Ru04,2008RuZW,1973Mo30 (continued)

$\gamma(^{100}Mo)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult.#	Comments
8208.8	1	8208.4 6	$0.0 \ 0^+$	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.80$ 13.
8218.2	(1)	8217.8 6	$0.0 \ 0^+$	(D)	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.48 \ 10.$
8238.6	1	8238.2 9	$0.0 \ 0^+$	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.58$ 19.
8257.1	1	8256.7 14	$0.0 \ 0^+$	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.7$ 3.
8269.6	1	8269.2 6	$0.0 \ 0^+$	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ}) = 0.91 \ 17.$
8283.6	1	8283.2 6	$0.0 \ 0^+$	D	$I\gamma(90^{\circ})/I\gamma(127^{\circ})=0.84$ 16.
8294.5	(1)	8294.1 <i>13</i>	$0.0 \ 0^+$	(D)	$I\gamma(90^{\circ})/I\gamma(127^{\circ}) = 1.2$ 7.

[†] All the γ rays from levels above 2.5 MeV are from 2008RuZW (also 2006Ru06), except those from 5187, 6418, 6517 and 7637 levels, which are from 1973Mo30.
[‡] Photon branchings from 2006Ru06.

[#] From $\gamma(\theta)$ data.

^(a) From $\gamma(lin pol)$ measurement.

[&] Multiply placed.

^{*a*} Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹⁰⁰Mo(γ,γ') 2008Ru04,2008RuZW,1973Mo30

Legend

Level Scheme

Intensities: % photon branching from each level

---- γ Decay (Uncertain)

 $^{100}_{\ 42} Mo_{58}$

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: % photon branching from each level

---- γ Decay (Uncertain)

 $^{100}_{\ 42} Mo_{58}$

Level Scheme (continued)

Level Scheme (continued)

¹⁰⁰Mo(γ,γ') 2008Ru04,2008RuZW,1973Mo30

Level Scheme (continued)

