Adopted Levels, Gammas

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Balraj Singh and Jun Chen	NDS 172, 1 (2021)	31-Jan-2021							

 $Q(\beta^{-})=11200 SY; S(n)=4360 SY; S(p)=18730 CA; Q(\alpha)=-11610 CA 2017Wa10,2019Mo01$

Estimated uncertainties (2017Wa10): 400 for $Q(\beta^{-})$, 570 for S(n).

 $Q(\beta^{-})$ and S(n) from 2017Wa10. S(p) and $Q(\alpha)$ are theoretical values from 2019Mo01.

 $S(2n)=6880\ 500,\ Q(\beta^-n)=8000\ 400\ (syst,2017Wa10).\ Q(\beta^-2n)=3170\ 400\ (deduced by evaluators from masses in 2017Wa10).\ S(2p)=34990\ (2019Mo01,\ theory).$

1997Be70: ¹⁰⁰Kr produced and identified in 9 Be(238 U,X) reaction at E=750 MeV/nucleon followed by mass separation. A total of three counts were assigned to 100 Kr with corresponding cross section of 0.5 nb, time-of-flight method for isotopic identification.

2011Ni01: ¹⁰⁰Kr nuclide produced in Be(²³⁸U,F) reactions at E=345 MeV/nucleon produced by the cascade operation of the RIBF complex of accelerators at RIKEN. Target=550 mg/cm². Identification of ¹⁰⁰Kr made on the basis of magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted in a nine-layer double-sided silicon-strip detector (DSSSD). Correlations were recorded between the heavy ions and β rays. The half-life of ¹⁰⁰Kr isotope was measured from the correlated ion- β decay curves and maximum likelihood analysis technique. In the analysis of the decay curve, β -detection efficiency, background rate, daughter and granddaughter (including those populated in delayed neutron decays) half-lives, and β -delayed neutron emission probabilities were considered. Comparison of measured half-lives with FRDM+QRPA and KTUY+GT2 calculations.

Additional information 1.

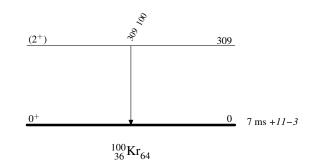
Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 20 primary references, 16 dealing with nuclear structure calculations and four with decay modes and half-lives.

Experimental data for the first (2^+) state are available only from ${}^{1}H({}^{101}Rb,2p\gamma)$ (2017Fl03).

¹⁰⁰Kr Levels

Cross Reference (XREF) Flags

A 1 H(101 Rb,2p γ)


E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0	0+	7 ms +11-3	A	$%\beta^{-}=100; ~%\beta^{-}n=?; ~%\beta^{-}2n=?$ %β ⁻ : only the β ⁻ decay mode is possible, and has been observed (2011Ni01). The β ⁻ decay is expected to be followed by delayed-neutron emissions.
309 10	(2+)		A	 T_{1/2}: measured by 2011NiO1 from the analysis of the (ion)β-correlated decay curve, and compared with FRDM+QRPA and KTUY+GT2 calculations. Theoretical T_{1/2}=37.9 ms, %β⁻n=30, %β⁻2n=0.0 (2019Mo01). Theoretical T_{1/2}=21.1 ms, %β⁻n=1.9, %β⁻2n=0.1 (2016Ma12). J^π: γ to 0⁺; first excited state expected to be 2⁺ from systematics of even-even nuclei.
				$\gamma(^{100}\mathrm{Kr})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}
309	(2+)	309 10	100	0	0^{+}

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

