¹⁰⁰Sn ε decay (1.18 s) 2019Lu08,2012Hi07

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh and Jun Chen	NDS 172, 1 (2021)	31-Jan-2021						

Parent: ¹⁰⁰Sn: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=1.18 \text{ s}$ 8; $Q(\varepsilon)=7.46\times10^3$ 16; $\%\varepsilon+\%\beta^+$ decay=100.0

¹⁰⁰Sn-T_{1/2}: weighted average of 1.18 s 8 (2019Lu08, average of 1.17 s *10* from decay correlations of 2500 ¹⁰⁰Sn implantations, and 1.19 s *10* from implant- γ correlations); and 1.16 s *20* (2012Hi07, from time distribution of decay events correlated with 163 ¹⁰⁰Sn implantations analyzed by maximum likelihood method taking into account half-life of daughter nuclei and small background). Others: 0.55 s +70–31 (2008Ba53, from β decays correlated with 14 5 implanted nuclei); 1.00 s +54–26 (2002Fa13, from one event in 2002Fa13 and six in 1996Ki23,1994Sc22; also 0.94 s +54–27 from analysis of seven events, 1997Su06,1996Ki23, 1994Sc22); 0.66 s +59–22 (1995Sc28,1995Sc33, from four events). Weighted average of all the measured values from 2019Lu08, 2012Hi07, 2008Ba53, 2002Fa13, and 1995Sc28 is 1.16 s 8, close to the Adopted value here.

¹⁰⁰Sn-Q(ε): From averaged β -endpoint energy=3.69 MeV *16* to the 2720+x and assuming x=25 keV 25. Other: 7.03 MeV 24 (2017Wa10, based on data in 2012Hi07).

¹⁰⁰Sn-% ε +% β ⁺ decay: % ε +% β ⁺=100. % ε p<17 (1997Su06,1996Ki23), <35 (2012Lo08).

- 2019Lu08: ¹⁰⁰Sn from 345 MeV/nucleon ¹²⁴Xe beam incident on a 4 m.m. thick ⁹Be target at the RIKEN-RIBF facility. The identification of the nuclide of interest was made through the BigRIPS separator and the ZeroDegree spectrometer by determining the atomic number and the mass-to-charge ratio of the ion using the tof-B ρ - Δ E method. The secondary beam was stopped in the double-sided silicon strip detector of the WAS3ABi spectrometer. A total of 2500 nuclei of ¹⁰⁰Sn were detected. The γ rays were detected by EURICA array comprising 47 HPGe detectors. Measured E γ , I γ , β^+ , $\gamma\gamma$ -coin, (implant) γ -coin, end-point energy from β^+ spectrum, and half-life of ¹⁰⁰Sn decay by (implant) γ -decay and implantations decay curves. Comparisons with previous experimental data and shell-model calculations.
- 2012Hi07: ¹⁰⁰Sn produced in fragmentation of ¹²⁴Xe beam at 1.0 GeV/nucleon with a 4.008 g/cm² thick beryllium target at GSI facility. The FRS fragment separator was used to separate reaction products. Fragments were separated and identified event-by-event with respect to A/Q and Z based on magnetic rigidity and flight times. A total of 259 ¹⁰⁰Sn nuclei were identified, much more than in any previous experiment. The ions were implanted into segmented Si strip detectors surrounded by the RISING array consisting of 105 Ge detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, E β , I β , ¹⁰⁰Sn half-life by detecting radiations in correlation with 163 ¹⁰⁰Sn nuclei stopped in the implantation layer. Out of 163 ¹⁰⁰Sn implanted nuclei, 126 decay chains could be assigned. A tentative decay scheme with γ rays is proposed by 2012Hi07 for the first time.
- 2008Ba53: measured half-life of the decay of ¹⁰⁰Sn, and production cross section in ⁹Be(¹¹²Sn,X),E=120 MeV/nucleon at NSCL-MSU.

2002Fa13: measured half-life of 100 Sn decay and β -endpoint energy.

1997Su06, 1996Ki23: measured half-life of ¹⁰⁰Sn decay and β -endpoint energy.

Identification and production of ¹⁰⁰Sn: 1995Sc28 (also 1994Sc22, 1995Sc33) and 1995Le14 (also 1994Le27, 1995Ry03).

The proposed decay scheme is based on experimental observation of five gamma rays and a theoretical level scheme from large-scale shell model calculations (2012Hi07). Based on measured intensities, all five gamma rays could be placed in a single cascade with the energy of the 1⁺ state at about 4 MeV, but measured $Q(\varepsilon)=4.31$ MeV does not permit such placement, thus parallel paths are proposed for the 1297 and 2048 γ rays. All the five γ rays were confirmed in 2019Lu08, where the number of implanted ¹⁰⁰Sn was an order of magnitude larger than in 2012Hi07. With higher statistics, 2019Lu08 could also have $\gamma\gamma$ -coin data for the 95, 141, 436 and 1297 γ rays, while only event is observed for 95 γ , when gated on 2048-keV γ ray.

¹⁰⁰In Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0	(6 ⁺)	5.65 s 6	$T_{1/2}$: weighted average of 5.62 s 6 (2019Pa16, weighted average of 5.60 s 6 from β -correlated decay curve and 5.70 s 16 from β p-correlated decay curve); 5.8 s 2 (2019Lu08, (implant) γ -correlated decay curve); 5.7 s 3 (2012Lo08, $\beta\gamma$ - and β p-implants-correlated decay curves); and 5.9 s 2 (2002Pl03). Others: 6.1 s 9 (1995Sz01), 7.8 s 8 (1995Sc33).
0+x 95+x 236+x 2	(5^+) (4^+) (3^+)		E(level): x<50 keV (estimated by 2019Lu08), <80 keV (estimated by 2012Hi07).
672+x 2 (1423+x 2)	(2^+) (2^+)		E(level): level proposed from deexcitation of 1297 γ from the 2721+x level, but no deexciting γ

Continued on next page (footnotes at end of table)

¹⁰⁰Sn ε decay (1.18 s) 2019Lu08,2012Hi07 (continued)

¹⁰⁰In Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments							
		transitions reported in either 2012Hi07 or 2019Lu08. From large-scale shell-model calculations, 2012Hi07 proposed decays to $236+x$, a (3 ⁺) level below the 672+x level, and 672+x level with branching ratios of 78%, 11% and 11%, respectively.							
2720+x 2	1+	 E(level): value is consistent with measured E(β-endpoint)=2.6 MeV 10, 2.93 MeV 34 from observation of a single event of β-delayed proton emission (2012Hi07), and 2.76 MeV 43 from TAGS data (1996Ki23, 1997Su06). Theoretical calculations suggest 1⁺ level at 2533 (1996Ki23), 2963 (2012Hi07). J^π: Gamow-Teller transition from 0⁺ parent state with log <i>ft</i>=2.85, assuming 100% β⁺+ε feeding to this level. From observation of a single proton event attributed to delayed proton decay in 2012Hi07, %p decay of this level is estimated by 2012Hi07 as <1%. Other: <17% (1997Su06,1996Ki23). 							

[†] From $E\gamma$ data.

[±] From large-scale shell model calculations (2012Hi07); levels have either pure configuration= $\pi g_{9/2}^{-1} \otimes v g_{7/2}^{1}$ or belong to $\pi g_{9/2}^{-1} \otimes v d_{5/2}^{1}$ multiplet.

 ε, β^+ radiations

E(decay)	E(level)	I β^+ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
4.71×10 ³ 16	2720+x	≈90	≈10	2.85 9	≈100	av E β =1685 77; ε K=0.085 11; ε L=0.0108 14; ε M+=0.0027 4 E(decay): measured E(β -endpoint)=3.91 MeV 15 (2019Lu08, weighted average of 3.88 MeV 16 from ungated β spectrum and 4.12 MeV 27 from γ -gated β spectrum); 3.29 MeV 20 (2012Hi07); 3.8 MeV +7-3 (2002Fa13), 3.4 MeV +7-3 in 1997Su06 and 1996Ki23. Weighted averaged β -endpoint energy=3.69 MeV 16, which gives Q(ε)=7.46 MeV 16, assuming x=25 keV 25. 2019Lu08 give 7.69 MeV 16 based on their measured β -endpoint energy. This transition is expected to be superallowed Gamow-Teller (0 ⁺ to 1 ⁺) transition. Deduced log ft value=2.95 8 (2019Lu08), 2.62 +13-11 (2012Hi07), assuming 100% ε + β ⁺ branch to 2720+x, 1 ⁺ level. This log ft value is one of lowest values in the nuclear chart, being lower than that for the 0 ⁺ to 0 ⁺ superallowed β transitions. I(ε + β ⁺): summed γ intensity of 1297 and 2048 γ rays in 2019Lu08 almost equals the observed number of annihilation pairs, pointing out no significant β ⁺ + ε feedings to higher levels, and also no significant β ⁺ β decay mode. B(GT)=4.4 +9-7 (2019Lu08), 9.1 +26-30 (2012Hi07) if 100% β ⁺ + ε decay occurs to 1 ⁺ state at 2721+x. 2012Hi07 estimated B(GT)=7.6 +22-25 if additional four lowest 1 ⁺ states are assumed populated in β ⁺ decay.

 † Absolute intensity per 100 decays.

 $\gamma(^{100}{\rm In})$

I γ normalization, I(γ +ce) normalization: The γ -normalization obtained by equating 960 *166* annihilation pairs in 2019Lu08 to 100. For the γ intensities given in 2012Hi07, which are per 100 decays of the parent, γ -normalization factor would be 0.83 *24* from summed I γ =100 for 1297 γ and 2048 γ . The normalization factor is treated by the evaluators as approximate as the γ intensities in the work of 2019Lu08 are not corrected for all the relevant factors (e-mail of Dec 18, 2019 from J. Park).

Measured absolute intensity of the annihilation pairs=960 166 (e-mail reply from authors of 2019Lu08).

The $\gamma\gamma$ -coin data are mainly from 2019Lu08.

 $^{100}_{49}$ In₅₁-3

¹⁰⁰Sn ε decay (1.18 s) 2019Lu08,2012Hi07 (continued)

γ ⁽¹⁰⁰ In) (continued)									
E_{γ}^{\dagger}	Ι _γ ‡#	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α [@]	$I_{(\gamma+ce)}$ ^{‡#}	Comments
95 1	63×10 ¹ 12	95+x	(4+)	0+x	(5 ⁺)	(M1)	0.573 19	99×10 ¹ 19	I _(γ+ce) : 988 <i>191</i> (e-mail reply from authors of 2019Lu08). Absolute I(γ+ce)=79 40 for 96γ (2012Hi07), implying Iγ=50 25. The 96 and 141 γ rays were found to be in coincidence in 2012Hi07.
141 <i>I</i>	92×10 ¹ 13	236+x	(3+)	95+x	(4+)	(M1)	0.196 5	110×10 ¹ 16	I _(γ+<i>ce</i>) : 1098 <i>160</i> (e-mail reply from authors of 2019Lu08). Absolute I(γ + <i>ce</i>)=100 <i>31</i> for 141 γ (2012Hi07), implying I γ =84 <i>26</i> .
436 1	98×10 ¹ 13	672+x	(2+)	236+x	(3 ⁺)	[M1+E2]	0.0103 2		I _y : 977 <i>128</i> (e-mail reply from authors of 2019Lu08). Absolute I γ =59 22 for 436 γ (2012Hi07).
1297 <i>1</i>	64×10 ¹ 12	2720+x	1+	1423+x?	(2+)	[M1+E2]	0.00078 6		I _{γ} : 637 <i>123</i> (e-mail reply from authors of 2019Lu08). Absolute I γ =72 <i>26</i> for 1297 γ (2012Hi07).
2048 1	36×10 ¹ 12	2720+x	1+	672+x	(2+)	[M1+E2]	0.00062 1		 When gated on 2048γ, only one event was seen at 95 keV in 2019Lu08. I_γ: 365 <i>114</i> (e-mail reply from authors of 2019Lu08). Absolute I_γ=53 26 for 2048γ (2012Hi07).

[†] From 2019Lu08, uncertainty of 1 keV for each $E\gamma$ value from e-mail reply of May 3, 2019 from T. Faestermann. Values are the same in 2012Hi07, except 96 keV instead of 95 keV in 2019Lu08, and no uncertainty for $E\gamma$ was available.

[‡] Absolute intensities deduced from data for 1970 implanted ¹⁰⁰Sn nuclei: data provided in e-mail reply of May 3, 2019 from T. Faestermann. In a further e-mail of Dec 18, 2019 from J. Park, it was indicated that while efficiency correction was applied for the gamma-detection, but not for the β -correlated and conversion electrons events. Also no dead-time correction was applied. Values supplied by authors of 2019Lu08 have been divided by a factor of 10. Absolute I γ values from 2012Hi07 are given under comments.

[#] For absolute intensity per 100 decays, multiply by ≈ 0.10 .

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁰⁰Sn ε decay (1.18 s) 2019Lu08,2012Hi07

 $^{100}_{49} In_{51}$