Adopted Levels, Gammas

	Histor	ry	
Туре	Author	Citation	Literature Cutoff Date
Update	Balraj Singh and Jun Chen	ENSDF	15-Sep-2021

 $Q(\beta^{-})=-10016.4\ 28;\ S(n)=12334.8\ 23;\ S(p)=4771\ 6;\ Q(\alpha)=-436\ 5$ 2021Wa16 $S(2n)=22700\ 50,\ S(2p)=7452\ 5,\ Q(\varepsilon)=3943\ 5,\ Q(\varepsilon p)=699\ 5\ (2021Wa16).$

Updates on Sept 15, 2021: Q values and particle-separation energies updated from 2021Wi16; T_{1/2} and B(E2)(W.u.) corrected for the first 2⁺ level. Evaluated magnetic dipole moment from 2020StZV evaluation included. No new experimental papers on the structure on ¹⁰⁰Cd since Jan 31, 2021 update. B(E2) and T_{1/2} were revised in response to e-mail query of Aug 18, 2021 from Dr. M.L. Cortes (T.U. Darmstadt).

Other measurements:

1975HaXF, 1969HaZU: 92 Mo(12 C,4n γ) E=70-95 MeV, measured γ .

Mass measurements: 2009Br09 (Penning-trap method), 1996Ch32 (also 1996Ch26,1997Le36,1997Mi07). In 1996Ch32, ¹⁰⁰Ag used as a standard.

Additional information 1.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 36 primary references, 30 dealing with nuclear structure calculations and six with decay modes and half-lives.

100Cd Levels

Cross Reference (XREF) Flags

			A ¹⁰⁰ Ii	n ε decay (5.65 s) D $\frac{46}{10}$ Ti(58 Ni,2p2n γ)
			B ¹⁰¹ S	$\frac{1}{2}\ln \varepsilon p \operatorname{decay} (2.20 \text{ s}) \mathbf{E} {}^{64} \operatorname{Zn}({}^{40} \operatorname{Ca}, 2p 2n \gamma)$
			C ¹ H(1	F Coulomb excitation
E(level) [†]	J ^{π‡}	T _{1/2}	XREF	Comments
0.0@	0+#	49.1 s 5	ABCDEF	$%ε+%β^+=100$ T _{1/2} : from 1989Ry02. Other: 66 s 18 (from β(t),1970Hn03). Measured isotope shift ν(¹¹⁴ Cd, ¹⁰⁰ Cd)=6371.6 MHz 31(stat) 114(syst) (2018Ha30, high-resolution collinear laser spectroscopy at ISOLDE-CERN). Measured δ <r<sup>2>(¹¹⁴Cd,¹⁰⁰Cd)=-1.421 fm² 5(stat) 43(syst) (2018Ha30).</r<sup>
1004.11 [@] 10	2+#	>1.0 ps	ABCDEF	 J^π: level populated strongly in Coul. ex. T_{1/2}: from B(E2)≤0.21 7 in Coul. ex. (2009Ek01), assuming Q₀=0 from shell-model calculations. B(E2) and comment edited, T_{1/2} revised, B. Singh, Sept 15, 2021, in response to e-mail query of Aug 18, 2021 from Dr. M.L. Cortes (T.U. Darmstadt).
1799.00 [@] 14	$(4^+)^{\#}$		A CDE	XREF: C(1764).
1930? 20	(2^{+})		С	
2046.24 15	(4 ⁺)		A D	J^{π} : 1042.1 γ to (2 ⁺) and 411.5 γ from (6 ⁺).
2095.40 [@] 17	$(6^+)^{\#}$		A DE	J^{π} : 296.4 γ to (4 ⁺) and 452.6 γ from (8 ⁺).
2457.69 17	(6 ⁺)		A D	J^{π} : 658.4 γ to (4 ⁺) and 90.7 γ from (8 ⁺).
2548.19 [@] 18	(8 ⁺) [#]	62 ns 6	A DE	μ =9.9 5 (1992Al17,2020StZV) T _{1/2} : from γ (t), unweighted average of 60 ns 3 (1994Go38) and 52 ns 5 (1992Al17) in (⁵⁸ Ni,2p2n γ), and 73 ns 5 (1988Pi03) in (⁴⁰ Ca,2p2n γ). μ : from g factor=1.24 6 measured using DPAD method in (⁵⁸ Ni,2p2n γ), corrected for Knight shift and diamagnetic shift (1992Al17).
3163.96 25 3199.5 3 3656.8 3	$(4^+,5,6^+)$ (8^+) (10^+)		A A D	J^{π} : 1365.3 γ to (4 ⁺) and 1068.5 γ to (6 ⁺). J^{π} : 1104.1 γ to (6 ⁺); shell-model prediction. J^{π} : 1108.6 γ ΔJ =2 to (8 ⁺).
4118.5 <i>3</i> 4344.3 <i>3</i>	(11^+) (12^+)		D D	J^{π} : 461.7γ ΔJ=1 to (10 ⁺). J^{π} : 225.8γ ΔJ=1 to (11 ⁺).

Adopted Levels, Gammas (continued)

100Cd Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF		Comments
4855.3 4	(12)	D	J^{π} : 736.8 $\gamma \Delta J=1$ to (11 ⁺).	
5319.3 9	(12)	D	J^{π} : 1200.7 γ to (11 ⁺).	
5508.0 4	(14)	D	J^{π} : 1163.7 $\gamma \Delta J=2$ to (12 ⁺).	
6258.7 5	(14)	D	J^{π} : 750.7 $\gamma \Delta J=0$ to (14).	
6460.5 10	(13)	D	J^{π} : 2116.3 $\gamma \Delta J=1$ to (12 ⁺).	
6953.4 ^{&} 5	(14)	D	J^{π} : 2609.1 $\gamma \Delta J=2$ to (12 ⁺), 1445.8 γ to (14).	
6978.3 10	(14)	D	J^{π} : 517.8 $\gamma \Delta J$ =1 to (13).	
7172.1 10	(15)	D	J^{π} : 193.8 $\gamma \Delta J=1$ to (14).	
7365.0 ^a 6	(14)	D	J^{π} : 2508.4 $\gamma \Delta J$ =2 to (12).	
7747.9 ^{&} 5	(15)	D	J^{π} : 794.5 $\gamma \Delta J=1$ to (14).	
7910.8 ^a 5	(16)	D	J^{π} : 545.8 $\gamma \Delta J$ =2 to (14).	
8349.5 ^{&} 5	(17)	D	J^{π} : 601.6 $\gamma \Delta J=2$ to (15).	
8560.4 ^a 5	(17)	D	J ^π : 812.6γ ΔJ=2 to (15), 649.5γ ΔJ=1 to (16).	
8823.4 ^{&} 5	(18)	D	J^{π} : 474.0 $\gamma \Delta J=1$ to (17).	
8947.3 ^a 5	(18)	D	J^{π} : 386.9 $\gamma \Delta J=1$ to (17).	
9388.2 ^{&} 5	(20)	D	J ^π : 440.8γ and 564.9γ ΔJ=2 to (18).	

[†] From least-squares fit to $E\gamma$ data; normalized $\chi^2 = 1.5$. Many low-spin (J<8) levels are suggested above 3200 keV by the total-absorption gamma-ray (TAS) measurements. See ¹⁰⁰In ε decay for a list of 25 such groups (named as pseudo-levels) in 200 keV intervals from 3600 to 8400 keV.

[‡] For high-spin (J>8), ascending order of spins with excitation energy is assumed according to the trend of population of yrast states in ${}^{46}\text{Ti}({}^{58}\text{Ni},2p2n\gamma)$ and ${}^{64}\text{Zn}({}^{40}\text{Ca},2p2n\gamma)$ studies.

[#] Yrast states based on the g.s. and systematics of even-even nuclei near closed shells; proposed by 2002Pl03 in ¹⁰⁰In ε decay (5.8 s).

[@] Seq.(C): g.s. band, yrast cascade.

& Band(A): γ cascade based on (14).

^{*a*} Band(B): γ cascade based on (14).

$\gamma(^{100}\text{Cd})$

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
1004.11	2+	1004.1 1	100	0.0	0^{+}	(E2)	B(E2)(W.u.)<20
							E _γ : weighted average of 1004.1 <i>I</i> from ¹⁰⁰ In ε decay (5.8 s), 1004.2 2 from (⁵⁸ Ni,2p2nγ), and 1004.03 <i>I7</i> from (⁴⁰ Ca,2p2nγ). Other: 1004 <i>I5</i> from (¹⁰² Cd, ¹⁰⁰ Cdγ). Mult : supported by $\chi(\theta)$ in (⁴⁰ Ca 2p2nγ) and level scheme
1799.00	(4^{+})	794.95 10	100	1004.11	2+		E_{m} : weighted average of 794.9 <i>I</i> from ¹⁰⁰ In ε decay (5.8 s).
1799.000	(.)	171.75 10	100	1001.11	2		² / ₂ , weighted dividige of 79.19 f from 10^{10} decay (5.0.5), 795.1 2 from (⁵⁸ Ni,2p2n γ), and 795.02 21 from (⁴⁰ Ca,2p2n γ). Other: 760 15 from (¹⁰² Cd, ¹⁰⁰ Cd γ).
1930?	(2^{+})	1930 [@] 20	100	0.0	0^{+}		E_{γ} : from (¹⁰² Cd, ¹⁰⁰ Cd γ) only.
2046.24	(4+)	247.3 1	25 13	1799.00	(4^{+})		, , , , , ,
		1042.1 2	100 25	1004.11	2+		E _{γ} : weighted average of 1041.9 2 from ¹⁰⁰ In ε decay (5.8 s) and 1042.3 2 from (⁵⁸ Ni,2p2n γ).
2095.40	(6+)	296.4 2	100	1799.00	(4+)		E _γ : unweighted average of 296.8 <i>I</i> from ¹⁰⁰ In ε decay (5.8 s), 296.1 <i>I</i> from (⁵⁸ Ni,2p2nγ), and 296.27 <i>I7</i> from (⁴⁰ Ca,2p2nγ).
2457.69	(6 ⁺)	362.6 2	100 8	2095.40	(6+)		E _{γ} : unweighted average of 362.7 <i>1</i> from ¹⁰⁰ In ε decay (5.8 s) and 362.4 <i>1</i> from (⁵⁸ Ni,2p2n γ).

Adopted Levels, Gammas (continued)

$\gamma(^{100}Cd)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α#	Comments
							_	I _{γ} : other: 100 <i>11</i> from ¹⁰⁰ In ε decay. I _{γ} : weighted average of 31 5 from ¹⁰⁰ In ε decay (5.8 s) and 32 4 from (⁵⁸ Ni,2p2n γ).
2457.69	(6 ⁺)	411.5 <i>1</i>	32 4	2046.24	(4+)			E_{γ} : weighted average of 411.7 <i>3</i> from ¹⁰⁰ In ε decay (5.8 s) and 411.5 <i>1</i> from (⁵⁸ Ni,2p2n γ).
		658.4 2	45 5	1799.00	(4+)			E _{γ} : weighted average of 658.2 <i>3</i> from ¹⁰⁰ In ε decay (5.8 s) and 658.5 <i>2</i> from (⁵⁸ Ni,2p2n γ).
								I_{γ} : weighted average of 47 5 from ¹⁰⁰ In ε decay (5.8 s) and 43.5 from (⁵⁸ Ni 2n2ny)
2548.19	(8 ⁺)	90.7 1	4.6 20	2457.69	(6 ⁺)	[E2]	2.12 3	B(E2)(W.u.)=2.2 + 12 - 10 E = clas form 100 k = classes (5.8 c)
		452.6 1	100 <i>3</i>	2095.40	(6^{+})	[E2]		E_{γ} : also from 200 in ε decay (5.8 s). B(E2)(W.u.)=0.0152 17
								E_{γ} : weighted average of 452.8 <i>I</i> from ¹⁰⁰ In ε decay (5.8 s), 452.5 <i>I</i> from (⁵⁸ Ni,2p2nγ), and 452.56 <i>I7</i> from (⁴⁰ Ca,2p2nγ).
3163.96	$(4^+, 5, 6^+)$	1068.5 2	100 14	2095.40	(6^+)			
2100 5	(0^+)	1305.5 5	80 17	1/99.00	(4^{+})			
3199.5	(8^{+})	1104.1 2	100	2095.40	(0^{+})	0		
3030.8	(10^{+})	1108.0 2	100	2346.19	(0^{+})	Q D		
4116.3	(11)	401.7 1	100	3030.8 4119.5	(10)	D		
4344.3	(12)	223.8 1	100	4110.3	(11)	D		
4033.3	(12)	1200 7 10	100	4110.5	(11)	D		
5508.0	(12) (14)	1163 7 3	100	4110.5	(11) (12^+)	0		
6258 7	(14)	750 7 3	100 5	5508.0	(12)	У Л		Mult : AI-0 transition
0236.7	(14)	1914 4 12	22 4	4344 3	(14) (12^+)	D		With: $\Delta \mathbf{j} = 0$ transition.
6460 5	(13)	1141 1 9	33 5	5319 3	(12)	D		
0100.5	(15)	2116 3 12	100 75	4344 3	(12)	D		
69534	(14)	1445 8 10	8818	5508.0	(12)	D		
0,000	(1.)	2098.7.7	29.4	4855.3	(12)	0		
		2609.1 4	100.0 23	4344.3	(12^+)	ò		
6978.3	(14)	517.8 <i>1</i>	100	6460.5	(13)	D		
7172.1	(15)	193.8 <i>1</i>	100	6978.3	(14)	D		
7365.0	(14)	2508.4 9	100	4855.3	(12)	0		
7747.9	(15)	794.5 2	100	6953.4	(14)	Ď		
7910.8	(16)	545.8 2	100 5	7365.0	(14)	Q		
		1652.2 11	68 8	6258.7	(14)			
8349.5	(17)	601.6 2	100	7747.9	(15)	Q		
8560.4	(17)	649.5 2	68 4	7910.8	(16)	D		
		812.6 <i>3</i>	100 4	7747.9	(15)	Q		
8823.4	(18)	474.0 1	100	8349.5	(17)	D		
8947.3	(18)	386.9 1	100 4	8560.4	(17)	D		
		596.9 6	34 9	8349.5	(17)	(D)		
9388.2	(20)	440.8 2	100 4	8947.3	(18)	Q		
		564.9 2	76 4	8823.4	(18)	Q		

[†] From (⁵⁸Ni,2p2nγ), unless otherwise noted. Weighted averaged values are taken when values are available from different datasets.
[‡] From γ(θ) data in (⁵⁸Ni,2p2nγ), unless otherwise noted. mult=Q represents ΔJ=2, quadrupole and D represents ΔJ=1, dipole (quadrupole admixture is generally expected), except for one case where D is for ΔJ=0.

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{100}\text{Cd})$ (continued)

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

5

Adopted Levels, Gammas

 $^{100}_{48}\mathrm{Cd}_{52}$