¹⁰¹Sn εp decay (2.20 s) 2019Pa16,2012Lo08,2007Ka15

History									
Туре	Author	Citation	Literature Cutoff Date						
Update	Balraj Singh and Jun Chen	ENSDF	15-Sep-2021						

Parent: ¹⁰¹Sn: E=0; $J^{\pi}=(5/2^+,7/2^+)$; $T_{1/2}=2.20$ s 5; $Q(\varepsilon p)=666\times 10^1 30$; % εp decay=23.0 8

- ¹⁰¹Sn-J^{π}: As discussed by 2020Pa25 and 2012Lo08, and also proposed by 2007Ka15 based on the two lowest orbitals (d_{5/2}, g_{7/2}) above N=50 gap in shell-model configuration.
- ¹⁰¹Sn-T_{1/2}: Weighted average of 2.22 s 5 (2019Pa16, 2020Pa25, weighted average of 2.18 s 9 from β-correlated decay curve and 2.24 s 6 from βp-correlated decay curve); 2.1 s 2 (2012Lo08, decay curves of time correlations between implantations and decay radiation); 2.20 s 10 (2011StZV); 1.9 s 3 (2007Ka15) and 1.3 s 5 (2007Se04, also 2009Se06). Others: 1.5 s 6 (Ph.D. thesis by A. Stolz, Munich Technical University, 2001; work at GSI); 3 s 1 (1995Ja16). Weighted average is the same if the values from 1995Ja16 and the thesis are also included.

¹⁰¹Sn-Q(*ε*p): From 2021Wa16.

¹⁰¹Sn-% ε p decay: % ε p=23.0 8 from weighted average of 23.6 8 (2019Pa16,2020Pa25) and 22 *1* (2012Lo08) for ¹⁰¹Sn decay. Other: 19.6 *1* (2011StZV, uncertainty of 0.1 seems unrealistically small, probably should be 1.0); 14 +10-6 (2007Ka15); 26% for $J^{\pi}(^{101}$ Sn g.s.)=5/2⁺ and 14 for 7/2⁺ choice.

Q value updated to 2021Wa16 value, B. Singh, Sept 15, 2021. No new references since Sept 15, 2021.

- 2019Pa16, 2020Pa25: $E(^{124}Xe)=345$ MeV/nucleon beam incident on a 740 mg/cm² thick ⁹Be target at the RIKEN-RIBF facility. The identification of the nuclide of interest was made through the BigRIPS separator and the ZeroDegree spectrometer by determining the atomic number and the mass-to-charge ratio of the ion using the tof-B ρ - ΔE method. The secondary beam was stopped in the double-sided silicon strip detector of the WAS3ABi spectrometer. The γ rays were detected by EURICA array comprising of 84 HPGe detectors. Measured $E\gamma$, $\beta\gamma$ -coin, β p-coin, β p γ -coin, half-lives by $\beta\gamma(t)$, β p(t). Comparisons with previous experimental data and shell-model calculations.
- 2012Lo08: ¹⁰¹Sn produced from fragmentation of 120 MeV/nucleon ¹¹²Sn beam on a 195 mg/cm² ⁹Be target at the National Superconducting Cyclotron Laboratory (NSCL). Fragments separated by the A1900 Fragment Separator and the Radio Frequency Fragment Separator (RFFS). Ions were implanted in the double-sided silicon strip detector (DSSD). Detection system: NSCL Beta Counting System in conjunction with the SeGA Array of 16 HPGe detectors. Measured E γ , I γ , β spectra, E(p), I(p), $\beta\gamma$ -coin, β p-coin, $\gamma\beta$ p-coin, half-life, β -delayed proton emission probability. Total of 458 β p coin events identified. No evidence was found for a 794 γ from 4⁺ to 2⁺ in ¹⁰⁰Cd (2012Lo08).
- 2007Ka15: ¹⁰¹Sn produced by the reaction ⁵⁰Cr(⁵⁸Ni, α 3n) at 4.9 MeV/nucleon and 5.2 MeV/nucleon at GSI facility. Measured E γ , $\gamma\gamma$, $\beta\gamma$, β -delayed protons, isotopic half-life using three Si detectors, two GSI Sup-Clover detectors and one smaller Clover detector.
- 2007Se04: ¹⁰¹Sn produced by the reaction ⁴⁶Ti(⁵⁸Ni,3n) at 192 MeV at Argonne Tandem-Linac facility. The recoiling fragments were separated using fragment mass analyzer (FMA) and implanted into double-sided Si strip (DSSD) detectors, recoil-decay tagging method employed to study γ rays in coin with delayed protons. Gamma rays detected with Gammasphere array of 99 Ge detectors. Measured half-life of ¹⁰¹Sn from time distribution of delayed protons from ¹⁰¹Sn decay associated with prompt γ ray at 172 keV in ¹⁰¹Sn. 2009Se06 and 2008SeZZ are conference papers from the same group.

1995Ja16: ¹⁰¹Sn produced by ⁵⁰Cr(⁵⁸Ni,2p5n) followed by mass separation. Measured delayed protons, $T_{1/2}$. Others: fragmentation of ¹²⁴Xe in ⁹Be(¹²⁴Xe,X) reaction (1994Sc22) and in Ni(¹¹²Sn,X) reaction (1994Le27). The delayed proton spectrum (2007Ka15) is peaked around 3 MeV. Additional information 1.

¹⁰⁰Cd Levels

 $\frac{E(\text{level})}{0}$

 0^{+}

Comments

1004 2^+ J^{π} : from Adopted Levels.

From ENSDF

 $^{100}_{48}\text{Cd}_{52}\text{-}2$

				¹⁰¹ Sn εp decay (2.20 s)	2019Pa16,2012Lo08,2007Ka15 (continued)	
					γ ⁽¹⁰⁰ Cd)	
Eγ	E_i (level)	\mathbf{J}_i^{π}	$\underline{\mathrm{E}}_{f} \ \underline{\mathrm{J}}_{f}^{\pi}$		Comments	
1004	1004	2+	0 0+	Four counts were seen i	n coin with proton events (2012Lo08).	
				D	elayed Protons (¹⁰⁰ Cd)	
E(¹⁰⁰ C	$I(p)^{\dagger}$				Comments	
0 1004	13 5 10 5	I(p) I(p)): 23.0 8): from 20	- %I(p) decay to the first 2 20Pa25. Other: 11 3 (201	L ⁺ state. IStZV).	
+						

 † Absolute intensity per 100 decays.

¹⁰¹Sn εp decay (2.20 s) 2019Pa16,2012Lo08,2007Ka15

Decay Scheme

