Adopted Levels, Gammas

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 172, 1 (2021)	31-Jan-2021

 $Q(\beta^-)=-3943 5$; S(n)=9497 8; S(p)=3244 7; $Q(\alpha)=-875 11$ 2017Wa10 S(2n)=21210 30, S(2p)=9541 13, $Q(\epsilon p)=154 8$ (2017Wa10). Mass measurements: 2019An10, 2009El08.

Additional information 1.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for four primary references, three dealing with nuclear structure calculations and one with decay modes and half-lives.

¹⁰¹In with g.s. half-life of 15.1 s is a potential delayed proton emitter with $Q(\varepsilon p)=2240\ 200$ (syst, 2017Wa10), which could populate levels in ¹⁰⁰Ag, but no proton measurements have yet been reported.

¹⁰⁰Ag Levels

See 1996Al16 for proposed neutron-proton (multiparticle) configuration assignments to several high-spin ($J \ge 5$) levels based on comparisons with shell-model calculations.

No level populations are known from 101 In ε p decay (15.1 s).

Cross Reference (XREF) Flags

Α	¹⁰⁰ Cd	ε	decay	(49.1	s)
---	-------------------	---	-------	-------	----

B ⁴⁶Ti(⁵⁸Ni,3pn γ),

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0	(5)+	2.01 min 10	AB	$%ε+%β^+=100$ μ=4.37 3 (2014Fe01,2019StZV) J ^π : log ft=6.1 to 6 ⁺ , log ft=6.5 to levels that deexcite to 2 ⁺ and systematics (J ^π (¹⁰² Ag g.s., ¹⁰⁴ Ag g.s.)=5 ⁺) give J=(5). Parity from M1(+E2)-M1(+E2) cascade from (3) ⁺ . See also J ^π comments for 236.1 or 303.6 level.
				 Proposed configuration=π(g_{9/2}⁻³)_{9/2+}⊗vd_{5/2}, consistent with measured magnetic moment (2014Fe01). T_{1/2}: weighted average of 2.00 min <i>10</i> (1980Ha20) and 2.06 min <i>25</i> (1983Ra10). 1983Ra10 cannot distinguish the g.s. and the isomer on the basis of half-life. Others: 2.00 min <i>3</i> (total γ absorption, 1995Ba25). 2.3 min <i>I</i> (γ(t), 1970Hn03), 1.9 min <i>3</i>
				(γ(t), 1971In03). 7.5 min <i>1</i> from 1967Do06, 8 min <i>1</i> from 1967Ba26 and 9 min from 1966Bu05 can not be confirmed in later studies. rms charge radius: $\delta < r^2 > (^{100} Ag, ^{109} Ag) = 0.83 \text{ fm}^2 \ 10(\text{stat}) \ 6(\text{syst}) \ (2014\text{Fe01}).$ Isotope shift: $\delta v (^{100} Ag, ^{109} Ag) = -2.95 \text{ GHz} \ 22(\text{stat}) \ 11(\text{syst}) \ (2014\text{Fe01}).$ μ , rms charge radius and isotope shifts: measured by hyperfine structure study (2014Fe01) using in-gas-cell laser ionization spectroscopy at LISOL facility of cyclotron center in Leuven.
15.52 16	(2)+	2.24 min 15	Α	$%ε+%β^+=?;$ %IT=? J ^π : 936.6γ from 1 ⁺ ; M1,E2(368.7γ)-M1,E2(567.9γ) cascade from 1 ⁺ ; and systematics (J ^π =2 ⁺ for 9-keV isomer in ¹⁰² Ag and 6-keV isomer in ¹⁰⁴ Ag). Configuration= $\pi(g_{9/2}^{-3})_{9/2+} \otimes v(d_{5/2},g_{7/2})_{5/2+}$ and/or $\pi(g_{9/2}^{-3})_{7/2+} \otimes v(d_{5/2},g_{7/2})_{5/2+}$, as proposed for ¹⁰² Ag by 2010Go08. T _{1/2} : weighted average of 2.30 min 15 (1980Ha20) and 2.06 min 25 (1983Ra10). 1983Ra10 cannot distinguish the g.s. and the isomer on the basis of half-life. RUL=10 for B(M3)(W.u.) gives %IT=100, however from a maximum of B(M3)(W.u.) value of 2.9 in A=80-100 mass range (data for about ten M3 transitions available in Nudat 2) %IT probably does not avceed ~30%
69.8 2	(6+)		В	J^{π} : 69.8 γ $\Delta J=1$, D to (5) ⁺ ; parity change would require E2 or E1 for 69.8 γ and hence isomeric lifetimes, which is less likely.

¹⁰⁰Ag Levels (continued)

E(level) [†]	Jπ‡	XREF	Comments
118.4 2	(7^{+})	В	J^{π} : 146.5 γ D, $\Delta J=0$ from (7 ⁺), 118.4 γ to (5) ⁺ .
124.70 10	$(4)^{+}$	Α	J^{π} : see J^{π} comment for 236.1 or 303.6 level.
155.23 18	$(1,2,3)^+$	Α	J^{π} : 139.7 γ M1(+E2) to (2) ⁺ .
236.15 17	(3)+	A	J^{π} : M1(+E2) 220.7 γ to (2) ⁺ gives (1,2,3) ⁺ ; M1(+E2)(111.4 γ)-M1(+E2)(124.7 γ) cascade to g.s. J=(5) gives (3) ⁺ for 236.1 level, (4) ⁺ for 124.7 level and positive parity for g.s.
265.0 2	(7 ⁺)	В	J^{π} : 195.3 γ D, ΔJ =1 to (6 ⁺); parity change would require E2 or E1 for 195.3 γ and hence isomeric lifetimes, which is less likely.
303.65 14	$(3)^+$	A	J^{π} : M1(+E2) 288.1 γ to (2) ⁺ gives (1,2,3) ⁺ ; M1(+E2)(179.0 γ)-M1(+E2)(124.7 γ) cascade to g.s. J=(5) gives (3) ⁺ for 303.6 level, (4) ⁺ for 124.7 level and positive parity for g.s.
583.39 17	$(1,2,3)^+$	Α	J^{π} : M1,E2 567.9 γ to (2) ⁺ .
835.3 2	(8 ⁺)	В	J^{π} : 287.9 γ D, Δ J=1 from (9 ⁺), 765.6 γ to (6 ⁺).
886.04 18	$(1,2,3)^+$	Α	J^{π} : M1,E2 270.4 γ and 507.3 γ from 1 ⁺ .
952.06 19	1+	Α	J^{π} : log <i>ft</i> =3.6 from 0 ⁺ .
973.3 2	(8^{+})	В	J^{π} : 708.3 γ D, Δ J=1 to (7 ⁺).
1002.1 2	(9 ⁺)	В	J^{π} : 883.9 γ Q, Δ J=2 to (7 ⁺).
1039.46 21	$(1,2)^{-}$	Α	J^{π} : 173.2 γ E1 from 1 ⁺ and 1024.1 γ to (2) ⁺ .
1123.2 2	(9+)	В	J^{π} : 858.1 γ (Q), $\Delta J=2$ to (7 ⁺), 150.0 γ to (8 ⁺).
1156.40 20	1^{+}	Α	J^{π} : log ft=4.9 from 0 ⁺ .
1212.70 19	1^{+}	Α	J^{π} : log ft=4.6 from 0 ⁺ .
1393.16 19	1^{+}	Α	J^{π} : log <i>ft</i> =3.9 from 0 ⁺ .
1530.4 <i>3</i>	(10^{+})	В	J^{π} : 695.4 γ (Q), $\Delta J=2$ to (8 ⁺).
1574.31 22	1^{+}	Α	J^{π} : log ft=4.2 from 0 ⁺ .
1607.0 <i>3</i>	(10^{+})	В	J^{π} : 483.8 γ D, Δ J=1 to (9 ⁺).
1634.7 <i>3</i>	(8-)	В	J^{π} : 1369.4 γ D, $\Delta J=1$ to (7 ⁺); negative parity is proposed by 1996A116 based on the fact that
			there is no competitive E2 or low-energy M1 connecting γ -ray branches to positive-parity states.
1723.1 2	(11^{+})	В	J^{π} : 721.1 γ Q, ΔJ =2 to (9 ⁺), 116.1 γ D, ΔJ =1 to (10 ⁺).
1892.96 25	1+	Α	J^{π} : log <i>ft</i> =4.5 from 0 ⁺ .
1960.2 3	1^{+}	Α	$J^{\pi}: \log ft = 4.9 \text{ from } 0^+$.
2047.1 3	(11)	В	J^{π} : 516.5 γ D. Δ J=1 to (10 ⁺).
2082.1 3	(9-)	В	J^{π} : 447.4 γ (M1). $\Delta J=1$ to (8 ⁻).
2120.7.3	(-)	В	
2242.5 3	(10^{-})	В	J^{π} : 614.2 γ D, ΔJ =1 from (11 ⁻): Doppler-broadening of 614.2 γ indicates M1 transition.
			Intensity imbalance suggests that in addition to the 195.2 γ , other low-energy γ rays might deexcite the 2242 level (1996Al16).
2249.8 <i>3</i>	(9 ⁻)	В	J^{π} : 228.9 γ (M1), ΔJ =1 from (10 ⁻). Intensity imbalance suggests that in addition to the 128.9 γ , a cascade of at least two low-energy
			γ rays might deexcite the 2250 level (1996A116).
2478.8 <i>3</i>	(10^{-})	В	J^{π} : 844.0 γ (Q), ΔJ =2 to (8 ⁻), 396.7 γ (M1), ΔJ =1 to (9 ⁻).
2549.7 <i>3</i>	(12^{+})	В	J^{π} : 826.6 γ D+Q, Δ J=1 to (11 ⁺).
2653.0 <i>3</i>	(13^{+})	В	J^{π} : 930.0 γ (Q), ΔJ =2 to (11 ⁺).
2856.7 <i>3</i>	(11^{-})	В	J^{π} : 378.1 γ (M1), ΔJ =1 to (10 ⁻), 774.4 γ (Q), ΔJ =2 to (9 ⁻).
2894.0 <i>3</i>	(13^{+})	В	J^{π} : 344.4 γ (M1), ΔJ =1 to (12 ⁺), 241.4 γ to (13 ⁺).
3227.0 <i>3</i>	(12^{-})	В	J^{π} : 370.3 γ (M1), ΔJ =1 to (11 ⁻), 748.1 γ (Q), ΔJ =2 to (10 ⁻).
3435.4 <i>3</i>	(13^{-})	В	J^{π} : 208.4 γ (M1), ΔJ =1 to (12 ⁻).
3595.9 <i>3</i>	(14^{+})	В	J^{π} : 702.0 γ D, $\Delta J=1$ to (13 ⁺); Doppler broadening of 942.8 γ indicates M1 to (13 ⁺).
3739.8 <i>3</i>	(15^{+})	В	J^{π} : 143.9 γ (M1), ΔJ =1 to (14 ⁺), 845.9 γ Q, ΔJ =2 to (13 ⁺).
3986.9 4	(14^{-})	В	J^{π} : 551.5 γ (M1), ΔJ =1 to (13 ⁻).
4005.8 4	(14^{-})	В	J^{π} : 1352.9 γ D, $\Delta J=1$ to (13 ⁺), 570.3 γ to (13 ⁻); negative parity is proposed by 1996A116.
4115.3 5	. /	В	
4134.8 5		В	
4612.7 4	(15^{-})	В	J^{π} : 625.7 γ (M1), $\Delta J=1$ to (14 ⁻), 1177.3 γ (Q), $\Delta J=2$ to (13 ⁻).
4630.6? 5	(16 ⁺)	В	J^{π} : 890.6y to (15 ⁺).
	. /		E(level): ordering of 961-891 cascade is uncertain. Reverse ordering gives E(level)=4701.
5173.9 4	(16 ⁻)	В	J^{π} : 561.2 γ (M1), Δ J=1 to (15 ⁻), 1186.8 γ (Q), Δ J=2 to (14 ⁻).
5329.7 4	(16 ⁻)	В	J^{π} : 716.9 γ D+Q, Δ J=1 to (15 ⁻).
	. /		• ~ ~ ~ /

¹⁰⁰Ag Levels (continued)

E(level) [†]	Jπ‡	XREF	Comments
5591.7 5	(17^{+})	В	J^{π} : 961.1 γ D, Δ J=1 to (16 ⁺); Doppler-broadening of 961.1 γ indicates M1.
6016.3 6	(18^{+})	В	J^{π} : 424.6 γ (M1), Δ J=1 to (17 ⁺).
6067.5 4	(17^{-})	В	J^{π} : 1455.0 γ (Q), ΔJ =2 to (15 ⁻), 893.4 γ to (16 ⁻).
6227.1 4	(18^{-})	В	J^{π} : 159.4 γ (M1), ΔJ =2 to (17 ⁻), 1053.3 γ (Q), ΔJ =2 to (16 ⁻).
6325.9? 5	(18^{-})	В	J^{π} : 1152.0 γ (Q), ΔJ =2 to (16 ⁻).
			E(level): ordering of 1297-1152 cascade is uncertain. Reverse ordering gives E(level)=6471.
7623.2 5	(19 ⁻)	В	J^{π} : proposed by 1996A116; 1556.0y to (17 ⁻), 1297.3y to (18 ⁻).
7784.1 7	(19+)	В	J^{π} : proposed by 1996A116.
8699.0 6	(20^{-})	В	J^{π} : proposed by 1996A116.

[†] From least-squares fit to $E\gamma$ values. [‡] For high-spin states (J>5) the assignments are from 1996A116 in (⁵⁸Ni,3pn γ),(⁴⁰Ca,3pn γ) with the parentheses added by the evaluators. These are based on ΔJ and multipolarity assignments deduced from $\gamma(\theta)$ and Doppler-broadening data.

						$\gamma(^{100}\text{Ag})$			
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	$\delta^{@}$	α &	Comments
69.8 118.4	(6 ⁺) (7 ⁺)	69.8 2 48.5 2	100	0.0 69.8	$(5)^+$ (6^+) $(5)^+$	D			
124.70	(4)+	118.4 2 124.70 <i>10</i>	100	0.0	$(5)^{+}$	M1(+E2)	<0.1	0.228	$\alpha(K)=0.198$ 4; $\alpha(L)=0.0247$ 6; $\alpha(M)=0.00471$ 11 $\alpha(N)=0.000814$ 18; $\alpha(O) = 2.72 \times 10^{-5}$ 6
155.23	(1,2,3)+	139.71 <i>10</i>	100	15.52	(2)+	M1(+E2)	< 0.3	0.177 12	$\alpha(0)=3.72 \times 10^{-6} 0$ $\alpha(K)=0.152 9; \alpha(L)=0.0199 22;$ $\alpha(M)=0.0038 5$ $\alpha(N)=0.00065 7;$ $\alpha(O)=2.81 \times 10^{-5} 12$
236.15	(3)+	111.4 2	5.8 7	124.70	(4)+	M1(+E2)	<0.4	0.36 5	$\alpha(0)=2.51\times10^{-12}$ 12 $\alpha(K)=0.304; \alpha(L)=0.04310;$ $\alpha(M)=0.008320$ $\alpha(N)=0.00144; \alpha(Q)=55\times10^{-5}5$
		220.65 10	100 7	15.52	(2) ⁺	M1(+E2)	<0.8	0.056 8	$\begin{array}{l} \alpha(N)=0.0014 \ 4; \ \alpha(O)=3.5\times10^{-4} \ 5\\ \alpha(K)=0.048 \ 7; \ \alpha(L)=0.0064 \ 13; \\ \alpha(M)=0.00122 \ 25\\ \alpha(N)=0.00021 \ 4; \ \alpha(O)=8.7\times10^{-6} \\ 8 \end{array}$
265.0	(7 ⁺)	146.5 2 195.3 2	23 100 2	118.4 69.8	(7 ⁺) (6 ⁺)	D D			$\Delta J=0$ transition from $\gamma(\theta)$.
303.65	(3)+	148.5 <i>3</i> 178.95 <i>10</i>	3.0 6 100 7	155.23 124.70	$(1,2,3)^+$ $(4)^+$	M1(+E2)	<0.4	0.091 7	$\alpha(K)=0.079 \ 6; \ \alpha(L)=0.0101 \ 12;$ $\alpha(M)=0.00194 \ 23$ $\alpha(N)=0.00033 \ 4;$ $\alpha(O)=1.45\times10^{-5} \ 8$
		288.13 <i>15</i>	46 <i>4</i>	15.52	(2)+	M1(+E2)	<1.1	0.028 4	$\begin{array}{l} \alpha(0) = 1.43 \times 10^{-6} & 3 \\ \alpha(K) = 0.024 & 3; & \alpha(L) = 0.0031 & 6; \\ \alpha(M) = 0.000102 & 12 \\ \alpha(N) = 0.000102 & 19; \\ \alpha(Q) = 4 & 3 \times 10^{-6} & 4 \end{array}$
583.39	(1,2,3)+	347.23 15	41 4	236.15	(3)+	M1,E2		0.0171 22	$\alpha(G) = 4.5 \times 10^{-4}$ $\alpha(K) = 0.0148 \ I8; \ \alpha(L) = 0.0019 \ 4;$ $\alpha(M) = 0.00037 \ 7$ $\alpha(N) = 6.3 \times 10^{-5} \ I1;$ $\alpha(Q) = 2.62 \times 10^{-6} \ 20$
		428.20 15	87 6	155.23	(1,2,3)+	M1(+E2)	<1.3	0.0092 4	$\alpha(G) = 2.02 \times 10^{-2} 20^{-2} \alpha(K) = 0.0080 3; \alpha(L) = 0.00099 7;$

$\gamma(^{100}\text{Ag})$ (continued) α**&** E_{γ}^{\dagger} I_{γ}^{\dagger} E_i(level) J_i^{π} \mathbf{E}_{f} J_f^{π} Mult.[‡] Comments $\alpha(M) = 0.000188 \ 13$ $\alpha(N)=3.24\times10^{-5}\ 20;\ \alpha(O)=1.46\times10^{-6}\ 3$ $\alpha(K)=0.00387 8; \alpha(L)=0.000473 12;$ 583.39 567.90 15 100 6 $15.52 (2)^+$ $(1,2,3)^+$ M1,E2 $\alpha(M)=8.99\times10^{-5}$ 23 $\alpha(N)=1.55\times10^{-5}$ 4; $\alpha(O)=7.0\times10^{-7}$ 3 (7^{+}) (8^+) 570.4 3 100 835.3 265.0 (7^{+}) 716.9 118.4 765.6 3 65 3 69.8 (6⁺) 886.04 $(1,2,3)^+$ 302.8 3 1.8 6 583.39 (1,2,3)+ 582.5 3 303.65 (3)+ M1,E2 100 6 10.8 11 236.15 (3)+ 650.0.3 730.77 25 27 2 155.23 (1,2,3)+ 870.4 3 8.98 $15.52 (2)^+$ 1^{+} 952.06 $\alpha(K)=0.0124 \ 12; \ \alpha(L)=0.0016 \ 3;$ 368.70 15 7.0 5 583.39 (1,2,3)+ M1,E2 0.0144 16 $\alpha(M)=0.00031~5$ $\alpha(N) = 5.2 \times 10^{-5} 8; \alpha(O) = 2.22 \times 10^{-6} 13$ 0.11 3 796.6 4 155.23 (1,2,3)+ 936.55 15 $15.52(2)^+$ 100 6 973.3 (8^+) 708.3 3 100 6 265.0 (7⁺) D (7^{+}) 854.8 4 12 6 118.4 (9^+) 737.1 3 27 1 265.0 (7^{+}) 1002.1 (Q) 883.9 3 100 118.4 (7^{+}) Q 1039.46 1024.1 3 100 15.52 (2) $(1,2)^{-}$ 1123.2 (9^+) 150.0 2 7.2 973.3 (8^+) 287.9 3 28 2 835.3 (8^{+}) D (7^{+}) 858.1 3 100 265.0 (Q) (7^{+}) 1004.6 3 80 118.4 1156.40 1^{+} 117.0 2 5.6 12 1039.46 (1,2) [E1] 0.1020 $\alpha(K)=0.0888$ 14; $\alpha(L)=0.01078$ 16; $\alpha(M) = 0.00203 \ 3$ $\alpha(N)=0.000346~6; \alpha(O)=1.421\times10^{-5}~21$ 270.37 15 15.6 12 886.04 (1,2,3)+ M1,E2 0.036 8 $\alpha(K)=0.031$ 7; $\alpha(L)=0.0042$ 13; $\alpha(M)=0.00081\ 25$ $\alpha(N)=0.00014$ 4; $\alpha(O)=5.4\times10^{-6}$ 8 163 583.39 (1,2,3)+ 573.1 4 6.0 16 852.0 4 303.65 (3)+ 1140.79 20 $100 \ 8$ 15.52 (2)+ 1^{+} 1212.70 0.0334 173.2 2 26.2 21 1039.46 (1,2)-E1 $\alpha(K)=0.0291$ 5; $\alpha(L)=0.00348$ 5; α(M)=0.000657 10 α (N)=0.0001124 *17*; α (O)=4.83×10⁻⁶ 7 629.4 3 25.9 24 583.39 (1,2,3)+ 909.2 4 11.7 21 303.65 (3)+ 1057.5 3 52 7 155.23 (1,2,3)+ 1197.12 20 100 7 $15.52 (2)^+$ 1393.16 1^{+} 441.10 15 952.06 1+ M1,E2 13.7 13 507.25 25 100 19 886.04 (1,2,3)+ M1,E2 583.39 (1,2,3)+ 809.83 20 85 6 1156.8 5 3.6 8 $236.15(3)^+$ 1377.52 20 15.52 (2)+ 85 6 1530.4 (10^{+}) 835.3 (8+) 695.4 4 100 (Q) 1574.31 1^{+} 361.4 3 6.2 21 1212.70 1+ 535.0 3 5.8 10 1039.46 (1,2)-886.04 (1,2,3)+ 688.3 *3* 100 10 583.39 (1,2,3)+ 990.9 3 40 4

Continued on next page (footnotes at end of table)

D

1338.2 4

483.8 2

1607.0

 (10^{+})

5.5 19

100.0 16

236.15 (3)+

 $1123.2 (9^+)$

$\gamma(^{100}\text{Ag})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. [‡]	α &	Comments
1607.0	(10^{+})	771.9 4	8.1	835.3	(8^{+})			
1634.7	(8 ⁻)	1369.4 4	100	265.0	(7^+)	D		
1723.1	(11^{+})	116.1 2	29	1607.0	(10^{+})	D		
		192.7 2	5.7	1530.4	(10^{+})			
		599.7 <i>3</i>	15	1123.2	(9 ⁺)	(Q)		
		721.1 2	100 2	1002.1	(9+)	Q		
1892.96	1^{+}	500.0 5	7.6 24	1393.16	1^{+}			
		680.6 4	19 6	1212.70	1+			
		940.9 <i>3</i>	100 18	952.06	1+			
		1309.3 <i>3</i>	42 3	583.39	$(1,2,3)^+$			
1960.2	1+	1074.2 5	20 7	886.04	$(1,2,3)^{+}$			
20.47.1	(1.1)	1944.7 3	100 7	15.52	$(2)^{+}$	D		
2047.1	(11)	516.5 3	65 6	1530.4	(10^{+})	D		
		1045.1 2	100 6	1002.1	(9+)	щ		
2082.1	(9 ⁻)	447.4 2	100	1634.7	(8 ⁻)	(M1) [#]		
2120.7		1118.6 4	82 9	1002.1	(9 ⁺)			
		1147.3 <i>3</i>	100 9	973.3	(8^{+})			
2242.5	(10^{-})	195.2 <i>3</i>		2047.1	(11)			
2249.8	(9 ⁻)	128.9 <i>3</i>	100	2120.7				
2478.8	(10 ⁻)	228.9 2	76 5	2249.8	(9 ⁻)	(M1) [#]	0.0438	$\alpha(K)=0.0381 6; \alpha(L)=0.00464 7; \alpha(M)=0.000881 13$
								$\alpha(N)=0.0001526\ 22;\ \alpha(O)=7.14\times10^{-6}\ 11$
		396.7 2	100 5	2082.1	(9 ⁻)	(M1) [#]	0.01074	α (K)=0.00937 <i>14</i> ; α (L)=0.001120 <i>16</i> ; α (M)=0.000213 <i>3</i>
								$\alpha(N)=3.69\times10^{-5} 6; \alpha(O)=1.743\times10^{-6} 25$
		844.0 <i>4</i>	52 5	1634.7	(8-)	(Q)		
		948.6 2	19 5	1530.4	(10^{+})			
2549.7	(12^{+})	826.6 <i>3</i>	100	1723.1	(11^{+})	D+Q		
2653.0	(13^{+})	103.3 2	15 1	2549.7	(12^{+})	D		
		930.0 2	100 1	1723.1	(11^{+})	(Q)		
2856.7	(11-)	378.1 2	100 3	2478.8	(10 ⁻)	(M1)#	0.0121	α (K)=0.01056 <i>15</i> ; α (L)=0.001263 <i>18</i> ; α (M)=0.000240 <i>4</i>
								$\alpha(N)=4.16\times10^{-5} 6$; $\alpha(O)=1.96\times10^{-6} 3$
		614.2 2	45 <i>3</i>	2242.5	(10^{-})	D		
		774.4 4	18	2082.1	(9 ⁻)	(Q)		
		1326.3 <i>3</i>	8 <i>3</i>	1530.4	(10^{+})			
2894.0	(13^{+})	241.4 <i>3</i>	35 <i>3</i>	2653.0	(13^{+})			
		344.4 2	56 <i>3</i>	2549.7	(12+)	(M1) [#]	0.0153	α (K)=0.01334 <i>19</i> ; α (L)=0.001601 <i>23</i> ; α (M)=0.000304 <i>5</i>
								$\alpha(N)=5.27\times10^{-5} 8; \alpha(O)=2.48\times10^{-6} 4$
		1170.7 <i>3</i>	100	1723.1	(11^{+})			
3227.0	(12^{-})	370.3 2	100.0 17	2856.7	(11^{-})	(M1) [#]	0.01275	$\alpha(K)=0.01112$ 16; $\alpha(L)=0.001332$ 19;
					()	()		$\alpha(M) = 0.000253 4$
		74014	22.2.17	2470.0	(10^{-})	(\mathbf{O})		$\alpha(N) = 4.38 \times 10^{-4}$ /; $\alpha(O) = 2.07 \times 10^{-4}$ 3
		/48.1 4	23.3 17	24/8.8	(10)	(Q) #		
3435.4	(13 ⁻)	208.4 2	100	3227.0	(12 ⁻)	(M1)"	0.0561	$\alpha(K)=0.0488\ 7;\ \alpha(L)=0.00595\ 9;$ $\alpha(M)=0.001132\ 17$
2505.0	(1.4+)	702.0.2	E7 5	2004.0	(12+)	D		$\alpha(N)=0.000196 3; \alpha(O)=9.15\times10^{-6} 13$
3393.9	(14')	702.0 3 942 8 3	575 100	2894.0 2653.0	(13^{+}) (13^{+})	D D		
2720.9	(15^{+})	142.0.2	25	2505.0	(14^+)	(M1)#	0 1525	$\alpha(K) = 0.1225.20; \alpha(L) = 0.01622.24;$
5139.8	(15.)	143.9 2	25	JJJJ.Y	(14)	(M1)"	0.1525	$\alpha(\mathbf{K})=0.1525\ 20;\ \alpha(\mathbf{L})=0.01052\ 24;\ \alpha(\mathbf{M})=0.00311\ 5\ \alpha(\mathbf{N})=0.000537\ 8;\ \alpha(\mathbf{O})=2.49\times10^{-5}\ 4$

$\gamma(^{100}\text{Ag})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α &	Comments
3739.8	(15 ⁺)	845.9 <i>3</i> 1086.8 <i>2</i>	69 <i>3</i> 100 <i>3</i>	2894.0 2653.0	(13^+) (13^+)	(Q) (Q)		
3986.9	(14 ⁻)	551.6 2 1333.7 <i>3</i>	100.0 <i>21</i> 14.6 <i>21</i>	3435.4 2653.0	(13 ⁻) (13 ⁺)	(M1) [#]		
4005.8	(14 ⁻)	570.3 <i>3</i> 1352.9 <i>4</i>	100 84	3435.4 2653.0	(13 ⁻) (13 ⁺)	D		
4115.3 4134.8		519.4 <i>3</i> 699.4 <i>3</i>	100 100	3595.9 3435.4	(14 ⁺) (13 ⁻)			
4612.7	(15 ⁻)	625.7 2 1177.3 <i>3</i>	89 100 <i>4</i>	3986.9 3435.4	(14 ⁻) (13 ⁻)	(M1) [#] (Q)		
4630.6?	(16^{+})	890.6 4	100	3739.8	(15^{+})			
5173.9	(16 ⁻)	561.2 2 1186.8 5 1434 2 3	100.0 23 26 7.0 23	4612.7 3986.9 3739.8	(15^{-}) (14^{-}) (15^{+})	(M1) [#] (Q)		
5329.7	(16 ⁻)	155.8 <i>3</i> 716.9 <i>3</i>	36 100 <i>4</i>	5173.9 4612.7	(15^{-}) (15^{-})	D+O		
5591.7	(17 ⁺)	961.1 2 1852.0 <i>4</i>	100 6 22 6	4630.6? 3739.8	(16^+) (15^+)	D		
6016.3	(18^{+})	424.6 3	100	5591.7	(17^{+})	(M1) [#]		
6067.5	(17 ⁻)	893.4 <i>3</i> 1455.0 <i>4</i>	88 100 6	5173.9 4612.7	(16 ⁻) (15 ⁻)	(Q)		
6227.1	(18 ⁻)	159.4 2	54.8 24	6067.5	(17 ⁻)	(M1) [#]	0.1153	α (K)=0.1002 <i>15</i> ; α (L)=0.01232 <i>18</i> ; α (M)=0.00234 <i>4</i>
								$\alpha(N)=0.000406\ 6;\ \alpha(O)=1.88\times10^{-5}\ 3$
		1053.3 <i>3</i>	100	5173.9	(16 ⁻)	(Q)		
6325.9?	(18^{-})	1152.0 3	100	5173.9	(16^{-})	(Q)		
/623.2	(19)	1297.3 3	87	6325.9?	(18)			
		1595.8 4	40	6067.5	(18) (17^{-})			
7784.1	(19^{+})	1767.8 4	100	6016.3	(17) (18 ⁺)			
8699.0	(20 ⁻)	1075.8 <i>3</i>	100	7623.2	(19 ⁻)			

 † From $^{100}\mathrm{Cd}~\varepsilon$ decay.

¹ From $\gamma(\theta)$ in (⁵⁸Ni,3pn γ),(⁴⁰Ca,3pn γ) for transitions from high-spin (J \geq 5) states with Δ J=1 for D or D+Q and Δ J=2 for Q, and from ce data in ¹⁰⁰Cd ε decay for transitions from low-spin (J<5) states, unless otherwise noted.

[#] From Doppler broadened γ ray in (⁵⁸Ni,3pn γ),(⁴⁰Ca,3pn γ) indicates M1 from lifetime estimates. $\gamma(\theta)$ also indicates $\Delta J=1$, dipole.

[@] From ce data in ¹⁰⁰Cd ε decay.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{100}_{47}\mathrm{Ag}_{53}$

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{100}_{47}\mathrm{Ag}_{53}$

 $^{100}_{47}\mathrm{Ag}_{53}\text{-}9$

From ENSDF

Adopted Levels, Gammas

9