¹⁰B(¹⁴N, ¹⁴B) **2002Le16,2003Le26**

Type Author Citation Literature Cutoff Date
Full Evaluation M. S. Narijauskas, J. H. Kelley, C. G. Sheu ENSDF 20-July-2017

2002Le16,2003Le26.

The authors studied the unbound 10 N nucleus at GANIL using the 10 B(14 N, 14 B) 10 N multinucleon transfer reaction. A 14 N beam with E(14 N) = 30 MeV/nucleon collided with a 10 B sandwiched target. Ejectiles were momentum analyzed at θ =1.2°-4.5° using the SPEG spectrometer.

A l=0 resonance was observed to be 2.6 MeV 4 above the ${}^{9}C+p$ threshold and the width was 2.3 MeV 16. This work is credited with the first observation of ${}^{10}N$ (2012Th01).

¹⁰N Levels

 $\frac{\text{E(level)}^{\dagger}}{0.7 \times 10^{3}}$ $\frac{\Gamma \text{ (MeV)}^{\ddagger}}{2.3 \text{ MeV } 16}$ $\frac{L}{0}$ $\frac{\text{E}_{\text{rel.}}(^{9}\text{C+p}) \text{ (MeV)}}{2.6 \text{ 4}}$

 † Deduced assuming Eg.s.= $E_{res}(^{9}\text{C+p})\text{=}1.9$ MeV 2 from 2017Ho10.

 $^{^{\}ddagger}$ $\Gamma_p \approx \Gamma$.