⁹Be(n, γ) E=thermal

History

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. H. Kelley, C. G. Sheu and J. L. Godwin, et al.	NP A745 155 (2004)	31-Mar-2004	

1969We10: ⁹Be(n, γ) E=thermal, measured $\sigma(E_{\gamma})$. ¹⁰Be transition deduced No Doppler broadening.

1980Is02: ${}^{9}Be(n,\gamma)$ E=thermal, measured E_{γ} , I_{γ} . ${}^{10}Be$ deduced Q, neutron binding energy. 1983Ke11: ${}^{9}Be(n,\gamma)$ E=0.5-11 MeV, measured E_{γ} , I_{γ} . ${}^{10}Be$ deduced neutron separation energy, level energies.

1985Mu03, 1988Mu05: 9 Be(n, γ) E=thermal, analyzed E1 transitions following capture. Deduced spin-spin potential parameters.

¹⁰Be levels deduced spectroscopic amplitudes, phases.

1986Co14: ⁹Be(n, γ) E=thermal, measured E_{γ}, I_{γ}. Deduced capture σ relative to ¹⁴N(n, γ).

1986Go14: ⁹Be(n, γ) E=2-25 MeV, measured γ -ray production σ .

1986Ke14: ⁹Be(n, γ) E=reactor, measured γ -spectra following capture. ¹⁰Be levels deduced I_{γ}.

1994Ki09: ⁹Be(n, γ) E=622 keV, measured σ (E,E $_{\gamma}$) At θ =125 degrees. ¹⁰Be deduced resonance, Γ_{γ} .

2002Re13: ⁹Be(n, γ) E=thermal, compiled, analyzed prompt E_{γ}, I_{γ}.

Branching: $\sigma_0=0.00877~35~(2003MuZZ)$; others $\sigma=8.8~\text{mb}~6~(\text{egaf})~\sigma=8.49~\text{mb}~34~(1986Co14),~\sigma=7.6~\text{mb}~8~(1981MuZQ,~1987Ly01),$ σ =9.2 mb *10* (1973Mu14).

¹⁰Be Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	
0.0	0^{+}	1.51×10 ⁶ y 6	
3368.056 25	2^{+}	125 fs 12	
5958.43 <i>3</i>	2+	<55 fs	
5960.76 12	1-		
6180.16 5	0^{+}	0.8 ps $+3-2$	
6264.53 5	2-		
6812.10 <i>3</i>	$1^{-}.2^{-}$		

$\gamma(^{10}\text{Be})$

Eγ	$I_{\gamma}^{\dagger \ddagger}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Comments
219.40 10	0.051 8	6180.16	0^{+}	5960.76	1-	$\sigma(n,\gamma) = 0.0045 \text{ mb } 6$; also see $\sigma(n,\gamma) = 0.004 \text{ mb } l$ (1974JuZW).
304.24 [#] 13	0.026 6	6264.53	2-	5960.76	1-	$\sigma(n,\gamma) = 0.0023 \text{ mb } 5.$
547.55 <i>4</i>	0.124 14	6812.10	$1^{-},2^{-}$	6264.53	2^{-}	$\sigma(n,\gamma) = 0.0109 \text{ mb } 10$; also see $\sigma(n,\gamma) = 0.012 \text{ mb } 2 (1974 \text{JuZW})$.
631.92 4	0.205 48	6812.10	$1^{-}, 2^{-}$	6180.16	0^{+}	$\sigma(n,\gamma) = 0.018 \text{ mb } 4$; also see $\sigma(n,\gamma) = 0.018 \text{ mb } 2$ (1974JuZW).
853.630 12	23.6 32	6812.10	$1^{-}, 2^{-}$	5958.43	2^{+}	$\sigma(n,\gamma)$ = 2.08 mb 24; also see $\sigma(n,\gamma)$ =2.0 mb 2 (1974JuZW).
2590.014 19	21.7 23	5958.43	2+	3368.056	2^{+}	$\sigma(n,\gamma) = 0.00191 \text{ MB15}$; also see $\sigma(n,\gamma) = 1.7 \text{ mb } 2$ (1974JuZW).
2811.68 5	0.119 16	6180.16	0^{+}	3368.056	2^{+}	$\sigma(n,\gamma) = 0.0105 \text{ mb } 12$; also see $\sigma(n,\gamma) = 0.010 \text{ mb } 2$ (1974JuZW).
2896.02 4	0.132 17	6264.53	2^{-}	3368.056	2^{+}	$\sigma(n,\gamma) = 0.0116 \text{ mb } 13$; also see $\sigma(n,\gamma) = 0.011 \text{ mb } 2$ (1974JuZW).
3367.448 25	32.4 33	3368.056	2+	0.0	0^{+}	$\sigma(n,\gamma)=0.00285 \text{ mb } 22; \text{ also see } \sigma(n,\gamma)=2.5 \text{ mb } 2 \text{ (1974JuZW)}.$
3443.406 20	11.1 11	6812.10	$1^{-},2^{-}$	3368.056	2^{+}	$\sigma(n,\gamma) = 0.98 \text{ mb } 7$; also see $\sigma(n,\gamma) = 0.86 \text{ mb } 8$ (1974JuZW).
5956.53 <i>3</i>	1.66 18	5958.43	2+	0.0	0^{+}	$\sigma(n,\gamma) = 0.146 \text{ mb } 12$; also see $\sigma(n,\gamma) = 0.11 \text{ mb } 2$ (1974JuZW).
5958.85 12	0.077 11	5960.76	1-	0.0	0^+	$\sigma(n,\gamma) = 0.0068 \text{ mb } 8.$
6809.61 <i>3</i>	65.9 72	6812.10	$1^{-},2^{-}$	0.0	0^{+}	$\sigma(\mathbf{n}, \gamma) = 5.8 \text{ mb } 5$; also see $\sigma(\mathbf{n}, \gamma) = 4.9 \text{ mb } 5$ (1974JuZW).

[†] Intensities per 100 neutron captures.

[‡] Intensity per 100 neutron captures.

[#] Placement of transition in the level scheme is uncertain.

¹⁰₄Be₆