Руководство по работе с ядерными данными в формате ENSDF

Гатчина

2006

Руководство по работе с ядерными данными в формате ENSDF

Evaluated Nuclear Structure Data File A Manual for Preparation of Data Sets

Jagdish K. Tuli

BNL-NCS-51655-01/02-Rev Formal Report

February 2001

National Nuclear Data Center

Brookhaven National Laboratory

P.O. Box 5000 Upton, Long Island, New York 11973

Перевод: Г. И. Шуляк

Редактор А. А. Родионов

Гатчина

2006

УДК 539.163

Описывается структура и формат файла оцененных данных по структуре ядра (Evaluated Nuclear Structure Data File – ENSDF). ENSDF используется для хранения информации о свойствах ядер в области низких энергий и результатов различных экспериментов, из которых получена эта информация.

Исходное описание на английском языке можно найти на сервере Брукхейвенской национальной лаборатории www.nndc.bnl.gov.

Публикация поддержана Научной программой Санкт-Петербургского научного центра РАН

©J.K.Tuli, 2001 ©ПИЯФ РАН, перевод, 2006

Предисловие к русскому изданию

Когда у исследователя или инженера возникает необходимость в данных о свойствах радиоактивных или стабильных атомных ядер, в первую очередь он ищет необходимую информацию в справочниках. По этой отрасли знаний регулярно издавались и издаются различные таблицы изотопов, в которых суммированы основные параметры распадов возбужденных состояний ядер и представлены (в большинстве случаев фрагментарно) схемы ядерных уровней. Существуют также издания, посвященные какому-то отдельному свойству некоей конкретной группы ядер. Если же необходимо иметь подробную информацию, то наиболее полные данные о состояниях ядер, известные на текущий момент, можно найти в журнале «Nuclear Data Sheets», хорошо известном каждому физикуядерщику. Издание журнала началось в 50-х годах прошлого века с печатания отдельных листков со схемами установленных на ту пору уровней ядер. Теперь это периодическое издание, в котором информация о каждом конкретном ядре обновляется с периодом примерно 10 лет или чаще, если появляются новые существенные данные. Основным принципом издателей журнала является извлечение из отдельных публикаций и представление читателю наиболее общей, полной и выверенной картины о схемах уровней каждого конкретного ядра, что и определяет методику подготовки материала. Сначала это была работа группы оценщиков – авторитетных специалистов, которые должны были просматривать все опубликованные данные о свойствах всех ядер, выносить суждение о качестве (взаимной непротиворечивости) данных, усреднять, при необходимости, извлеченные из работ величины (энергии уровней, переходов и т.п.) и получить в итоге наиболее надежную и согласованную схему ядерных уровней. Увеличение количества экспериментального материала, усложнение и унификация процесса оценки естественным образом заставили расширить круг оценщиков и перейти к компьютерным методам обработки и хранения ΜΑΓΑΤЭ информации. Пол эгилой (подробности можно найти на сайте http://www-nds.iaea.org) была создана международная сеть центров ядерных данных. За каждым региональным центром закреплена определенная область ядер. Оцененные данные в виде, удобном для компьютерной обработки, собираются в Брукхейвенской национальной лаборатории, где в начале 1970-х годов был разработан формат представления ядерных данных ENSDF – файла оцененных данных о ядерной структуре и распадах. Именно на основе этого файла теперь выпускается журнал «Nuclear Data Sheets». Файл, хранящийся на сервере BNL и доступный в любое время через Интернет по адресу http://www.nndc.bnl.gov, и журнал в бумажном виде однозначно соответствуют друг другу. При необходимости, с помощью специальной программы, имеющейся на том же сервере,

нужная исследователю часть файла может быть превращена в подобие печатного издания. Описание синтаксиса файла ENSDF (в виде Руководства, перевод которого на русский язык представлен в данной книге), а также множество других программ, используемых при анализе ядерных данных, также имеются на этом сервере и доступны для внешнего пользователя.

Постоянно дополняемый и корректируемый файл ENSDF хранится на общедоступном сервере в Брукхейвене, и информацию из него можно получать по подписке в виде печатного издания. Однако у исследователей часто возникают задачи по отбору по какимлибо критериям данных, содержащихся в файле. Например, надо найти и выписать все ротационные полосы во всех ядрах. Для этого можно написать специальную программу, которая выберет из файла ENSDF необходимые значения. Такая программа должна прежде всего уметь разбираться в правилах представления данных в ENSDF. Наиболее полная информация о правилах содержится в Руководстве, согласно которому оценщики создают и дополняют файл. Это и обусловило необходимость перевода Руководства на русский язык. Кроме того, в процессе перевода удалось обнаружить и исправить (по согласованию с автором английского варианта J. K. Tuli) некоторые неточности и опечатки, замеченные в последней английской версии Руководства.

Настоящее издание будет полезно как для российских и русскоязычных оценщиков, так и каждому, кому потребуется получить информацию о свойствах ядер непосредственно из файла ENSDF.

Содержание

I.	Введение	7
II.	Общая организация и структура файла данных	8
A.	Общая организация	8
B.	Структура наборов данных	10
C.	Способ хранения файла и его передача	10
III.	Стандартные однокарточные (однострочные) форматы	12
A.	Введение	12
B.	Стандартные однокарточные форматы	12
1.	Запись Identification	13
2.	Запись History	14
3.	Запись Q-value	15
4.	Запись Cross-Reference	16
5.	Запись Comment	17
i.	Общие комментарии	17
ii.	Комментарии к записям	18
iii.	Комментарии сносок	19
6.	Запись Parent	_20
7.	Запись Normalization	21
8.	Запись Production Normalization	23
9.	Запись Level	25
10.	Запись Beta (β^{-})	26
11.	Запись EC (или $\overline{\epsilon+\beta^+}$)	27
12.	Запись Alpha	28
13.	Запись (Delaved-) Particle	29
14.	Запись Gamma	30
15.	Запись Reference	31
16.	Запись End	31
C.	Резюме	31
IV.	Записи, состоящие из более чем одной карты	33
A.	Нумерация карт	33
B.	Формат карт продолжения	33
C.	Допустимые типы данных в картах продолжения	35
1.	Запись Level	35
2.	Запись Gamma	36
3.	Запись Beta (β^{-})	37
4.	Запись ЕС	37
V.	Детальное описание полей	38
1.	NUCID	38
2.	DSID	38
3.	DSREF, KEYNUM, QREF	40
4.	PUB	40
5.	DATE	40
6.	RTYPE	41
7.	CTEXT	41
8.	SYM(FLAG)	42
9.	BR, CC, HF, LOGFT, NB, NP, NR, NT, QP, NR*BR, NT*BR,	
	NB*BR	42
10	MR. O-, OA, SN, SP	42

DBR, DCC, DE, DHF, DIA, DIB, DIE, DIP, DNB, DNP, DNR, DNT,	
DQP, DQ-, DRI, DS, DSN, DSP, DTI, UNC	_43
DFT, DMR, DQA, DT	_43
IA, IB, IE, IP, RI, TI	44
Τ	44
COIN	44
UN	45
MS	_45
E, EI	_45
M	46
J	46
S	_47

 22.
 L _______47

 23.
 ION ______47

 24.
 Cross Reference ______48

 25.
 History record ______49

Приложения

A.	Набор символов	51
B.	Формат набора данных комментариев	53
C.	Пример Adopted Levels, Gammas Data Set	56
D.	Пример Decay Data Set	60
E.	Кодирование распадов ионизированных атомов	64
F.	Словарь ENSDF- преобразования символов	
	в true-type набор символов	66
G.	Словарь ENSDF, упорядоченный по выходным символам	78
H.	Политика ENSDF	89
1.	Общая политика – представление данных	89
2.	Общая политика – "теория"	94
3.	Краткая сводка по правилам назначения спина и четности	97
4.	Соглашения, используемые в Nuclear Data Sheets	106
5.	Библиография	108
6.	Символы и аббревиатуры, используемые в Nuclear Data Sheets	110

Рисунки

1.	Схема организации ENSDF	9
2.	Структура набора данных	11
3.	Общий однокарточный формат ENSDF	32

11.

12. 13.

14. 15.

16. 17.

18.

19.

20.

21.

I. Введение

Настоящее руководство¹ описывает организацию и структуру файла оцененных данных по структуре ядра (ENSDF). Этот компьютерно-ориентированный файл поддерживается национальным центром ядерных данных (National Nuclear Data Center – NNDC) в Брукхейвенской национальной лаборатории в рамках работы NSDD² (Международной сети по структуре ядра и данным по распаду ядер).

Для каждого массового числа (в настоящий момент до А≤293) файл оцененных данных по структуре ядра содержит информацию по оцененным данным. Для массовых чисел А≥44 эта информация публикуется в *Nuclear Data Sheets*; для массовых чисел A<44 ENSDF основывается на компиляциях, публикуемых в журнале *Nuclear Physics*. Содержимое ENSDF обновляется по массовым числам или по нуклидам с периодом около 10 лет и по мере появления новой информации.

Автор благодарит всех, кто во время подготовки данного руководства помогал советами и комментариями. Особую благодарность автор выражает коллегам из NNDC: M.Blennau, T. Burrows, P. Dixon, C. Dunford, R. Kinsey, P. Oblozinsky, A. Sonzogni и D. Winchell. Данная работа была поддержана Управлением по основным исследованиям в энергетике департамента энергетики США.

¹ Формат ENSDF впервые был разработан W. B. Ewbank и M. R. Schmorak для Проекта по ядерным данным в Ок-Риджской национальной лаборатории и был описан в Rept ORNL-5054/R1 (February 1978). Настоящее сообщение описывает текущее состояние формата и заменяет как Ок-Риджское сообщение, так и Rept BNL-NCS 51655 (March 1983) J. K. Tuli и BNL-NCS-51655-Rev.87 (April 1987) J. K. Tuli.

² Координируется Международным агентством по атомной энергии, Вена; список центров по оценке данных можно увидеть в каждом номере *Nuclear Data Sheets*.

II. Общая организация и структура файла данных

А. Общая организация

Файл оцененных данных по структуре ядра (ENSDF) – это файл, состоящий (для каждой массовой цепочки) из файлов *наборов данных*. В общем случае файл содержит следующие наборы данных:

- 1. Информация общего характера для массовой цепочки, например, имя и место работы оценщика, дата, по которую включительно отобрана информация, заметки оценщика, детали относительно публикации и так далее.
- 2. Ссылки, используемые во всех наборах данных для данного массового числа. Этот набор данных основывается на кодах ссылок (ключевой номер, keynumber – присваивается опубликованному экспериментальнму или теоретическому исследованию в рамках работы по реферированию литературы по ядерной физике (NSR), проводимой в NNDC BNL). Список содержит ссылки, использованные в различных наборах данных для данного массового числа и формируется автоматически на основе конкретных наборов данных.
- 3. Оцененные принятые (adopted) значения характеристик уровней и переходов каждого нуклида.
- 4. Оцененные результаты конкретного эксперимента, например, радиоактивного распада или ядерной реакции.
- 5. Оцененные усредненные результаты ряда экспериментов одного рода, например, реакции с частицами, реакции с тяжелыми ионами, кулоновское возбуждение и тому подобное, для данного ядра.

Наборы данных в ENSDF упорядочены по возрастанию их массовых чисел. Для данного массового числа набор состоит из наборов данных двух типов:

- i. Данные, содержащие информацию, имеющую отношение ко всей массовой цепочке. Эти данные содержат информацию согласно пунктам (1) и (2) (см. выше).
- іі. Данные, принадлежащие конкретному нуклиду (данному значению заряда ядра).

Данные (ii) содержат следующую информацию:

- а. Набор данных комментариев, содержащий краткую информацию о ядре. Этот набор содержит суммарную информацию, как описано выше в пункте (1). Этот набор данных существует только в том случае, если была проведена оценка свойств ядра или производилась последующая переоценка информации по данному ядру после оценки всей массовой цепочки (в NDS это публикуется как Update for A=...(прим. редактора)).
- b. Набор принятых значений (для каждого конкретного ядра) содержит информацию о принятых свойствах уровней и переходов, наблюдаемых в данном ядре.
- с. Данные, дающие информацию типа (4) и (5).

Если присутствует более одного набора данных типа (4) или (5) для данного ядра, то набор принятых значений *обязателен* для данного ядра. Если есть только один набор данных для данного ядра и отсутствует информация о переходах, то считается также, что он описывает и принятые свойства для данного ядра. Однако если есть информация о переходах, то должен быть отдельный набор Adopted Levels, Gammas, несмотря на то, что информация может быть из одного эксперимента (набора данных).

Общая организация ENSDF схематично показана на рис. II.1.

Рис. II.1 Схема организации ENSDF

В. Структура наборов данных

Набор данных состоит из 80-символьных записей. Набор данных содержит, по крайней мере, 2 записи: начало набора и конец набора. Структура набора данных показана на рис. II.2 и описывается ниже.

Набор данных *обязательно* начинается с записи **Identification** (идентификации) и *обязательно* кончается записью **End** (конец; =пустая карта). Между этими двумя записями может быть много добавочных записей – столько, сколько необходимо для полного описания экспериментальных или оцененных данных.

Непосредственно за записью Identification следует группа записей, которые содержат информацию о всем наборе данных (1 и 2 на рис. II.2). К этому типу относятся записи истории History (H), общего комментария Comment (C), нормировки Normalization (N), Q-значений Q-value (Q), описания родительского ядра Parent (P) и ссылки Cross-Reference (X). Не все эти записи включаются в каждый набор. Например, Q-value (Q) и Cross-Reference (X) обычно появляются только в наборах принятых данных, в то время как запись Parent (P) приводится только в наборе данных радиоактивного распада.

Тело набора данных (3 и 4 на рис. II.2) состоит из записей с числовыми данными, которые описывают измеренные или выведенные свойства уровней, гамма-излучения (электромагнитных переходов), альфа-частиц и так далее. Эти записи ассоциируются с распадными уровнями (для записи Gamma) или уровнями, которые заселяются (для записей Beta, EC, Alpha или (Delayed-) Particle). Так, после каждой записи Level следует группа записей, описывающих бета-распад, захват электрона или распад с испусканием (задержанных) частиц на данный уровень и гамма-излучением (электромагнитным переходом) с этого уровня (4 на рис. II.2). Записи Level и соответствующие записи, описывающие излучение, размещаются в наборе данных в порядке возрастания значения энергии.

Если записи Gamma, Alpha, EC, Beta или (Delayed-) Particle отвечают имеющейся информации для рассматриваемого набора данных, но не могут быть привязаны к какомулибо уровню, то такие записи должны помещаться в наборе *до начала любых* записей Level (3 на рис. II.2).

Размещение записей Comment описывается в пункте III.В.5.

С. Способ хранения файла и его передача

Наборы данных, посылаемые в NNDC BNL для включения в ENSDF, могут быть в произвольном порядке, так как система управления базой данных упорядочит наборы данных необходимым образом. Копии файла передаются в форме последовательного файла на различных носителях. Наборы данных в последовательном файле расположены в порядке увеличения массовых чисел. Для каждого конкретного массового числа наборы данных организованы в том порядке, который показан на рис. II.1, слева направо. Наборы данных о распаде размещаются под дочерним ядром, в порядке возрастания А, Z, а затем – энергии возбуждения родительского ядра. Наборы данных, описывающих реакции, относятся к дочернему ядру и упорядочены по А, Z ядра-мишени с последующим упорядочением по увеличению А, Z налетающей частицы, и затем по возрастанию энергии налетающей частицы. За ними следуют другие наборы данных, например, Coulomb Excitation, (HI,XNG) и другие.

Identification Record

1 H, X records, General/Flagged Comments

3

4

2

Unplaced Radiations, G,B,A,E

Level Record, Corresponding Radiations

Level Record, Corresponding Radiations

End Record

Рис. II.2 Структура набора данных

III. Стандартные однокарточные (однострочные) форматы

А. Введение

В большинстве случаев вся информация записи может быть помещена на одной 80колоночной перфокарте¹ (80-байтной записи). "Стандартный" формат был спроектирован для "покарточных" записей так, что в большинстве случаев запись занимает ровно 1 перфокарту (1строку). В этой главе описаны стандартные форматы для каждой записи. Если необходимая величина не имеет поля в стандартном формате или значение не может быть помещено в соответствующее поле, то могут использоваться добавочные записи, как это описано в главе IV (примеры можно увидеть в приложении С и приложении D). Отметим, что большинство программ анализа не обрабатывают стандартные поля, размещенные на записях продолжения.

В. Стандартные однокарточные форматы

Форматы записей, приводимые ниже, представлены в том порядке, в каком они обычно должны появляться в наборе данных. После заголовка описываются условия, при которых может появиться или требуется каждая запись. Положение полей в образе перфокарты дается в номерах позиций (отсчет от 1), также приводятся названия полей (формальное "имя" величины, помещаемой в это поле) и краткое описание поля. Те позиции перфокарты, которые явно не входят в какое-либо поле, должны быть заполнены пробелами. Детальное описание формата каждого поля можно найти в указываемых параграфах. Любые поля, требующие численного значения, но не заполненные ничем, означают, что числовое значение отсутствует (но не нуль!). Подразумевается, что численное значение является положительным, если явно не указано противное. Числа могут вводиться в любом месте отведенного поля, то есть их не нужно прижимать к левому или правому краю.

¹ Реально перфокарты уже "вымерли", но в файле сохраняется структура колоды перфокарт, то есть каждая запись имеет длину 80 символов, с возможными символами новой строки (в зависимости от используемой операционной системы). (Примечание переводчика)

1. Запись Identification

Требуется для всех наборов данных. Должна быть первой в любом наборе.

Позиция Название Описание			Ссылка
1-5	NUCID	Идентификация нуклида	V.1
6-9		Должны быть пробелы	
10-39	DSID	Идентификация набора данных	V.2
40-65	DSREF	Ссылки на основные публикации или анализы	V.3
66-74	PUB	Информация о публикации	V.4
75-80	DATE	Дата (в формате год/месяц) занесения набора данных ENSDF (автоматически заносится компьютером)	в V.5

Замечание: в тех редких случаях, когда поля DSID недостаточно для идентификации набора данных, то идентификация может быть продолжена на второй карте идентификации в позициях 1-39, за исключением того, что 6-я позиция должна содержать символ буквы или цифры и позиции 40-80 должны быть пустыми. Если есть запись продолжения, то на первой записи поле DSID *должно* заканчиваться символом ',' (запятой).

2. Запись History

Эти записи должны следовать сразу за записью Identification и следовать в обратном хронологическом порядке, то есть наиболее поздняя должна быть первой.

Позиция Название Описание О			Ссылка
1-5	NUCID	Идентификация нуклида	V.1
6		Пробел Любой алфавитно-цифровой символ, отличный от '1', обо- значает запись продолжения	
7		Должен быть пробел	
8	Н	Требуется символ "Н"	
9		Должен быть пробел	
10-80	History	Тодзапись History состоит из описателей полей и их значе- V.2 ний в позициях 10-80 и может продолжаться на произволь- ное количество записей продолжения. После описателя поля следуют символ '=' (без предшествующих и последующих пробелов) и значение, заканчиваемое ограничителем '\$' (для последнего поля ограничитель '\$' не является обязательным).	

3. Запись Q-value

Требуется для принятых наборов данных. Если есть только один набор данных для данного нуклида, то запись Q-value должна присутствовать в этом наборе. Эта запись должна быть перед записями L, G, B, E, A, DP. Если знаки отсутствуют, то подразумевается +.

Позиция	Название	Описание	Ссылка
1-5	NUCID	Идентификация нуклида	V.1
6		Пробел	
7		Должен быть пробел	
8	Q	Требуется символ "Q"	
9		Должен быть пробел	
10-19	Q⁻	Полная энергия (в keV) β^- -распада основного состояния. $\mathbf{Q}^- > 0$, если β^- -распад энергетически возможен. $\mathbf{Q}^- < 0$ представляет \mathbf{Q}_{ε} энергию изобара Z+1 (Z – число протонов)	V.10
20-21	DQ⁻	Стандартная погрешность значения Q -	V.11
22-29	SN	Энергия отделения нейтрона (keV)	V.10
30-31	DSN	Стандартная погрешность значения SN	V.11
32-39	SP	Энергия отделения протона (keV)	V.10
40-41	DSP	Стандартная погрешность значения SP	V.11
42-49	QA	Полная энергия (keV) для α-распада основно- го состояния	V.10
50-55	DQA	Стандартная погрешность значения QA	V.12
56-80	QREF	Ссылка(и), откуда взято(ы) значение(я) Q	V.3

4. Запись Cross-Reference

Дается только в принятых наборах данных. Должна быть перед записями L, G, B, E, A, DP.

Позиция Название Описание			Ссылка
1-5	NUCID	Идентификация нуклида	V.1
6		Пробел	
7		Должен быть пробел	
8	X	Требуется символ "Х"	
9	DSSYM	Любые символы из набора ASCII, которые однозначно иден тифицируют набор данных, чей DSID приведен в позиция 10-39.	- X
10-39	DSID	Должен явно соответствовать одному из использованных DSID	x V.2
40-80		Пробелы	

Замечания:

- В Nuclear Data Sheets DSID в первой Х-записи набора данных идентифицируется символом 'А', во второй - 'В' и так далее, безотносительно к символу в поле DSSYM Х-записи. Только первые 14 DSID Хзаписей обозначаются различными символами. Все остальные получают символ 'O' (other – другие). Простой перетасовкой Х-записей оценщик может установить те DSID, которые будут идентифицироваться индивидуально. Такая процедура не воздействует на файл и влияет только на публикацию.
- 2. Если DSID набора данных имеет продолжение на второй карте, то DSID на XREF-записи должен соответствовать DSID на первой карте, включая ограничитель ','. Символ ',' в конце DSID первой записи превращается в эллипс при печати в таблице перекрестных ссылок.
- 3. Каждой данной Х-записи должен соответствовать определенный набор данных.

5. Запись Comment

і. Общие комментарии

Должны быть перед записями L, G, B, E, A, DP.

Позиция Название Описание С			Ссылка
1-5	NUCID	Идентификация нуклида	V.1
6		Пробел Любой символ буквы или цифры, отличный от '1', означает карту продолжения	
7	С	Должен быть один из символов 'C', 'D' или 'T'. Смотрите ниже замечания 3-5	
8	RTYPE	Пробел или тип записи, к которой относится комментарий	V.6
9	PSYM	Пробел или символ, обозначающий тип (задержанных) частиц, то есть N, P и так далее	
10-80	CTEXT	Текст комментария. Смотрите словарь преобразования символов ENSDF (приложение F).	V.7

Замечания:

1. Комментарий относится только к записи, указанной полем RTYPE в этом наборе данных. Обычно комментарий будет появляться только в таблице для данного RTYPE в документе для печати. Например, если комментарий относится к уровню (символ 'L' в 8-й позиции), то он будет печататься только в таблице свойств уровней.

2. Если в позициях 8 и 9 стоят пробелы, то комментарий относится ко всему набору данных. Такие общие комментарии должны предшествовать комментариям к уровням и комментариям для излучения. Смотрите приложение В об использовании записей комментариев в наборах Comments.

3. Символ 'Т' на месте символа 'С' (позиция 7) в записи комментария дает указание программе подготовки печати, что данный комментарий должен воспроизводиться "как он есть", то есть пробелы в записи не должны "сжиматься" (используется, например, для формирования таблиц).

4. Символ 'D' на месте символа 'C' (позиция 7) в записи комментария дает указание программе подготовки печати, что это запись документации и может игнорироваться. Такая запись также будет игнорироваться различными программами анализа.

5. Символы 'с' и 't' в нижнем регистре на месте символа 'С' (позиция 7) в записи комментария дают указание программе подготовки печати, что поля CTEXT в этих записях не должны преобразовываться. Они будут воспроизводиться в *Nuclear Data Sheets* "как они есть". В этом режиме специальные символы должны записываться явно. Например, "|g" для буквы γ , "{+238}Pu" для ²³⁸Pu. Смотрите приложение A, в котором приведен список специальных символов.

іі. Комментарии к записям

Должны следовать за записью, к которой они относятся.

Позиция	Название	Описание	Ссылка
1-5	NUCID	Идентификация нуклида	V.1
6		Пробел Любой символ буквы или цифры, отличный от '1', означает карту продолжения	
7	С	Должен быть один из символов 'C' или 'D'. <i>Смотри-</i> те замечания 4-5 к Общим комментариям	
8	RTYPE	Тип записи, к которой относится комментарий. Мо- жет быть пробелом для записи Particle	V.6
9	PSYM	Пробел или символ, обозначающий тип частиц, то есть N, P и так далее	
10-80	SYM\$ или SYM,SYM,\$	SYM – тип комментируемых данных. Указанные SYM должны завершаться символом '\$', за исключением, как указано ниже в замечании 1.	V.8
10-80	CTEXT	Символ '\$' с последующим текстом комментария. На записях продолжения комментария СТЕХТ может начинаться с позиции 10, и SYM не повторяются. Смотрите словарь преобразования символов ENSDF (приложение F).	V.7

Замечания:

1. Старый формат, в котором **SYM** указывались в позициях 10-19, будет восприниматься без ограничителя '\$', если позиция 19 пуста. В этом случае текст комментария начинается с позиции 20.

2. Записи комментария, размещенные за записью того же типа **RTYPE**, относятся только к одной этой записи. Например, запись комментария с символами "CL" в позициях 7-8 и "T\$" в позициях 10-11, размещенная за записью, описывающей уровень второго возбужденного состояния, относится *только* к периоду полураспада второго возбужденного состояния.

ііі. Комментарии сносок

Должны быть перед записями L, G, B, E, A, DP.

Позиция	Название	Описание	Ссылка
1-9		То же, что и в комментариях к записям	
10-80	SYM\$ или SYM,SYM,\$ или SYM(FLAG)\$ или SYM(FLAG), SYM(FLAG),\$	SYM – смотрите ниже замечание 1. FLAG – любой алфавитно-числовой символ кода ASCII или строка таких символов. Поле должно завершаться символом '\$', за ис- ключением, указанным в замечании 1 к коммен- тариям к записям.	V.8
10-80	CTEXT	Символ '\$' с последующим текстом комментария. На записях продолжения комментария SYM или SYM(FLAG) не повторяются. Смотрите словарь преобразования символов ENSDF (приложение F).	V.7

Замечания:

1. SYM может быть одним из:

о Полей, определенных в записях L, G, B, E, A, DP.

о **BAND**. Этот **SYM** *должен* сопровождаться параметром **FLAG**. Отметим также, что текст после разделителя '\$', или в позициях 20-80 старого формата, будет появляться как метка ротационной полосы на одном из рисунков. Любая другая информация для этой ротационной полосы должна, следовательно, приводиться на картах продолжения.

2. Chocka без FLAG

о Относится ко всем записям указанного **RTYPE** данного набора данных.

о Сноска будет обычно появляться только в таблицах для печати для данного **RTYPE**. Например, если сноска относится к описанию уровня ('L' в позиции 8), то она будет появляться только в таблице свойств уровней.

3. CHOCKA C FLAG

о Иметь примечания будут только те записи, для которых имеется FLAG (смотрите ниже прим. 5).

о Будут иметь примечания только значения величин типов данных, указанных SYM, связанные с данным FLAG.

4. FLAG сноски должен быть любым единственным символом, размещенным в позиции 77 форматированной записи или строкой символов на последующей карте продолжения, назначенных специальному типу данных, обозначенных FLAG.

Примеры флагов в картах продолжения:

152EU2 G FLAG=ABCD\$ 156GD2 L FLAG=KMP\$

5. Сноски недопустимы для записей с $\mathbf{RTYPE} = \mathbf{N}, \mathbf{P} \lor \mathbf{Q}$.

6. Для изменения стандартной метки заголовка форматного поля (это может быть необходимо, если имеется информация, наименование для которой не предусмотрено в стандартных заголовках таблиц – прим. ред.), например, S заменить на C²S в записи L, CTEXT должен иметь форму LABEL=name, где "name" - новая желаемая метка. Новая метка должна быть короткой, насколько это возможно. Отметим, что FLAG не может использоваться для изменения метки; также любой другой комментарий на поле переименованной метки должен появляться в другой записи.

Примеры переименования:

156GD CL S\$LABEL=C2S 156GD CL S\$LABEL=DSIGMA/DOMEGA (45 DEG)

6. Запись Parent

Требуется для всех наборов данных о распаде. Должна предшествовать записям L, G, B, E, A, DP.

Позиция	Название	Описание	Ссылка
1-5	NUCID	Идентификация нуклида	V.1
6		Должен быть пробел	
7		Должен быть пробел	
8	Р	Требуется символ "Р"	
9		Пробел или целое в случае нескольких Р-записей в наборе данных	
10-19	Ε	Энергия распадающегося уровня (в keV) (0.0 – для основного состояния)	V.18
20-21	DE	Стандартная погрешность значения Е	V.11
22-39	J	Спин и четность	V.20
40-49	Т	Период полураспада; единица измерения должна присут- ствовать	V.14
50-55	DT	Стандартная погрешность значения Т	V.12
56-64		Должны быть пробелы	
65-74	QP	Значение Q основного состояния (в keV) (полная энергия, возможная для перехода из основного состояния в основное состояние); обычно это положительное число, за исключени- ем нескольких экзотических случаев	V.9
		Для изомерного перехода и спонтанного деления не является обязательным и может быть пустым	
75-76	DQP	Стандартная погрешность значения QP	V.11
77-80	ION	Состояние ионизации (для распадов ионизированных ато- мов), в противном случае – пробелы	V.23

Замечания:

1. В наборе данных допустимо более одной записи Parent. Если схема распада такова, что существует более одного родительского уровня, то для каждого родительского уровня должна присутствовать своя запись **P**.

2. В настоящее время программа подготовки публикации допускает максимум две записи Parent.

3. Информация о родительском ядре, *а именно* Е, J, T, QP, должна быть идентична соответствующим значениям в наборе Adopted Levels.

7. Запись Normalization

Должна предшествовать записям L, G, B, E, A, DP. Требуется, если возможна абсолютная нормировка; обычно используется в наборах для распада и реакции (n, γ).

Позиция	н Названи	е Описание	Ссылка
1-5	NUCID	Идентификация дочернего нуклида	V.1
6		Должен быть пробел	
7		Должен быть пробел	
8	Ν	Требуется символ "N"	
9		Пробел или целое в случае нескольких Р-записей в наборе данных	
		Целое должно быть как в соответствующей Р-записи	
10-19	NR	Множитель для перевода относительной интенсивности <i>гамма-лучей</i> (фотонов; поле RI в записи Gamma) в <i>число</i> фотонов на 100 распадов родительского ядра через конкретную ветвь распада или в число фотонов на 100 захватов нейтронов в (n, γ) реакции. <i>Обязателен</i> , если может быть вычислена абсолютная интенсивность гамма-лучей	V.9
20-21	DNR	Стандартная погрешность значения NR	V.11
22-29	NT	Множитель для преобразования относительной интенсивно- сти <i>перехода</i> (включая конверсионные электроны) [поле TI в записи Gamma] в число <i>переходов</i> на 100 распадов роди- тельского ядра через конкретную ветвь распада или в число переходов на 100 захватов нейтронов в (n,γ) реакции. <i>Обяза- телен</i> , если дано поле TI в записи Gamma и известна нор- мировка	V.9
30-31	DNT	Стандартная погрешность значения NT	V.11
32-39	BR	Множитель (коэффициент ветвления) для преобразования интесивности на 100 распадов через данную ветвь в интен- сивность на 100 распадов родительского ядра. <i>Обязателен,</i> если известен.	V.9
40-41	DBR	Стандартная погрешность значения BR	V.11
42-49	NB	Множитель для преобразования относительной интенсивно- сти β ⁻ -распада и электронного захвата (поле IB в записи Beta ; поля IB , IE и TI в записи EC) в интенсивность на 100 распадов посредством данной ветви распада. <i>Обязателен,</i> <i>если известен</i>	V.9
50-55	DNB	Стандартная погрешность значения NB	V.11
56-62	NP	Множитель для преобразования интенсивности на 100 запаз- дывающих переходов в интенсивность на 100 распадов предшественника	V.9
63-64	DNP	Стандартная погрешность значения NP	V.11
65-80		Должны быть пробелы	

Замечания:

1. Обычно интенсивности β^- распада и электронного захвата приводятся на 100 родительских распадов. Необходимо помнить, что множитель для пересчета на 100 распадов есть NB * BR, следовательно, NB=1/BR. Также стандартная погрешность в I(β^-) вычисляется из суммы квадратов трех значений: $\Delta(I(\beta^-))$, DBR и DNB. До тех пор, пока стандартная погрешность не известна достаточно хорошо, рекомендуется, чтобы NB приводилось без погрешности (см. запись PN).

Если в наборе данных существует более одной Р-записи, то для каждой из них должна быть своя N-запись, дающая коэффициенты ветвления.

2. Поле DNB имеет размер 6 символов; однако величина DNB должна быть в двухсимвольном формате, согласно V.11 (J. K. Tuli).

8. Запись Production Normalization

Должна следовать за N-записью, если таковая присутствует. Должна присутствовать, если есть G-записи с интенсивностями.

Позиция	Название	Описание	Ссылка
1-5	NUCID	Идентификация дочернего нуклида	V.1
6		Пробел	
7	Р	Требуется символ "Р"	
8	Ν	Требуется символ "N"	
9		Пробел или целое в случае множества N-записей в наборе данных. Целое должно быть тем же, что и в соответствую- щей N-записи	
10-19	NR*BR	Множитель для перевода <i>относительной интенсивности</i> <i>гамма-излучения</i> (поле RI в записи Gamma) в <i>число фото- нов на 100 распадов</i> родительского ядра. Если это поле и со- ответствующее ему (следующее за ним) поле стандартной погрешности оставлены пустыми, то для нормировки ис- пользуются данные из записи Normalization	V.9
20-21	\mathbf{UNC}^1	Стандартная погрешность значения NR*BR	V.11
22-29	NT*BR	Множитель для преобразования <i>относительной интенсив</i> - <i>ности переходов</i> (включая конверсионные электроны) (поле TI записи Gamma) в <i>интенсивности на 100 распадов</i> роди- теля. Если это поле и соответствующее ему (следующее за ним) поле стандартной погрешности оставлены пустыми, то для нормировки используются данные из записи Normalization	V.9
30-31	\mathbf{UNC}^1	Стандартная погрешность значения NT*BR	V.11
32-41		Пробелы	
42-49	NB*BR	Множитель для преобразования <i>относительной интенсив</i> - ности бета-распада и электронного захвата (поле IB в за- писи B ; поля IB , IE и TI в записи EC) в интенсивность на 100 распадов. Если это поле и соответствующее ему (сле- дующее за ним) поле стандартной погрешности оставлены пустыми, то для нормировки используются данные из записи Normalization	V.9
50-55	\mathbf{UNC}^1	Стандартная погрешность значения NB*BR	V.12
56-62	NP	To же, что и в записи Normalization	V.9
63-64	\mathbf{DNP}^1	Стандартная погрешность значения NP	V.11
65-76		Пробелы	

77	COM	Пробел или символ "С" для комментария. Если это поле пустое, то ком-
		ментарий, связанный с опцией интенсивности, будет использован для
		управления представления величин в Nuclear Data Sheets. Если постав-
		лен символ "С", то соответствующий комментарий для управления вы-
		водом должен присутствовать на последующей(их) записи(ях) продол- жения ("nPN") в позициях 10-80
78	OPT ²	Опция представления интенсивности. Эта опция управляет представле- нием интенсивности при печати в <i>Nuclear Data Sheets</i> . Возможные ва- рианты опций (по умолчанию используется значение 3) указаны ниже
79-80		Пробелы

¹Замечание: если поле стандартной погрешности оставлено пустым, то в публикации это значение будет отсутствовать.

2	Опция	Представление интенсивности	Комментарий при выводе
	1	ТІ или RI*(1+α)	Relative Ι(γ+ce)
	2	TI*NT или RI*NR*(1+α)	I(γ+ce) per 100 (mode) decays
	3	TI*NT*BR или	
		RI*BR*NR* (1+ α)	I(γ+ce) per 100 parent decays
	4	RI*NT*BR	Ι(γ) per 100 parent decays
	5	RI	Relative I(γ)
	6	RI	Relative photon branching from each level
	7	RI	<pre>% photon branching from each level</pre>

9. Запись Level

Необязательна, хотя обычно в набор данных входит, по крайней мере, одна запись Level.

Позиция	Название	Описание	Ссылка
1-5	NUCID	Идентификация нуклида	V.1
6		Пробел Любой символ буквы или цифры, отличный от '1', оз- начает карту продолжения	
7		Должен быть пробел	
8	L	Требуется символ "L"	
9		Должен быть пробел	
10-19	Ε	Энергия уровня в keV не должна быть пустой	V.18
20-21	DE	Стандартная погрешность значения Е	V.11
22-39	J	Спин и четность	V.20
40-49	Т	Период полураспада; <i>должна быть</i> единица измерения. Допустима ширина уровня (в энергетических единицах)	V.14
50-55	DT	Стандартная погрешность значения Т	V.12
56-64	L	Угловой момент, переданный в реакции, описываемой данным набором. (Чем именно эта величина является, $L_n, L_p, \Delta L$, и так далее, определяется из поля DSID записи Identification)	V.22
65-74	S	Спектроскопическая сила для данного уровня, как это определено из реакции в записи Identification . (Спектроскопический фактор для реакций перезарядки, β для неупругого рассеяния) Замечание: если в данном поле приводится величина, отличная от спектроскопического фактора, то требуется переименование сноски об этом (см. III.5-iii, замечание 6)	V.21
75-76	DS	Стандартная погрешность значения S	V.11
77	С	FLAG комментария, используемый для ссылки на запись частного комментария	V.8
78-79	MS	Метка метастабильного состояния: "М " или "М1" – для первого (наинизшего) изомера; "М2" – для второго изомера и так далее. Для распада ионизированного атома поле используется для обозначения оболочки или подоболочки, с которой захватывается электрон	V.17
80	Q	Символ "?" обозначает сомнительный уровень Символ "S" обозначает, что энергия уровня соответ- ствует энергии отделения нейтрона, протона или альфа- частицы, или уровень ожидаемый, но не наблюденный	

10. Запись Beta (β^-)

Должна следовать за записью Level уровня, заселяемого β[−]-распадом.

Позиция Название Описание О				
1-5	NUCID	Идентификация нуклида	V.1	
6	6 Пробел Любой символ буквы или цифры, отличный от '1', означает карту продолжения			
7		Должен быть пробел		
8	В	Требуется символ "В"		
9		Должен быть пробел		
10-19	Ε	Конечная энергия β ⁻ в keV Приводится, только если она измерена	V.18	
20-21	DE	Стандартная погрешность значения Е	V.11	
22-29	IB	Интенсивность ветви β ⁻ -распада ¹	V.13	
30-31	DIB	Стандартная погрешность значения ІВ	V.11	
32-41		Пробелы		
42-49	LOGFT	$Log ft \beta^{-}$ -перехода.	V.9	
50-55	DFT	Стандартная погрешность значения LOGFT	V.12	
56-76		Должны быть пробелы		
77	С	FLAG комментария (Символ "С" обозначает совпадение с последующим излучением. Символ "?" означает вероятное совпадение с последующим излучением.)	V.8	
78-79	UN	Классификация запрещенности β ⁻ -распада, например, "1U", "2U" для первого и второго уникально-запрещенных перехо- дов. (Пробелы означают разрешенный переход. Неуникаль- ный запрещенный переход отмечается в позиции 78, а в по- зиции 79 должен быть пробел)	V.16	
80	Q	Символ "?" означает сомнительный β ⁻ -распад Символ "S" означает ожидаемый или предсказанный пере- ход.		

¹ Единица измерения интенсивности определяется записью Normalization.

11. Запись ЕС (или $\varepsilon + \beta^+$)

Должна следовать за записью Level уровня, заселяемого в распаде.

Позиция	Название	е Описание	Ссылка
1-5	NUCID	Идентификация нуклида	V.1
6		Пробел	
		Любой символ буквы или цифры, отличный от '1', означает	
		карту продолжения	
7		Должен быть пробел	
8	Ε	Требуется символ "Е"	
9		Должен быть пробел	
10-19	Ε	Энергия захвата электрона на уровень. Приводится, только если она измерена или выведена из конечной энергии спектра β^+	V.18
20-21	DE	Стандартная погрешность значения Е	V.11
22-29	IB	Интенсивность ветви β^+ -распада ¹	V.13
30-31	DIB	Стандартная погрешность значения ІВ	V.11
32-39	IE	Интенсивность ветви электронного захвата ¹	V.13
40-41	DIE	Стандартная погрешность значения ІЕ	V.11
42-49	LOGFT	Log ft ε + β ⁺ -распада	V.9
50-55	DFT	Стандартная погрешность значения LOGFT	V.12
56-64		Должны быть пробелы	
65-74	TI	Полная интенсивность $\varepsilon + \beta^+$ -распада ¹	V.13
75-76	DTI	Стандартная погрешность значения ТІ	V.11
77	С	FLAG комментария (Символ "С" обозначает совпадение с последующим излучением. Символ "?" означает вероятное совпадение с последующим излучением.)	V.8
78-79	UN	Классификация запрещенности электронного захвата и β ⁺ - распада, например, "1U", "2U" для первого и второго уни- кально-запрещенных переходов. (Пробелы означают разре- шенный переход. Неуникальный запрещенный переход от- мечается в позиции 78, а в позиции 79 должен быть пробел.)	V.16
80	Q	Символ "?" означает сомнительный ε- или β ⁺ -распад Символ "S" означает ожидаемый или предсказанный переход	

¹ Значения IE, IB и TI должны быть в одних и тех же единицах (смотрите также поле NB в записи Normalization).

12. Запись Alpha

Должна следовать за записью Level уровня, заселяемого в распаде.

Позиция	Название	Описание	Ссылка
1-5	5 NUCID Идентификация нуклида		V.1
6		Пробел	
7		Должен быть пробел	
8	Α	Требуется символ "А"	
9		Должен быть пробел	
10-19	Ε	Энергия α-частиц в keV	V.18
20-21	DE	Стандартная погрешность значения Е	V.11
22-29	IA	Интенсивность ветви α-распада в <i>процентах</i> от полной ин- тенсивности α-распада	V.13
30-31	DIA	Стандартная погрешность значения ІА	V.11
32-39	HF	Фактор замедления α-распада	V.9
40-41	DHF	Стандартная погрешность значения НF	V.11
42-76		Должны быть пробелы	
77	С	FLAG комментария (Символ "С" обозначает совпадение с последующим излучением. Символ "?" означает вероятное совпадение с последующим излучением.)	V.8
78-79		Должны быть пробелы	
80	Q	Символ "?" означает сомнительный α-распад. Символ "S" означает ожидаемый или предсказанный переход	

13. Запись (Delayed-) Particle

Должна следовать за записью Level уровня, заселяемого частицей. Записи для частиц, которые не размещены в схеме уровней, должны помещаться перед первым уровнем данного набора данных.

Позиция Название Описание			Ссылка
1-5	NUCID	Идентификация нуклида	V.1
6		Пробел Любой символ буквы или цифры, отличный от '1', означает карту продолжения	
7		Должен быть пробел	
8	D	Требуется символ пробела для мгновенных частиц или сим- вол "D" для задержанных частиц	
9	Particle	Требуется символ-идентификатор (задержанной) частицы: N = нейтрон, P = протон, A = альфа-частица	
10-19	Ε	Энергия частицы в keV	V.18
20-21	DE	Стандартная погрешность значения Е	V.11
22-29	IP	Интенсивность ветви (задержанных) частиц в <i>процентах</i> от полной интенсивности (задержанных) частиц	V.13
30-31	DIP	Стандартная погрешность значения ІР	V.11
32-39	EI	Энергия уровня в "промежуточном" ядре (масса = A+1 для n, p; A+4 для α) в случае задержанных частиц	V.18
40-49	Т	Ширина перехода в keV	V.14
50-55	DT	Стандартная погрешность значения Т	V.12
56-64	L	Угловой момент, переданный испущенной частице	V.22
65-76		Должны быть пробелы	
77	С	FLAG комментария, используемый для ссылки на запись частного комментария	V.8
78	COIN	Символ "С" означает удачное размещение, подтвержденное в совпадениях. Символ "?" означает предполагаемое совпа- дение	V.15
79		Пробел	
80	Q	Символ "?" означает сомнительное размещение перехода в схеме уровней. Символ "S" означает ожидаемый, но ненаблюденный, пере- ход	

Замечания:

Запись о задержанных частицах будет появляться в наборах данных о задержанных частицах (например, B-N DECAY, ECP DECAY и так далее), которые должны быть приведены в массовой цепочке конечного ядра. Например, "95RB B-N DECAY" должен быть размещен среди наборов данных для ⁹⁴Sr.

^{2.} Единица измерения интенсивности определяется записью Normalization.

14. Запись Gamma

Должна следовать за записью Level уровня, с которого испускается γ-излучение. Записи для γ-лучей, которые не размещены в схеме уровней, должны предшествовать первому уровню.

Позиция Название		Описание	
1-5	NUCID	Идентификация нуклида	V.1
6		Пробел	
		Любой символ буквы или цифры, отличный от 1, означает карту продолжения	
7		Должен быть пробел	
8	G	Требуется символ "G"	
9		Должен быть пробел	
10-19	Ε	Энергия ү-излучения в keV. Не должна быть пустой	V.18
20-21	DE	Стандартная погрешность значения Е	V.11
22-29	RI	Относительная интенсивность гамма-излучения ¹	V.13
30-31	DRI	Стандартная погрешность значения RI	V.11
32-41	Μ	Мультипольность перехода	V.19
42-49	MR	Коэффициент смеси, δ. (Знак должен быть приведен явно, если он известен. Если знак не приведен, то подразумевает- ся, что он неизвестен.)	V.10
50-55	DMR	Стандартная погрешность значения MR	V.12
56-62	CC	Полный коэффициент конверсии	V.9
63-64	DCC	Стандартная погрешность значения СС	V.11
65-74	TI	Относительная интенсивность перехода ¹	V.13
75-76	DTI	Стандартная погрешность значения ТІ	V.11
77	С	FLAG комментария, используемый для ссылки на запись ча- стного комментария. Символ "*" означает множественно- размещенное γ-излучение. Символ "&" означает множествен- но-размещенный переход с неразделенной интенсивностью. Символ "@" означает множественно-размещенный переход с подходящим образом разделенной интенсивностью. Символ "%" означает, что интенсивность, данная в RI, дает коэффици-	V.8
78	COIN	ент ветвления в процентах для супердеформированной полосы Символ "С" означает удачное размещение, подтвержденное в совпадениях. Символ "?" означает предполагаемое совпадение	V.15
/9	0	Пробел	
80	Ų	Символ "?" означает сомнительное размещение перехода в схеме уровней Символ "S" означает ожидаемый, но ненаблюденный пере- ход	

¹ Единица измерения интенсивности определяется записью Normalization.

15. Запись Reference

Может появиться только в наборе данных ссылок. NNDC поддерживает наборы данных ссылок.

Позиция	Название	Описание	Ссылка
1-3	MASS	Массовое число	
4-7		Должны быть пробелы	
8	R	Требуется символ "R"	
9		Должен быть пробел	
10-17	KEYNUM	Ключевое слово ссылки	V.3
18-80	REFERENCE	Сокращенная ссылка (из файла NSR)	

16. Запись End

Требуется для всех наборов данных. Должна быть последней записью любого набора.

Позиция	Название	Описание	Ссылка
1-80		Во всех позициях пробелы	

С. Резюме

На рисунке (рис. II.3) приведена краткая сводка по всем записям, имеющим однокарточный формат.

эти поля должны быть пробелами.

Bl, blank ઝ

© # ++

»رە -

первая запись должна содержать пробел или "1". Записи продолжения должны содержать любой печатный символ ASCII, кроме пробела и "1". любой уникальный алфавитно-цифровой символ, идентифицирующий набор данных. один из символов "C", "c", "D", "d", "T" или "t".

символ, идентифицирующий комментируемую запись. Допустимые символы: "N", "P", "Q", "L", "G", "B", "E", "A", "D" или пробел. должен быть пробел, за исключением: 1) код частицы для записи (Delayed-) Particle; 2) последовательные цифры для записей Parent,

Normalization и Production Normalization.

должен быть пробел, за исключением случая нескольких родительских записей. В этом случае должны содержаться последовательные цифры, ставящие в соответствие записи Parent, записи Normalization и Production Normalization. в позиции 8 должен быть пробел для мгновенных частиц или символ "D" для задержанных частиц. В позиции 9 – идентификатор частицы ("N", "P", "D", "T" или "A").

Рис. III.1 Общий однокарточный формат ENSDF

_			0	0	 m	02		10		0	60		20	80
Record	12345	6 7 8 9	123456789	123	456789	12	3456789	1	23456789	12345	5789 12	345	6789 1234	56789
IDENT	NUCID	k bl			SID					DSREF			PUB	DATE
						H		H						
XREF	NUCID	i X Lq			SID						BLANK			-
REF	AAA		KEYNUMBER						REFEREN	LCE				-
HIST	NUCID	ld H ld &						H	XT					
Q-VALUE	NUCED	ld D ld	ę	DQE	SN	DSN	SP	DSP	QA	DQA			DQREF	
G COMM	NUCID	& † # b1							CTEXT					-
F/R COMM	NUCID	& † # ‡	SYM(FLAG)						Ē	EXT				
PARENT	NUCID	b1 PŠ	ш	DE					F	DT	blank		QP	DQP ION
NORM	NUCED	b1 N Š	N	DNR	NT	DNT	BR	DBR	MB	DMB	NP	DNP	blank	_
P NORM	NIICTD	N S N S N S	NR*BR		NT*RR		blank		NB*BR	UNC	d N	dND	blank	C O b1
						2								
LEVEL	NUCID	1d J Ld &	ш	DE		-			F	DT	-		S	DS F MS Q
BETA	NUCED	& b1 B b1	ш	DE	IB	DIB	blank		LOGFT	DFT		bla	×	F UN Q
ы	NUCID	& b1E b1	ш	DE	IB	DIB	IE	DIE	LOGFT	DFT	b1ank		I	DTIF UN Q
ALPHA	NUCID	& b1 A b1	ш	DE	IA	DIA	ЧH	ВНF			blank			F b1 Q
PART	NUCID	Ld &	ш	DE	IP	DIP	EI		F	DT			blank	F C b1Q
GAMMA	NUCID	& b1 G b1	ш	DE	RI	DRI	Σ		MR	DMR	ប	DCC	I	DTIF Cb1Q
	1 5	6 7 8 9	0	0 12	6	0 1 2	6	0 12	6	0 5 (5 0 2	345	0	t 5 6 7 8 9 0
			1	2		с		4		2	9		2	8

IV. Записи, состоящие более чем из одной карты

А. Нумерация карт

Для ряда записей, а именно Identification, History, Parent, Normalization, существует достаточно много случаев использования записей продолжения, как это указано ранее в описании соответствующих записей. Для ряда других записей, если вся информация данного типа не может поместиться в поле на одной карте, есть возможность использовать добавочные карты для полного описания записи. Первая карта записи содержит пробел в позиции 6. Последующие карты должны содержать в этой позиции ASCII символы, отличные от пробела и '1'. Обычно используются символы '2'..'9' или 'A'..'Z'.

В. Формат карт продолжения

Запись продолжения

Должна располагаться после записи того же типа RTYPE.

Позиция Название Описание О		Ссылка	
1-5	NUCID	Идентификация нуклида	V.1
6		Любой символ буквы или цифры, отличный от '1', означает карту продолжения	
		Замечание: символ 'S' резервируется для записей, производимых компьютером, которые не появляются в Nuclear Data Sheets	
7	С	Должен быть пробел	
8	RTYPE	Буква, указывающая на тип записи ('L', 'B', 'E', 'G' или 'H')	V.6
9		Должен быть пробел	
10-80	Data	<quant><op><value>[<op><value>][<ref>]\$</ref></value></op></value></op></quant>	V.7

В описании Data используются следующие аббревиатуры:

<quant>:

Стандартный символ для величины, как описано в параграфе IV.С. Замечания:

1. При записи отношения более чем 2-х величин они должны разделяться двоеточиями, а не символами '/', например, K:L1:L2:L3, *но не* K/L1/L2/L3.

2. Для описания <*value*> для случая <*quant*>=XREF смотрите параграф V.24.

3. Для описания терминов записей History смотрите параграф V.25.

<op>:

=, <, >, <=, >=, EQ, AP, LT, LE, GT, GE. Замечание: для последних 6 операторов требуются пробелы до и после.

<value>:

Численное значение с указанием единиц измерения (при необходимости) и возможного значения погрешности. Формат значения погрешности описан в параграфах V.11 и V.12.

Замечание: значения погрешности не должны указываться при указании диапазона значения. Для указания границ диапазона значений требуется 2-й оператор и значение (отметим, что =, EQ, AP недопустимы). Примеры смотрите ниже.

[]:

Обозначает необязательность.

<ref>:

8-символьные ключевые номера **KEYNUM** (см. **V.3**), разделенные запятыми и заключенные в скобки, например, (1976TU01,1981BO01).

\$:

Разделитель (конец записи также является разделителем, поэтому '\$' необязателен для обозначения конца последнего элемента записи).

Примеры:

126TE2 G BE2W=25.3 7(1970LAZM) 126I 2 L %EC+%B+=56.3 20 (1977JA04)\$%B- EQ 43.7 20 (1977JA04) 126SN2 B EAV=2030 60 126TE2 L G LE 0.19 GT 0.1 (1981SH15)\$MOME2 AP -0.20\$BE2=0.478 12

С. Допустимые типы данных в картах продолжения

Каждая запись может содержать только ограниченный (но расширяемый) набор типов данных. Например, запись **Gamma** не может содержать информацию типа **DTYPE=J** (спин ядра), а запись **Level** не может содержать **LOGFT**.

Для записи Alpha и (Delayed-) Particle в картах продолжения может использоваться только тип FLAG. Допустимые типы для записей Level, Gamma, B- и EC описаны ниже.

1. Запись Level

Допустимые типы E, DE, J, T, DT, L, S, DS, C, MS, Q описаны в параграфе III.B.9. Добавочные типы данных:

Тип	Описание
%EC, %B+, %EC+%B+, %B-, %IT, %SF, %A, %P, %N,; %B-N; %B-XN;	Вероятность распада (в процентах) уровня данным ти- пом распада: ε, β ⁺ , ε+β ⁺ , β ⁻ , изомерным переходом (IT), спонтанным делением (SF), α-распадом, протонным и нейтронным распадами, задержанного распада с испусканием n, xn,
	Аналогично, для испускания других частиц, то есть p, xp, α , x α , и так далее, с предшествующим испусканием β^- , β^+ , ϵ Замечание: распадные моды должны приводиться на "2 L" картах в наборах Adopted и на "S L"картах в наборах Decay и (n, γ)
ION	Состояние ионизации (используется в наборах Ionized Atom Decay)
CONF	Конфигурация уровня ядра
BE1, BE2,	Приведенная вероятность электрического перехода (вверх), в единицах $e^2 \times (barns)^L$, где L = 1, 2, для переходов с основного состояния на данный уровень
B2, B3,	2 ^L -польный (L = 2, 3,) параметр деформации ядра
FLAG	Добавочные символы сноски
G	g-фактор уровня
ISPIN	Изобарный спин
ISPINZ	Z-компонента изобарного спина
MOME1, MOME2,	Электрические моменты: дипольный, квадрупольный,
MOMM1, MOMM2,	Магнитные моменты: дипольный, квадрупольный,
WIDTH, WIDTHG, WIDTHG0, WIDTHN, WIDTHP, WIDTHA	Ширина уровня (Γ), парциальная γ -, γ 0-, n-, p-, α - шири- ны, то есть: $\Gamma(\gamma)$, $\Gamma(\gamma 0)$, $\Gamma(n)$, $\Gamma(p)$, $\Gamma(\alpha)$, соответственно
XREF	Ссылки на другие наборы данных для данного нуклида (обычно используется только в наборах Adopted)
2. Запись Gamma

Допустимые типы данных E, DE, RI, DRI, M, MR, DMR, CC, DCC, TI, DTI, C, COIN, Q описаны в параграфе III.B.14. Дополнительные типы данных:

Тип	Описание
BE1, BE2,	Приведенная вероятность электрического перехода <i>(вниз)</i> , в единицах $e^2 \times (barns)^L$, где L = 1, 2,
BE1W, BE2W,	Приведенная вероятность электрического перехода <i>(вниз)</i> , в одно- частичных единицах (Вайскопфа)
BM1, BM2,	Приведенная вероятность магнитного перехода <i>(вниз)</i> , данная в единицах $\mu_N^2 \times (barns)^{L-1}$, где L = 1, 2,
BM1W, BM2W,	Приведенная вероятность магнитного перехода (вниз), данная в одночастичных единицах (Вайскопфа)
CE	Полная интенсивность конверсионных электронов
CEK, CEL, CEL1,	Интенсивность конверсионных электронов для K, L, L ₁ , конверсии
ECC	Измеренный полный коэффициент конверсии
EKC, ELC, EL1C,	Измеренные К-, L-, L ₁ -, коэффициенты конверсии
FL	Конечная энергия уровня. Она должна быть или <i>идентична</i> энер- гии уровня в наборе данных, за которым следует символ '?' (кото- рый обозначает неопределенное размещение) или символом '?' (ес- ли конечный уровень неизвестен)
FLAG	Добавочные символы сноски
KC, LC, L1C,	Теоретические К-, L-, L ₁ -, коэффициенты конверсии
K:L, M:L, L1:L2,	Отношения интенсивностей конверсионных электронов
K:T, L:T,	Отношения К-, L-, интенсивностей конверсионных электронов к полной (ү+се) интенсивности

3. Запись Beta (β⁻)

Допустимые типы данных E, DE, IB, DIB, LOGFT, DFT, C, UN, Q описаны в параграфе III.B.10. Дополнительные типы данных:

Тип	Описание
EAV	Средняя энергия спектра электронов
FLAG	Добавочные символы сноски Заменание: 'С' и '2' не могут использоваться – смотрите Ш В 10 об их специаль-
	ном смысле

4. Запись ЕС

Допустимые типы данных E, DE, IB, DIB, IE, DIE, LOGFT, DFT, TI, DTI, C, UN, Q описаны в параграфе III.B.11. Дополнительные типы данных:

Тип	Описание
EAV	Средняя энергия спектра позитронов
CK, CL, CM,, CL+	Вычисленная доля распада электронным захватом с K, L, M,, L+M+ оболочек
ECK, ECL, ECM,, ECL+	Измеренная доля распада электронным захватом с K, L, M,, L+M+ оболочек
CK/T, CL/T,	Отношение интенсивности K, L, захвата к полной интенсивности электронного захвата
FLAG	Добавочные символы сноски Замечание: 'С' и '?' не могут использоваться – смотрите III.В.11 об их специаль- ном смысле

V. Детальное описание полей

1. NUCID

Стандартный идентификатор нуклида состоит из 2-х частей – массового числа в позициях 1-3, выровненного по правому краю, и химического символа элемента (или Z-100 для Z > 109) в позициях 4-5, выровненного по левому краю. Идентификатор нуклида должен располагаться *в поле*, отведенном для него (позиции 1-5). Идентификатор нуклида *обязан* быть в каждой записи набора данных, кроме записи End. Комментарии и ссылки набора данных, относящегося ко всей массовой цепочке, содержат только значение массового числа в поле NUCID.

2. DSID

Идентификатор набора данных **ID** наборов данных ENSDF должен обеспечивать уникальную компьютерно-распознаваемую идентификацию набора данных. *Не может быть* двух наборов данных с идентичными DSID и NUCID. В отдельных случаях два набора данных имеют одинаковые DSID при данном NUCID; тогда DSID дополняется (в конце) символом ':' (двоеточие) с последующим уникальным идентификатором, позволяющим различать такие наборы друг от друга.

В этих целях должны строго исполняться следующие правила:

Одиночные пробелы являются значимыми и должны использоваться согласно нижеописанным форматам. Ниже необязательные поля даются курсивом.

Общие понятия даются в верхнем и нижнем регистрах и определяются ниже.

Все DSID должны дополняться пробелами до 30 символов. Это поле при необходимости может быть продолжено на поле DSID на второй записи продолжения, как это описано в главе 3. В этом случае DSID на первой записи должен заканчиваться символом ',' (запятая).

GENERAL ID'S:

REFERENCES COMMENTS (смотрите формат этого набора данных в приложении В) ADOPTED LEVELS ADOPTED LEVELS, GAMMAS

Реально существует идентификатор:

HIGH-SPIN LEVELS, GAMMAS, описания которого переводчик не смог найти, но наборы с этим идентификатором аналогичны наборам с идентификатором **ADOPTED LEVELS, GAMMAS.** (Этот идентификатор устарел и остался только в старых наборах данных. Примечание J. K. Tuli.)

DECAY DATA SET ID'S

Parent Mode Decay (*Half-life*)

- Parent должен быть символом родительского изотопа (например, 52CR). Для спонтанного деления может приводиться более одного родительского изотопа (через запятую). Для распада ионизированного атома после символа родительского изотопа в квадратных скобках приводится ионизационное состояние: 187RE[+75]
- Mode может быть одним из **B+**, **B-**, **EC**, **IT**, **A**, **P**, **B-N**, **ECP**, **SF**,... Список распадных мод может расширяться
- Half-life может быть в форме T, описанной в V.14.1

MUONIC ATOM

REACTION DATA SET ID'S

Target(Reaction), *(Reaction), Target(Reaction) E=Energy Qualifier* COULOMB EXCITATION

INELASTIC SCATTERING (Устарел. Встречается только в старых наборах данных. Примечание J. K. Tuli.)

(HI,XNG)

 Target должна быть символом мишени (изотоп или элемент)

 Reaction должна быть символом реакции в виде (in,out), например (N,P),

 где in – налетающая частица, out – улетающая частица.

 Energy должна быть одного из следующих видов:

 <число, число> <единица измерения> (определение числа приведено в V.9)

 <число-число> <единица измерения>

 THERMAL или TH (для тепловых нейтронов)

 RESONANCE или RES (для резонансных нейтронов)

 Qualifier должен быть одного из следующих видов

 RES

 IAR (изобар-аналоговый резонанс)

 IAS (изобар-аналоговое состояние)

Примеры:

```
187RE B- DECAY

187RE[+75] B- DECAY

190PT A DECAY (6E11 Y)

1860S(N,G) E=THERMAL

RE(N,N'):TOF

1890S(P,T) E=19 MEV

185RE(A,2NG) E=23-42.8 MEV

44CA(P,G) E=856, 906 KEV IAR

PB(238U,FXG)
```

```
187OS IT DECAY (231 US)
187AU P DECAY:?
95RB B-N DECAY
186W(N,G) E=TH: SECONDARY G'S
186W(N,G) E=RES: AVG
187OS(D,D') E=12, 17 MEV
187RE(D,2NG), 187RE(P,NG)
238U(N,FG) E=TH
PB(238U,XG)
```

Данное поле используется в записях Identification и Cross-Reference.

3. DSREF, KEYNUM, QREF

Поля DSREF и QREF могут включать до 3-х идентификаторов ссылок (по формату NSR) – KEYNUM, каждый из которых является ссылкой на отдельную публикацию. Добавочные KEYNUM могут помещаться в записи Comment. Идентификаторы ссылок должны прижиматься к левому краю и разделяться запятыми без пробелов между запятыми и ключевыми словами. Идентификатор ссылки должен иметь форму YYYYAABB, где YYYY – целое из четырех цифр, AA – 2 буквы латинского алфавита, и BB – 2 цифры или 2 буквы латинского алфавита. Примеры: 1981TU01, 1981TUXY и так далее.

В связи с размером поля **QREF** в нем могут размещаться только до 2-х идентификаторов (**KEYNUM**); упоминание о трех – дань истории. До 2000 года **KEYNUM** был на два символа короче (примечание переводчика).

Данные поля используется в записях Identification, Q-value и Reference.

4. PUB

Информация о публикации состоит из года публикации массовой цепочки в *Nuclear Data Sheets*, обозначенного двумя последними цифрами года и буквами **NDS** для *Nuclear Data Sheets* или буквами **NP** для *Nuclear Physics-A*. За ней может следовать запятая и другая информация о модификации, например, инициалы человека, модифицировавшего набор после этой публикации. Примеры: **78NDS,TWB** или **81NDS**.

Кроме указанных форматов, зачастую используется слово ENSDF, с возможными двумя последними цифрами года – по-видимому должно означать, что включено в ENSDF, но еще не опубликовано (примечание переводчика).

Данное поле используется только в записи Identification.

5. DATE

Это поле имеет вид **YYYYMM**, где **YYYY** – целое из 4-х цифр, **YYYY≥**1900 и **MM** – целое из двух цифр в диапазоне 01≤**MM**≤12.

Данное поле используется только в записи Identification.

6. RTYPE

RTYPE – это двухсимвольный код в позициях 8-9, который определяет тип записи (в большинстве случаев в позиции 9 находится пробел).

RTYPE Описание

пусто Может быть в записях Identification, общий Comment или End

- Η Запись History Запись Normalization Ν Запись Production Normalization в позиции 7 содержит символ 'Р' Р Запись Parent 0 Запись **Q-value** Запись Level L G Запись Gamma B Запись **Beta** (β^{-}) Запись EC (ε , β^+ , $\varepsilon^+\beta^+$) E Запись Аlpha Α Запись Reference R X Запись Cross-Reference
- **DP** Запись (**Delayed-**) **Particle**, или **Particle**, если в позиции 8 пробел; в позиции 9 символ частицы (например, "Р" для протона)

Данное поле используется во всех записях согласно данному описанию

7. CTEXT

Это поле имеет свободный формат. Различные выражения, используемые в этом поле, могут быть преобразованы согласно словарю преобразования символов. Словарь приведен в приложении F. Выражением, подлежащим преобразованию, является строка символов, заключенная в "ограничители", "в притирку". В настоящее время используются следующие ограничители:

пробел, запятая, точка с последующим пробелом и следующие символы: ; : () = = + <> /\$

В некоторых случаях программы преобразования делают предварительный просмотр за ограничителем, для правильного преобразования.

Данное поле используется в записях Общий комментарий (general Comments), Комментарии к записям (record Comments) и Комментарии сносок (footnote Comments).

8. SYM(FLAG)

Поле SYM(FLAG) (с данным FLAG) допустимо только в записях с RTYPE: L, G, B, E, A, DP. Однако SYM (без FLAG) может также использоваться в записях типа N, P и Q.

FLAG может быть строкой символов, выделенной (необязательно) запятыми. Любой символ, отличный от запятой и круглых скобок, может использоваться в строке **FLAG**. Для записей **Beta** и **EC** символ 'C' не может использоваться как **FLAG**, так как сам символ 'C' в позиции 77 записей **B**, **E** и **A** означает "совпадения". Аналогично, символы '*', '@', '%' и '&' в записи **G** резервируются для специальных целей (III.B.14). Смотрите замечание по **SYM** и **FLAG** в **Comment** (III.B.5). **FLAG** может быть использован только с теми **SYM**'ами, которые являются допустимыми типами данных на форматированных картах или с обозначением полосы **BAND**. Фактически для **BAND FLAG** *должен* быть дан.

Символы, допустимые для использования в **SYM** в различных **RTYPE** в настоящее время ограничиваются полями, допустимыми в этих записях.

9. BR, CC, HF, LOGFT, NB, NP, NR, NT, QP, NR*BR, NT*BR, NB*BR

Эти поля либо заполняются пробелами, либо одним беззнаковым числом (NUM) в одной из следующих форм:

- 1. Целое число (например, 345)
- 2. Вещественное число (например, 345.23)
- 3. Целое число с последующей целой степенью десятки (например, 345E-4, 4E+5)
- 4. Вещественное число с последующей целой степенью десятки (например, 345.Е-4)

Замечание: желательно писать число как '0.345', а не '.345'. Тем не менее, даже если ведущий нуль опущен (например, для экономии позиций), в Nuclear Data Sheets число будет с ведущим нулем (примечание переводчика).

Данное поле используется в записях Parent, Normalization, Production Normalization, Beta, EC, Alpha и Gamma.

10. MR, Q-, QA, SN, SP

В этих полях для представления чисел используется та же форма, как для величин, описанных выше, в пункте V.9, с тем отличием, что у этих величин допустим знак («+» или «-»).

Данное поле используется в записях Q-value и Gamma.

11. DBR, DCC, DE, DHF, DIA, DIB, DIE, DIP, DNB, DNP, DNR, DNT, DQP, DQ-, DRI, DS, DSN, DSP, DTI, UNC

Это двухсимвольные поля, представляющие погрешность значения соответствующих им полей в "стандартной" форме. "Стандартная" числовая погрешность означает погрешность в единицах последнего знака, например NR=0.873, DNR=11 означает величину 0.873±0.011, аналогично для QP=2.3E6, DQP=10 в привычном виде Q-значение выглядит как $(2.3\pm1.0)\times10^6$ (смотрите также Приложение H). Если известен только верхний или нижний предел, то вместо символов <, >, ≥ и тому подобных употребляются выражения LT, GT, GE и т.д.

Величина DNB должна быть двухсимвольной, хотя и занимает 6-символьное поле (см. запись Normalization, III.7, Замечания)

Допустимые формы этих полей перечислены ниже.

- 1. Пробел
- 2. Целое, меньшее 100, желательно не более 25 (прижатые к левому или правому краю поля)
- Одно из следующих выражений: LT, GT, LE, GE, AP, CA, SY, означающих соответственно: меньше чем, больше чем, меньше или равно, больше или равно, приблизительно равно, вычисленное, из систематики

Данное поле используется в записях Q-value, Parent, Normalization, Production Normalization, Level, Beta, EC, Alpha, (Delayed-) Particle и Gamma.

12. DFT, DMR, DQA, DT

Эти поля допускают указание "стандартной" несимметричной погрешности. Например, T=4.2 S DT=+8–10, означает период полураспада $4.2_{-1}^{+0.8}$ секунды, аналогично, MR=-3 DMR=+1-4 означает коэффициент смеси -3_{-4}^{+1} , то есть в диапазоне от -7 до -2 (замечание: несимметричная погрешность складывается алгебраически). Если конструкция «±» не помещается в пределах поля, то цифры или выражения в этом поле представляются либо "стандартной" симметричной погрешностью, либо нечисловой погрешностью, как описано выше в пункте V.11.

Таким образом, возможны 2 случая:

- 1. Симметричная погрешность поле содержит либо целое число, либо выражение типа описанного выше в пункте V.11.
- 2. Асимметричная погрешность поле в виде +х-у, где х и у целые числа.

Данное поле используется в записях Parent, Normalization, Level, Beta, EC, (Delayed-)Particle и Gamma.

13. IA, IB, IE, IP, RI, TI

В этих полях допустимы следующие числа/выражения:

- 1. NUM (число, как описано выше в пункте V.9)
- 2. (NUM)

Замечание: круглые скобки означают, что число является выведенным, а не измеренным или получено из другого(их) эксперимента(ов).

Данное поле используется в записях Beta, EC, Alpha, (Delayed-) Particle и Gamma.

14. T

Это поле представляет собой период полураспада и может иметь одну из перечисленных форм:

1.NUM-пробел-Units (то есть число, определенное выше в пункте V.9, с последующими пробелом и единицей измерения)

Для единиц измерения допустимы следующие символы: Y, D, H, M, S, MS, US, NS, PS, FS, AS, EV, KEV и MEV, что означает: год, день, час, минута, секунда, миллисекунда, микросекунда, наносекунда, пикосекунда, фемтосекунда, аттосекунда, электрон-Вольт, килоэлектрон-Вольт и мегаэлектрон-Вольт.

2. Слово "STABLE" (стабильный)

Замечание: символ '?' за периодом полураспада означает, что значение не является надежно установленным. Должен быть дан комментарий для точного объяснения причины.

Данное поле используется в записях Parent, Level и (Delayed-) Particle.

15. COIN

Это односимвольное поле в 78-й позиции, которое может содержать либо пробел, либо символ 'С', либо символ '?'. Символ 'С' означает совпадение, символ '?' означает совпадение под вопросом.

Данное поле используется в записях (Delayed-) Particle и Gamma.

16. UN

Это двухсимвольное поле может быть либо пустым для разрешенных переходов, либо цифрой от 1 до 9, указывающей порядок запрета, с последующим пробелом для неуникального перехода или с символом 'U' для уникального перехода.

Данное поле используется в записях Beta и EC.

17. MS

Это двухсимвольное поле может быть либо пустым, либо содержать символ 'М', с последующим пробелом или цифрой от 1 до 9.

Данное поле используется только в записи Level.

18. E, EI

Поле значения энергии может иметь один из следующих форматов:

1. NUM (как определено в пункте **V.9**)

2. NUM+A или A+NUM, где A = X, Y, Z, U, V, W, A, B,..., используемые в перечисленном порядке, *то есть* сначала используется символ 'X', во втором случае – 'Y' и так далее.

3. SN+NUM, SP+NUM, SA+NUM. Энергии резонансов должны, по возможности, приводится в системе центра масс.

4. А (как оно определено выше в подпункте 2)

Замечание: допустимо значение заключать в круглые скобки. Это означает, что данное значение было выведено (а не прямо измерено) или получено из другого(их) эксперимента(ов). Должно быть приведено объяснение этого факта.

Данное поле используется в записях Parent, Level, Beta, EC, Alpha, (Delayed-) Particle и Gamma.

19. M

Поле мультипольности может иметь один из следующих форматов:

Mult
 Mult+Mult
 Mult,Mult
 MOT Mult
 NOT Mult

где Mult = E_L или M_{L'} (где L, L' - цифры L≥0, L'≥1), или
M_{L'}+E_L или
E_L+M_{L'} или
D или Q

Замечание: мультипольность, заключенная в круглые скобки, означает, что назначение вероятно и не определено. Квадратные скобки указывают на подразумеваемое или выведенное значение.

Данное поле используется только в записи Gamma.

20. J

Поле спина-четности может иметь только один из перечисленных форматов:

1. JPI (может быть J, π, или Jπ)

2. JPI OR JPI (вместо OR может использоваться запятая)

3. JPI AND JPI (вместо AND может использоваться символ амперсанда '&')

4. ОР ЈРІ (где ОР - это АР, LE, GE) Замечание: такая запись интерпретируется как π =РІ, а Ј – ОР Ј. Пример: LE 5+ означает π =+ и J \leq 5

5. NOT JPI

6. JPI ТО JPI (вместо ТО может использоваться двоеточие ':')

Замечание: если четность дается в диапазоне, то это интерпретируется так: (a) J TO J'PI означает $J \le J \le J'$ и $\pi = PI$ (b) JPI TO J'PI' означает JPI, J=J+1 PI=±,..., J=J'-1 PI=±, J'PI' (c) JPI TO J' означает JPI, J=J+1 PI=±,..., J=J'-1 PI=± J'PI=± Примеры: (a) 3 TO 6- означает $J\pi = 3-, 4-, 5-, 6-$ (b) 3+ TO 6- означает $J\pi = 3+, 4\pm, 5\pm, 6-$ (c) 3+ TO 6 означает $J\pi = 3+, 4\pm, 5\pm, 6\pm$

7. NATURAL/UNNATURAL

В комбинациях спина и четности: 0+, 1-, 2+, 3- и т.д. четность называется натуральной, в комбинациях 0-, 1+, 2-, 3+ и т.д. – ненатуральной.

8. А или А+JPI (где А – один из символов J, K, L, M, N, O, P,...), Замечание: реально встречается обозначение J1, J2 и т.д. (прим. переводчика)

Выше J = N или N/2 (N – целое положительное или 0) PI(π) = + или – JPI = J или PI или J с последующим PI.

Замечания:

1. Круглые скобки в поле J^π указывают, что значение, заключенное в круглые скобки, основано на слабой аргументации, см. "Основания для назначения спина и четности". Отметим, что JPI=(3,4)– интерпретируется как J=(3) или (4), а π=-

- 2. По возможности дается не более трех значений JPI.
- 3. Диапазоны типа 3-... 5+ лучше записывать в виде 3-,4,5+.
- 4. Квадратные скобки вокруг значения Ј^{^π указывают на подразумеваемое значение.}

Данное поле используется в записях Parent и Level.

21. S

Это поле может содержать не более чем три S-значения в форме NUM (определенное выше в пункте V.9), разделенные символами '+' или запятыми для соответствующих L-значений, данных в поле L (позиции 56-64). Допускается использование круглых скобок для указания того, что эти значения являются вероятными.

Данное поле используется только в записи Level.

22. L

Это поле может содержать не более трех целых чисел (с возможно предшествующими LE или GE), разделяемых символами '+' или запятыми. Значения могут заключаться в круглые скобки, что интерпретируется как вероятные значения. Квадратные скобки указывают на подразумеваемые или выведенные значения.

В некоторых реакциях значение L может сопровождаться спецификацией электрического или магнитного характера в форме, подобной записи мультипольности (смотрите пункт V.19).

Данное поле используется в записях Level и (Delayed-) Particle.

23. ION

Это поле либо пустое, либо знаковое целое, прижатое к левому краю и обозначающее степень ионизации атома, *пример:* +75.

Это поле используется в наборах данных распада ионизированных атомов (Ionized Atom Decay) в записях Parent.

24. Cross Reference

Перекрестные ссылки для записи (в настоящее время допустимые только для карт L в ОЦЕНЕННЫХ (ADOPTED) наборах данных) производятся посредством записей продолжения и имеют следующие формы:

1. NUCID 2 L XREF=ABC\$

Такая запись указывает, что оцененный уровень (специфицированный предыдущей записью L) рассматривается в наборах данных "А", "В" и "С" и что соответствующие уровни считаются несомненно существующими.

2. NUCID 2 L XREF=A(E1)B(E2)C(E3)\$

Такая запись указывает, что принятый уровень тот же, что и уровень E1 в наборе данных "А", уровень E2 в наборе данных "В" *и так далее*.

3. NUCID 2 L XREF=A(E1,E2)B(E3)\$

Такая запись указывает, что принятый уровень может быть E1 или E2 в наборе данных "A", а также уровнем E3 – в наборе данных "B".

4. NUCID 2 L XREF=A(*E1)B(E2)\$

Такая запись указывает, что уровень с энергией E1 в наборе данных "А" ассоциируется с более чем одним принятым уровнем. Символ '*' должен появляться во всех случаях множественного назначения уровня. Альтернативно запись A(*) может использоваться, если энергия очевидна.

5. NUCID 2 L XREF=+\$

Такая запись указывает, что принятый уровень виден во всех наборах данных.

6. NUCID 2 L XREF=-(AB)\$

Такая запись указывает, что принятый уровень виден во всех наборах данных, кроме "А" и "В".

Замечание: символы А, В и С, относящиеся к отдельным наборам данных, должны быть определены при помощи записей перекрестных ссылок (смотрите пункт **III.B.4**).

25. History record

- 1. Во всех индивидуальных наборах данных в ENSDF (за исключением наборов REFERENCE и COMMENTS) предполагается наличие следующей информации (если какое-либо поле не помечено как необязательное, то оно должно присутствовать) в записи **H**, изменяющейся при каждом обновлении набора данных (см. описание записи **H** в III.B.2).
 - ТҮР Тип изменения/оценки (обязателен)
 - AUT Имя автора (человека, сделавшего или ответственного за изменения, но не обязательно оценщика данного набора данных) (обязательно)
 - DAT Дата изменения (необязательна, если приведена дата "отсечки")
 - СUТ Дата "отсечки" обзора литературы (необязательна при изменениях, не подразумевающих новой оценки)
 - CIT Ссылка на публикацию (необязательна, если информация из набора данных не опубликована)
 - СОМ Комментарий (необязателен)
- 2. Текущий список значений ТҮР (впоследствии может расширяться)
 - FUL Полный обзор нуклида, основанный на всей информации, доступной до указанной даты "отсечки". Дата "отсечки" обязательна
 - FMT Произведены некоторые изменения в формате
 - ERR Исправлена опечатка или ошибка в наборе, должен быть соответствующий комментарий
 - MOD Модификация набора данных для частичного изменения информации о нуклиде. В комментарии необходимо отметить тип модификации. Дата "отсечки" не обязательна
 - UPD Модификация для внесения данных из вновь появившейся литературы. Дата "отсечки" обязательна
 - ЕХР Экспериментальные (не оцененные) данные

На данную запись History может быть только один тип спецификации

- 3. Даты должны приводиться в формате DD-MMM-YYYY (*например*, 31-MAY-1996).
- 4. Ссылка на публикацию (необязательная) дает информацию о публикации данной оценки. CIT=ENSDF означает, что набор включен в ENSDF, но еще не опубликован.
- 5. Комментарий (необязательный) может давать общие замечания об оценке/модификации набора данных.
- 6. В записи Н поля могут быть в произвольном порядке.

Отметим, что записи об истории указывают на различные ревизии набора данных. При следующей полной (FUL) оценке они удаляются и история пишется заново.

Для полной оценки (FUL) в NNDC запись History будет формироваться на основе набора данных COMMENTS.

Примеры:

156DY H	TYP=MOD\$AUT=B. Singh\$DAT=31-DEC-1995\$
156DY2H	COM=Updated SDB data only\$
156DY H	TYP=UPD\$AUT=R. Helmer\$CUT=15-DEC-1994\$
156DY2H	COM=Updated data set since last full evaluation\$
156DY H	TYP=FMT\$AUT=J. Tuli\$DAT=1-DEC-1994\$COM=FIXED T1/2\$
156DY H	TYP=FUL\$AUT=R. Helmer\$CUT=01-May-1991\$
156DY2H	CIT=NDS 65, 65 (1992)\$

Приложение А Набор символов

Базовый набор символов – это стандартные 7-битные символы кода ASCII (American Standard Code for Information Interchange) вплоть до символа с восьмеричным кодом 173. Символы с восьмеричными кодами 173 и больше используются как управляющие. Альтернативный набор символов, в первую очередь, включает греческие буквы и некоторые специальные символы. Символ обратной косой черты (восьмеричный код 134) интерпретируется как команда "возврат на символ" (backspace). Альтернативный символ и во входном потоке символов представляется двумя символами: управляющий символ и символ из стандартного набора, эквивалентный альтернативному символу. Все допустимые альтернативные символы и их эквиваленты из стандартного набора приведены в таблице ниже.

Существует 4 управляющих символа: "|" (вертикальная черта – восьмеричный код 174), "~" (тильда – восьмеричный код 176), "{" (открывающая фигурная скобка – восьмеричный код 173) и "}" (закрывающая фигурная скобка – восьмеричный код 175). Символ вертикальной черты и символ тильды указывают на то, что следующий стандартный символ представляет собой альтернативный символ из первого или второго альтернативного набора символов, соответственно. Возможна модификация представления целой строки символов. Для этого строка заключается в фигурные скобки, причем первый символ после открывающей скобки интерпретируется как управляющий. Список допустимых управляющих символов и их значений приведен ниже. Модифицируемые строки могут быть вложенными, но при этом надо учитывать, что невозможно завершение модифицируемой строки без завершения модификации всех вложенных строк. Управляющий символ может записываться как в верхнем, так и в нижнем регистре.

|g отображается γ {B{+238}Pu} отображается ²³⁸Pu

Символы для управления строкой символов

- первый альтернативный набор символов
 второй альтернативный набор символов
 надстрочный текст
 подстрочный текст (символы + и являются взаимоисключающими)
 курсив
 жирный шрифт
- U подчеркнутый текст

Замечание: символ "^" может использоваться перед символом или словом для сохранения его регистра, *например*, ^A означает букву A (но не а).

ASCII	1-й альт.	2-й альт.	ASCII	1-й альт.	2-й альт.
!	©	!	Ν	Ν	Ν
**	_	"	0	0	Ö
#	§	\otimes	Р	П	Р
\$	e	\$	Q	Θ	Õ
%		%	R	Р	R
&	≡	&	S	Σ	S
,	0	Å	Т	Т	Т
(←	(U	Ϋ́	Ü
)	\rightarrow)	V	∇	V
*	×	•	W	Ω	W
+	±	+	X	Ξ	X
,	1/2	,	Y	Ψ	Y
-	Ŧ	-	Z	Z	Z
•	œ	•	[{	[
/	÷	/]	}]
0	(0	^	↑	^
1)	1	_	↓	_
2	[2	6	,	6
3]	3	a	α	ä
4	<	4	b	β	b
5	>	5	c	η	c
6	√	6	d	δ	d
7	ſ	7	e	3	é
8	Π	8	f	φ	f
9	Σ	9	g	γ	g
:	Ť	:	h	χ	ħ
;	* *	;	i	l	i
<	≤	<	j	E	j
=	≠	=	k	κ	k
>	2	>	1	λ	λ
?	≈	?	m	μ	m
a	œ	•	n	ν	n
А	Α	Ä	0	0	Ö
В	В	В	р	π	р
С	Н	С	q	θ	Õ
D	Δ	D	r	ρ	r
E	E	E	S	σ	S
F C	Φ	F	t	τ	t
G п		G п	<u>u</u>	<u> </u>	<u> </u>
П	<u>А</u> І	п	V	(()	V XX
I I	<u> </u>	I	v	w ع	w v
J K	~ K	J K		<u>ح</u> س	A V
L	Λ	L	J Z	<u>Ψ</u> ζ	J Z
M	M	M		ر	

Альтернативные наборы символов

Приложение В Формат набора данных комментариев

Этот набор данных состоит только из записей общих комментариев (определенных в III.B(4)). Формат записей комментариев подобен общим комментариям в других наборах данных, за исключением того, что поле NUCID содержит только массовое число (AAA), и того, что поле SYM должно быть организовано как в комментарии, вводимом с помощью FLAG. Как и в последнем, поле SYM должно занимать позиции от 10 до 19, причем в позиции 19 должен быть пробел или за SYM должен следовать символ '\$'. Для данного комментария возможно продолжение записи на последующих картах. Дополнительная особенность состоит в том, что новая строка будет организована, если в позиции 6 находится символ '#' и будет организовано начало нового параграфа, если в позиции 6 находится символ '@'. Это свойство облегчает ввод информации в комментарии COMM.

SYM Смысл

ТІТL Заголовок оценки. Требуется, если оценка покрывает несколько масс

- AUTH Авторы, список авторов из учреждения, названного в последующем INST. Символ или цифра в круглых скобках после фамилии автора указывает на то, что постоянный адрес автора отличается от учреждения INST (Смотрите PERM)
- INST Учреждение, название и адрес учреждения, где работают авторы. INST должно следовать после соответствующего AUTH. Символ продолжения '#' используется для того, чтобы адрес не начинался на той же строке. Если в публикации принимают участие несколько организаций, может быть несколько наборов AUTH и INST
- ABST Аннотация, должна быть краткой и по существу. Добавочные детали могут располагаться в комментариях СОММ

CUT Дата, до которой включалась информация и сопутствующие комментарии

- СОММ Общие комментарии по технике оценки или другая общая информация для многих изотопов
- АСКN Благодарности
- PERM(a) Постоянный адрес автора. Символ или цифра (обозначенная здесь 'a') в круглых скобках соответствуют букве или цифре, используемой в комментарии AUTH
- FUND Фонд, благодарность фонду, при поддержке которого получены результаты. Эта информация появится в виде примечания, относящегося к заголовку
- СІТ Цитирование. Добавляется при формировании NDS так, что публикация может корректно цитироваться людьми, использующими массовую цепочку. Авторы могут опустить это значение

Пример набора данных Comments

156 92NDS 199203 COMMENTS 156 C TITL\$Nuclear Data Sheets for A=156 156 c AUTH\$R. G. Helmer c INST\$Idaho National Engineering Laboratory 156 156 #c EG&G Idaho, Inc. 156 #c Idaho Falls, Idaho 83415 USA c ABST\$The experimental results from the various reaction and decay 156 2c studies leading to nuclides in the A=156 mass chain, and |a decays 3c from it, have been reviewed. These data are summarized and presented, 156 156 156 4c together with adopted levels schemes and properties. 156 c CUT\$Data available prior to May 1991 have been evaluated. c ACKN\$The evaluator wishes to thank C. W. Reich, the reviewer, and the 156 156 2c editors for many helpful discussions. c FUND\$Research sponsored by the U. S. Department of Energy. 156 156 C CIT\$R. G. Helmer, NDS 65, 65 (1992) 156 c COMM\$In this evaluation, the following expression was used to define 156 2c the rotational-band parameters A and B: c $E(J) = E\{-0\} + A[J(J+1)-K\{+2\}] + B[J(J+1)-K\{+2\}]\{+2\}.$ 156 156 with the following terms sometimes added for K=1 and 2 bands С c + $(-1) \{+J+1\}A\{-2\}J(J+1)$ for K=1 156 c and 156 156 c + (-1) {+J}A{-4} (J-1) J (J+1) (J+2) for K=2. 156 c In the determination of the values of these parameters, the energy 2c spacings of only the lowest levels, and minimum number of levels, were 156 156 3c used. 156 c The ENSDF file (the computer data base from which these Data Sheets 156 3c are produced), contains some information that is not printed in these 156 4c Data Sheets. This includes the theoretical internal-conversion 6c coefficients for each shell, where the values are significant, for 8c each |g for which a multipolarity is given in the Data Sheets. Also, a 156 156 156 9c short comment is made about the experimental methods for each 156 Bc reference. This information would be available if a copy of the ENSDF 156 Dc file were obtained.

Страница в Nuclear Data Sheets, сформированная на основе приведенного примера

Nuclear Data Sheets 65, 65 (1992)

Nuclear Data Sheets for $A = 156^*$

R. G. Helmer

Idaho National Engineering Laboratory EG&G Idaho, Inc. Idaho Falls, Idaho 83415 USA (Received June 24, 1991; Revised August 20, 1991)

Abstract: The experimental results from the various reaction and decay studies leading to nuclides in the A=156 mass chain, and α decays from it, have been reviewed. These data are summarized and presented, together with adopted levels schemes and properties.

Cutoff Date: Data available prior to May 1991 have been evaluated.

General Policies and Organization of Material: See the January issue of Nuclear Data Sheets.

- Acknowledgments: The evaluator wishes to thank C. W. Reich, the reviewer, and the editors for many helpful discussions.
- General Comments: In this evaluation, the following expression was used to define the rotational-band parameters A and B:

 $E(J) = E_0 + A[J(J+1) - K^2] + B[J(J+1) - K^2]^2.$

with the following terms sometimes added for $K\!=\!1$ and 2 bands

+ $(-1)^{J+1}A_2J(J+1)$ for K=1

and

- + $(-1)^{J}A_{4}(J-1)J(J+1)(J+2)$ for K=2.
- In the determination of the values of these parameters, the energy spacings of only the lowest levels, and minimum number of levels, were used.
- The ENSDF file (the computer data base from which these Data Sheets are produced), contains some information that is not printed in these Data Sheets. This includes the theoretical internal-conversion coefficients for each shell, where the values are significant, for each γ for which a multipolarity is given in the Data Sheets. Also, a short comment is made about the experimental methods for each reference. This information would be available if a copy of the ENSDF file were obtained.

* Research sponsored by the U.S. Department of Energy.

0090-3752/92 \$35.00 Copyright © 1992 by Academic Press. All rights of reproduction in any form reserved.

Приложение С Пример Adopted Levels, Gammas Data Set

```
162TB
        ADOPTED LEVELS, GAMMAS
                                                                 99NDS
                                                                         199909
162TB H TYP=FUL$AUT=R. G. Helmer and C. W. Reich$CIT=NDS 87, 317 (1999)$
162TB2 H CUT=1-Jan-1999$
162TB C Data are from 162GD B- decay (1982Ge07,1970Ch02) and 163DY(T,A)
162TB2C reaction (1989BuZW,1988BuZP).
                                     36 -895
                                               85
162TB Q 2506
                  36 6284
                           36 7457
                                                      1995AU04
162TB CL E
                  Other levels up to 1600 keV are indicated by the 163DY(T,A)
162TB2CL spectrum in 1988BuZP.
             For the levels reported from the 163DY(T,A) reaction, the
162TB CL J
162TB2CL JPI values are based on L=2 transfers and intensity patterns
162TB3CL within bands that indicate pickup of a 3/2[411] proton.
162TB CL BAND(A) KPI = 1 - band.
162TB2CL CONF=((P,3/2(411))(N,5/2(523))).
162TB@CL ^A=9.78
162TB DL
                   Levels: 1- (0), 2- (39), 3- (97), 4- (176), 5- (267).
162TB CL BAND(B)
                 KPI = 4 - band.
162TB2CL CONF=((P, 3/2(411))(N, 5/2(523))).
162TB@CL ^A AP 10
                  Levels: 4- (216), 5- (310).
162TB DL
162TB CL BAND(C) Bandhead of KPI = 1+ band.
162TB2CL CONF=((P,7/2(523))(N,5/2(523)))
162TB DL
                  Level: 1+ (442)
162TB XY162GD B- DECAY
162TB XZ163DY(T,A)
162TB PN
                                                                            6
162TB L
         0
                     1 -
                                       7.60 M
                                               15
                                                                            А
162TB2 L %B-=100 $ XREF=+
                  Unweighted average of 7.43 MIN 4 (1965Sc24) and 7.76 MIN 10
162TB CL T
162TB2CL (1977Ka08). Others: 7.48 M 3 (1965Sc24), 8.0 M 5 (1966Fu08),
162TB3CL 7.75 M 31 (1966Sc24), 7.5 M 10 (1967Gu03), and 7.6 M 2 (1968Ka10).
162TB4CL See 1951Bu25, 1960Wi10, and 1962Ta12 for half-life measurements
162TB5CL related to nuclide identification.
                  Configuration is assigned as
162TB CL J
162TB2CL CONF=((P,3/2(411))(N,5/2(523))) based on the ground-state
162TB3CL assignments of CONF=(P,3/2(411)) for 161TB and
162TB4CL CONF=(N,5/2(523)) for 161GD and 163DY.
162TB CL J
                  LOGFT=4.95 of the B- transition to the 2- level at 1148 keV
162TB2CL in 162DY indicates an allowed-unhindered B transition, which
162TB3CL must be CONF=(N, 5/2(523)) to CONF=(P, 7/2(523)). This confirms
162TB4CL the configuration assignment to this ground state as well as
162TB5CL helping establish the configuration assignment to the 1148-keV
162TB6CL level in 162DY as CONF=((P,3/2(411))(P,7/2(523))). See 162DY
162TB6CL Adopted Levels and 1995Be02 for further discussion.
162TB L 39.10
                  9 2-
                                                                            А
162TB2 L XREF=+
162TB CL J
                  From M1 component in G to 1- ground state, expected energy
162TB2CL spacing in rotational band, and (T,A) reaction results.
162TB G 39.0
                 2 100
                              M1+(E2)
162TB CG M
                  From intensity balance at 39 level in 162GD B- decay,
162TB2CG transition is primarily M1 (1970Ch02); x/G intensity ratio and
162TB3CG ^L x-ray energy are consistent with this.
162TB L 97
                  1 3-
                                                                           Α
162TB2 L XREF=Z
162TB L 176
                 1 4-
                                                                            Α
162TB2 L XREF=Z
162TB L 216
                 1 4-
                                                                            В
162TB2 L XREF=Z
162TB CL J
                  Configuration is assigned as that of the ground state,
162TB2CL namely, (PI 3/2[411]) (NU 5/2[523]) recoupled. The systematics
162TB3CL of 1998Ja07 suggest a "theoretical" Gallagher-Moszkowski splitting
162TB4CL of 82 keV compared to the observed 216 keV, if this assignment
162TB5CL is correct.
162TB L 267
                  2 5-
                                                                           А
```

162TB2 L XREF=Z
162TB L 310 1 5- B
162TB2 L XREF=Z
162TB L 341.41 9 (0-,1)
162TB2 L XREF=Y
162TB CL J From LOGFT=5.9 in B- decay from 0+ 162GD.
162TB G 302.30 15 58 9
162TB G 341.42 10 100 9
162TB L 442.11 8 1+ C
162TB2 L XREF=Y
162TB CL J From allowed-unhindered (LOGFT=4.4) B- transition from the
162TB2CL 162GD ground state (0+). This also uniquely establishes the
162TB3CL configuration of this level as CONF=((N,5/2(523))(P,7/2(523))).
162TB G 403.00 8 85 4
162TB G 442.12 8 100

Страницы в Nuclear Data Sheets, сформированные на основе приведенного примера

 $^{162}_{65}{
m Tb}_{97}{-1}$

0/0-	-2506 36 9/)=6284 36 5	S(n) = 7457 38 0	$h(\alpha) = -895 \ 85 \ 1995 \ h(\alpha) = -895 \ 85 \ h(\alpha) = -895 \ h(\alpha) = -855 \ h(\alpha) = -895 \ h(\alpha) = -895$
Data	are from ¹⁶² G	d β ⁻ decay (1982Ge07,1970	Ch02) and 163 Dy(t,α) reaction (1989BuZW,1988BuZP).
				¹⁶² Tb Levels
				Cross Reference (XREF) Flags
				A 162 Gd β^- Decay
				b = b y(t, a)
E(level) [†]	Jπ‡	XREF	T _{1/2}	Comments
0.0§	1 -	AB 7	.60 min 15	$\%\beta^{-}=100.$
				$T_{1/2}$: Unweighted average of 7.43 min 4 (1965Sc24) and 7.76 min 10 (1977Ka08).
				Otners: 7.48 min 3 (1965Sc24), 8.0 min 5 (1966Fu08), 7.75 min 31 (1966Sc24),
				7.5 min 10 (1967Gu03), and 7.6 min 2 (1968Ka10). See 1951Bu25, 1960W110, and $1062T_{2}$ for helf 116 measurements related to much depth levels
				19021a12 for nan-life measurements related to nuclide identification.
				JW: Configuration is assigned as configuration= $((\pi 3/2[411])(V 3/2[323]))$ based on the ground state assignments of configuration (= 2/2(411)) for [6]TF and
				the ground-state assignments of configuration= $(\pi 3/2[411])$ for \cdots 1D and configuration= $(\pi 5/2[523])$ for ^{161}Cd and ^{163}De
				I_{π^*} log f_{t-4} 95 of the R^- transition to the 2- level at 1148 keV in I_{62} Dy
				indicates an allowed_unbindered 8 transition, which must be
				configuration=(v 5/2[523]) to configuration=(π 7/2[523]). This confirms the
				configuration assignment to this ground state as well as helping establish the
				configuration assignment to the 1148 -keV level in 162 Dy as
				configuration=((π 3/2[411])(π 7/2[523])). See ¹⁶² Dy Adopted Levels and 1995Be02
				for further discussion.
39.10§ g	2 -	AB		$J\pi :$ From M1 component in γ to 1– ground state, expected energy spacing in
				rotational band, and (t, α) reaction results.
97§ 1	3 -	В		
176§ 1	4 -	В		
216# 1	4 –	В		J π : Configuration is assigned as that of the ground state, namely, (π 3/2[411])(v
				5/2[523]) recoupled. The systematics of 1998Ja07 suggest a "theoretical"
				Gallagher-Moszkowski splitting of 82 keV compared to the observed 216 keV, if
0.078 0	F	D		this assignment is correct.
310# 1	5 -	B		
341 41 0	(0 - 1)	Δ		I_{π} : From log t_{t-5} 9 in \mathbb{R}^{-} decay from $0 + \frac{162}{6}$
442.11 [@] &	(0-,1)	A		Jz: From allowed-unhindered (log $ft=4.4$) B ⁻ transition from the ¹⁶² Gd ground state
				(0+). This also uniquely establishes the configuration of this level as
				configuration=((v 5/2[523])(π 7/2[523])).
1 Other 1	avals up to 160	0 koV ora i	ndicated by the	163Du(f.g) croateum in 1000Bu/ZP
For the	levels reporte	d from the l	⁶³ Dv(t a) reset	$\omega_{\rm FU}(x)$ speciful in interest of the second s
hande t	hat indicate p	ickup of a 2	2[411] protop	ton, the six targets are based on E-s transfers and intensity patterns within
§ (A): Kπ	=1- band. Con	figuration=0	(π 3/2[411]) (v 5	j/2[523])), A=9.78.
[#] (B): Kπ	=4- band. Con	figuration=($(\pi 3/2[411])(v 5$	j/2[523])). A≈10.
@ (C): Ba	ndhead of $K\pi =$	1+ band. Co	nfiguration=((π	: 7/2[523])(v 5/2[523])).
				v(162Tb)
				7(10)
E(level)	Eγ	Ιγ	Mult.	Comments
39.10	39.0 <i>2</i>	100	M1+(E2)	Mult.: From intensity balance at 39 level in ^{162}Gd β^- decay, transition is primarily M1 (1970Ch02); x/y intensity ratio and L x-ray energy are consistent with this.
341.41	302.30 15	589		
	341.42 10	100 9		
442.11	403.00 8	85 4		

Adopted Levels, Gammas (continued)

59

(B) Kπ=4-band. (A) $K\pi = 1 -$ (C) Bandhead of band. $K\pi = 1 + band.$

Level Scheme

Intensities: relative photon branching from each level

 $^{162}_{65}$ Tb₉₇-2

Приложение D Пример Decay Data Set

162TB 162GD B- DECAY 1982GE07,1970CH02 99NDS 199909 162TB H TYP=FUL\$AUT=R. G. Helmer and C. W. Reich\$CIT=NDS 87, 317 (1999)\$ 162TB2 H CUT=1-Jan-1999\$ 162TB C 162GD has been produced by double-neutron capture in enriched 160GD 162TB2C with radiochemistry (1967Wa05,1970Ch02) and from spontaneous fission 162TB3C of 252CF with radiochemistry (1982Ge07). Measurements include 162TB4C $\,$ G singles and GG, GX, and GB coincidences. 162TB CL Decay scheme is from 1982Ge07, and is similar to those of 162TB2CL 1970Ch02 and 1967Wa05. 162TB CL The consistency of the scheme is supported 162TB2CL by the fact that the sum of the energies of the radiations is 162TB3CL 1395 keV 56 which agrees with the Q value of 1400 100. 162TB CG Data are from 1982Ge07, unless otherwise noted. Others: 162TB2CG 1970Ch02, 1967Wa05. 162TB CB E From 1970Ch02. 162TB CB IB From evaluators' assumption that 100% of the decays 162TB2CB depopulate the levels at 341 and 442 keV (that is, no B-162TB3CB feeding of the ground state and 39 level) and no G feeding of 162TB4CB the 341-keV level. From LOGFT GE 5.9 for 0+ to 1- ground state 162TB5CB (1973Ra10), IB-(0) LE 13% and from LOGF1T GE 8.5 for 0+ to 2- at 162TB6CB 39 keV (1973Ra10), IB-(39) LE 0.15%. 162TB CL E From least-squares fit to G energies. 162TB CL J From 162TB Adopted Levels. Rotational band and Nilsson 162TB2CL configuration assignments are given there. 162TB D Experimental methods: 162TB D 1967Wa05: 162GD from double-neutron capture in enriched (94%) 160GD with radiochemistry. G's measured with NAI(TL) detectors. 162TB2D 162TB D 1970Ch02: 162GD from double-neutron capture in enriched (94.8%) 160GD with radiochemistry. G's measured with Ge and Si(Li) detectors 162TB2D 162TB3D and B's with Si(Li) detector. GX and GB coincidences measured. 162TB D 1982Ge07: 162GD from 252CF spontaneous fission with radiochemistry. 162TB2D G's measured with Ge detector. 162TB N 0.51 2 1.0 1.0 162TB CN NR Based on evaluators' assumption that 100% of the decays 162TB2CN depopulate the levels at 341 and 442 keV. From LOGFT 162TB#CN arguments, the direct B- feeding of the ground state should 162TB\$CN be LE 13%. If IB-(0) were this large, the normalization factor 162TB%CN would be reduced from 0.51 to 0.44. Normalization to 162TB3CN 100% feeding of the ground state is not useful since RI(39) has 162TB4CN a large (20%) uncertainty and the E2 mixture in this G would 162TB5CN have to be determined from the intensity balance at the 39 level 162TB6CN in any case. 1982Ge07 report a normalization factor of 0.61 6 162TB7CN based on a value of 43 1 G's per 100 decays for the 807-keV G 162TB8CN in the B- decay of 162TB; but this results in a total B-162TB9CN intensity of 118 12 per 100 decays of 162GD. [Result reported 162TBOCN by 1982Ge07 is RI(442G from 162GD decay)/RI(807 G from 162TBACN 162TB decay)=1.43 2] 162TB PN 3 162GD P 0+ 8.4 M 14E2 1 0 2 162GD DP T From 162GD Adopted Levels and is based on 162GD2DP 8.2 M 3 (1970Ch02) and 8.55 M 28 (1982Ge07). 162GD DP QP From 1985Wa02 evaluation and BG coincidence measurement 162GD2DP (1970Ch02). 162TB L 7.60 M 0 1-15 162TB CL T From 162TB Adopted Levels and based on 7.43 M 4 (1965Sc24) 162TB2CL and 7.76 M 10 (1977Ka08). 162TB L 39.10 9 2-2 10 2 M1+(E2) 8 2 С 162TB G 39.0 162TBS G LC=6 2\$ MC=1.4 3 162TB CG E Average of 39.1 2 (1982Ge07) and 38.8 2 (1970Ch02). 162TB CG RI Average of 9 2 (1982Ge07) and 14 3 (1970Ch02). 162TB CG M,CC CC value deduced by evaluators from intensity balance at 39

162TB20	CG	level for	cu	rrent c	lecay	, scheme; a	added G'	's fee	ding 39 level will	
162TB30	CG	increase CC value. From CC(M1)= 5.58 and CC(E2)= 135 , G is								
162TB40	CG	primarily	M1	with s	some	E2 probabl	le. Meas	sured	x/G intensity	
162TB50	CG	ratio and	L 2	x-ray e	energ	y are cons	sistent	with	this (1970Ch02).	
162TB	L	341.41	9	(0-,1)						
162TB	В			4.5	5		5.9	2		
162TBS	В	EAV=362 1	4							
162TB	G	302.30	15	3.1	5					
162TB	G	341.42	10	5.3	5					
162TB	L	442.11	8	1+						
162TB	В	10E2	1	95.5	5		4.4	2		С
162TBS	В	EAV=322 4	0							
162TB	G	403.00	8	85	4	[E1]			0.008	С
162TBS	G	KC=0.0069	\$ L(C=0.001	.0\$ M	1C=0.0002				
162TB	G	442.12	8	100		[E1]			0.007	С
162TBS	G	KC=0.0056	\$ L(C=0.000)76\$	MC=0.0002				

Страницы в Nuclear Data Sheets, сформированные на основе приведенного примера

¹⁶²Gd β⁻ Decay 1982Ge07,1970Ch02

Parent 162 Gd: E=0; J π =0+; T $_{1/2}$ =8.4 min 2; Q(g.s.)=14×10² 1; % β ⁻ decay=100. 162 Gd has been produced by double-neutron capture in enriched 160 Gd with radiochemistry (1967Wa05,1970Ch02) and from

spontaneous fission of 252 Cf with radiochemistry (1982Ge07). Measurements include γ singles and $\gamma\gamma$, γX , and $\gamma\beta$

coincidences.

¹⁶²Tb Levels

Decay scheme is from 1982Ge07, and is similar to those of 1970Ch02 and 1967Wa05. The consistency of the scheme is supported by the fact that the sum of the energies of the radiations is 1395 keV 56 which agrees with the Q value of 1400 *100*.

E(level) [†]	Jπ‡	T _{1/2}		Comments					
0.0	1 –	7.60 min 15	T _{1/2} : Fr (1977	om 162 Tb Adopted Levels and based on 7.43 min 4 (1965Sc24) and 7.76 min 10 (Ka08).					
39.10 <i>9</i>	2 -								
341.41 9	(0-,1)								
442.11 8	1 +								
From ¹⁶⁷	From least-squares lit to y energies. From ¹⁶² Tb Adopted Levels. Rotational band and Nilsson. β^- radiations								
${\rm E}\beta^{-\dagger}$	E(leve	1) Iβ ^{-‡} §	Log ft	Comments					
1000 100	442 11	05 5 5	4 4 2	FR 222 40					
(1060 100	442.11	95.5 5	4.4 2	av = Ep = 362 - 40					
[†] From 19 [‡] From ev ground s	70Ch02. aluators' ass state and 39	umption that 10 level) and noγfe	D% of the detection of the	av Ep-302 17. cays depopulate the levels at 341 and 442 keV (that is, no β^- feeding of the 341-keV level. From log f≥5.9 for 0+ to 1- ground state (1973Ra10),					

 $|\beta^{-}(0)| \le 13\%$ and from $\log f^{2}(\ge 8.5$ for $0 + to 2 - at 39 keV (1973Ra10), 1\beta^{-}(39) \le 0.15\%$. configuration assignments are given there. § For β^{-} intensity per 100 decays, multiply by 1.0.

$\gamma(^{162}Tb)$

Data are from 1982Ge07, unless otherwise noted. Others: 1970Ch02, 1967Wa05.

I γ normalization: Based on evaluators' assumption that 100% of the decays depopulate the levels at 341 and 442 keV.

Εγ	E(level)	Ιγ†	Mult.		Comments
39.0 <i>2</i>	39.10	10 2	M1+(E2)	82	 α(L)=6 2; α(M)=1.4 3. Eγ: Average of 39.1 2 (1982Ge07) and 38.8 2 (1970Ch02). Iγ: Average of 9 2 (1982Ge07) and 14 3 (1970Ch02). Mult.,α: α value deduced by evaluators from intensity balance at 39 level for current decay scheme; added γ's feeding 39 level will increase α value. From α(M1)=5.58 and α(E2)=135. γ is primarily M1 with some E2 probable. Measured x/i intensity ratio and L x-ray energy are consistent with this (1970Ch02).
302.30 15	341.41	3.1 5			
341.42 10	341.41	5.3 5			
403.00 8	442.11	85 4	[E1]	0.008	$\alpha(K)=0.0069; \alpha(L)=0.0010; \alpha(M)=0.0002.$
442.12 8	442.11	100	[E1]	0.007	$\alpha(K)=0.0056; \ \alpha(L)=0.00076; \ \alpha(M)=0.0002.$

 † $\,$ For absolute intensity per 100 decays, multiply by 0.51 2.

 $^{162}_{65}{
m Tb}_{97}$

¹⁶²Gd β⁻ Decay 1982Ge07.1970Ch02 (continued)

63

 $^{162}_{65}{
m Tb}_{97}$

Приложение Е Кодирование распадов ионизированных атомов

- 1. Запись идентификации набора В поле DSID сразу за символом нуклида в квадратных скобках указывается степень ионизации.
- 2. Запись родительского нуклида (Parent)
 - Поле энергии: энергия уровня родительского ядра
 - Поле периода полураспада: период полураспада для распада ионизированного атома
 - Поле Q-VALUE: разность энергий основных состояний ядер
 - Новое поле (77-80): степень ионизации
- 3. Записи уровней
 - Поле энергии: энергия уровня дочернего ядра
 - Поле MS: атомная оболочка или подоболочка, на которую захватываются испущенные бета-частицы
 - Новое подполе "ION", указывающее степень ионизации и требуемое на записях продолжения "S L"
- Набор ADOPTED LEVELS, GAMMAS дочернего ядра ADOPTED LEVELS должны иметь ссылку на наблюдаемые состояния в наборе распада ионизированного атома.
- 5. Набор ADOPTED LEVELS, GAMMAS родительского ядра Период полураспада и распадная ветвь распада ионизированного атома должны приводиться в комментарии (аналогично имеющейся практике указания отличий в периодах полураспадов в зависимости от химических эффектов). Пока это рассматривается как временное решение; по прошествии некоторого времени, по мере накопления опыта, данные на картах продолжения записей уровней, по-видимому, уточнятся.

Примеры

ADOPTED LEVELS, GAMMAS 00NDS 200002 163HO 163HO Q -1210 5 8409 4 5486.01 7 730.2 13 1995AU04 163HO XA163DY[+66] B- DECAY (48 D) 163HO XB163HO IT DECAY (1.09 S) 163HO XC163ER EC DECAY (75.0 M) 163HO XD162DY(P,P) IAR 163HO XE162DY(3HE, D) 163HO XF162DY(A, T) 163HO XG163DY(D, 2NG), (P, NG) 163HO XH164ER(POL T,A) 163HO XI165HO(P,T) 163HO PN 6 163HO L 0.0 7/2-4570 Y 25 А 163HOX L XREF=ABCEFGHI 163HO2 L %EC=100 163HO cL T\${+163}Ho{+66+} ion is stable (1997Kl06,1992Ju01) 00NDS 163DY[+66] B- DECAY (48 D) 163HO 1992JU01,1997KL06 200002 163HO H TYP=FUL\$AUT=BALRAJ SINGH, AMEENAH R. FARHAN\$CIT=NDS 89, 1 (2000)\$ 163HO2 H CUT=15-Dec-1999\$ 163HO c Bound state $|b\{+-\}$ decay of $\{+163\}Dy\{+66+\}$ ion with $T\{-1/2\}=\{48 d\}$ 163HO c 1992Ju01,1997K106 (also 1993Ju02,1995Bo34): T{-1/2} measured by storing 163H02c {+163}Dy, fully-stripped (66+ charge state) ions in a heavy-ion 163HO3c storage ring. 163HO c T{-1/2}({+163}Dy{+66+})=48 d {I3} (1997K106). Other from the same 163HO2c group: { 47 d {I+5-4}} (1992Ju01) 163HO d $Q(|b\{+-\})$ for K-shell bound-state decay={ 50.3 {I10}}; 163HO2d for L-shell Q(|b{+-})={ 1.7 keV} (1992Ju01) 163DY P 0 5/2--2.565 14+66 48 D 3 163DY cP E\$g.s. of {+163}Dy{+66+} ion (66+ charge state) 163DY cP \$Q(|b{+-}) for K-shell bound-state decay={ 50.3 {I10}}; 163DY2cP for L-shell Q(|b{+-})={ 1.7 keV} (1992Ju01) 163HO N 1.0 1.0 163HO L 0 7/2-STABLE Κ 163HOS L ION=+66 163HO B 100 163DY ADOPTED LEVELS, GAMMAS 00NDS 200002 163DY Q -2.565 14 6270.93 7 7994 36 -242.9 13 1995AU04 163DY XA163TB B- DECAY (19.5 M) 163DY XB163HO EC DECAY (4570 Y) 163DY XC161DY(T,P) 163DY XD162DY(N,G) 163DY XE162DY(D,P) 163DY XL163DY(G,G') 163DY XF163DY(N,N'G) 163DY XG163DY(P,P') 163DY XHCOULOMB EXCITATION 163DY XI164DY(D,T) 163DY XJ164DY(3HE,A) 163DY XK165HO(MU-,2NG) 163DY L 0.0 5/ 5/2-STABLE А 163DYX L XREF=ABDEFGHIKL\$ 163DY cL \$T{-1/2}({+163}Dy{+66+} ion)={ 48 d {I3}} (1997K106,1992Ju01) 163DY cL \$%|b-({+163}Dy{+66+} ion)=100

Приложение F Словарь ENSDF – преобразование в true-type набор символов

ENSDF	Преобразуется	ENSDF	Преобразуется
"A"	"A"	%12C	%{+12}C
%14C	%{+14}C	%2B-	%2 b{+-}
%A	% a	%B+A	$ b\{++\} a$
%B+N	b + n	%B+P	$b{++}p$
%B+_	b = b = b	%B-2N	$b{+-}2n$
%B-N	b +- n	%B-P	$ b\{+-\}p$
%B	% b{+-}	%BEC	$ b\{++\} e$
%E0	%E0	%E2	%E2
%EC	%e	%ECA	% e a
%ECF	% eF	%ECK	% ek
%ECP	% ep	%EWSR	%EWSR
%G	% g	%I	%I
%IB	%I b	%IG	%I g
%IT	%IT	%M1	%M1
%N	%n	%P	%p
%RI	%I g	%SF	%SF
(A)	(a)	(B)	(b)
(COUL.)	(Coul.)	(CV)	(CV)
(DOWN)	()	(H,T)	(H,T)
(IT)	(IT)	(T)	(t)
(THETA,H)	(q,H)	(THETA,H,T,T)	(q,H,t,T)
(THETA,T,H)	(q,T,H)	(UP)	(^)
*	\ * \	**(J+1/2)	$\{+(J+ ,)\}$
**-1	{+-1}	**-3	{+-3}
**-4	{+-4}	**1/2	{+1/2}
**1/3	{+1/3}	**2	{+2}
**3	{+3}	**L	$\{+L\}$
*A**(1/3)	$ * A\{+1/3\}$	*DS/DW	d s/d W
*Е	*E	*EG	E g
*EKC	a(K)exp	*G*WIDTHG0**2	$g G\{+2\}\backslash\{\text{-} g0\}$
*G2	g{-2}	*IB-	$ *I b\{+-\}$
*IE	*I e	*Q	*Q
*R	R	*RI	I g
*SIGMA	* S	*SUMOF	S
*T1/2	 *T{-1/2}	*TAU	t
*WIDTH	G	*WIDTHP	$ G{-p}$
2B-	2 b{+-}	2J	2J

2N*SIGMA	2N s	4PI	4 p
4PIB	4 p b	4PIBG	4 p b g
4PIG	4 p g	A DECAY	a decay
A DECAYS	a decays	A SYST	a syst
A'	a'	A(THETA)	A(q)
A**1/3	$A\{+1/3\}$	A**2/3	$A\{+2/3\}$
A-DECAY	a-decay	A-N	A-N
A-SYST	a-syst	A0	A{-0}
A1	A{-1}	A11	A{-11}
A2	A{-2}	A2/A0	$A{-2}/A{-0}$
A22	A{-22}	A2P2	$A{-2}P{-2}$
A3	A{-3}	A4	A{-4}
A44	A{-44}	A5	A{-5}
A6	A{-6}	A7	A{-7}
A=	A=	AA	a a
AA0	Aa{-0}	AAS	AAS
AB	AB	ACE	(a)(ce)
AG	a g	AJ	AJ
ALAGA	Alaga	ALPHA	a
ALPHA0	a{-0}	ALPHA1	a{-1}
ALPHA2	a{-2}	ALPHA3	a{-3}
ALPHAS	a's	AP	?
APRIL	April	AUGER	Auger
AUGUST	August	AVRSQ	$\{{<}r\{{+}2\}{>}\}$
AXK	(a)(K x ray)	AY	Ay
В	b	B(E0	B(E0
B(E1	B(E1	B(E2	B(E2
B(E3	B(E3	B(E4	B(E4
B(IS	b(IS	B(J	B(J
B*R	bR	B*RHO	$\mathbf{B} * \mathbf{r}$
B+	$ b\{++\}$	B-2N	$ b\{+-\}2n$
B-N	$ b\{+-\}n$	B-VIBRATIONAL	b-vibrational
B	b{+-}	B/A	B/A
B0	b{-0}	B00	$ b\{-00\}$
B02	b{-02}	B03	b{-03}
B04	b{-04}	B1	b{-1}
B12	b{-12}	B2	b{-2}
B2*R	b{-2}R	B20	b{-20}
B22	b{-22}	B24	b{-24}
B3	b{-3}	B3*R	$ b{-3}R$
B30	b{-30}	B4	$ b{-4}$
B4*R	b{-4}R	B42	$ b\{-42\}$
B4C	b{-4}C	B5	b{-5}

B5*R	b{-5}R	B6	b{-6}
B6*R	b{-6}R	B7	b{-7}
B=	B=	BA	b a
BAVRSQ	$\{ < b\{+2\} > \{+1/2\} \}$	BB	b b
BC	bc	BCE	bce
BCS	BCS	BE(L)	BE(L)
BE-	$ b\{e+-\}$	BE0	B(E0)
BE0W	B(E0)(W.u.)	BE1	B(E1)
BE1UP	B(E1) ^	BE1W	B(E1)(W.u.)
BE2	B(E2)	BE2DWN	B(E2) _
BE2UP	B(E2) ^	BE2W	B(E2)(W.u.)
BE3	B(E3)	BE3UP	B(E3) ^
BE3W	B(E3)(W.u.)	BE3WUP	B(E3)(W.u.) ^
BE4	B(E4)	BE4UP	B(E4) ^
BE4W	B(E4)(W.u.)	BE5	B(E5)
BE5W	B(E5)(W.u.)	BE6	B(E6)
BE6UP	B(E6) ^	BE6W	B(E6)(W.u.)
BE7	B(E7)	BE7W	B(E7)(W.u.)
BE8	B(E8)	BEC DECAY	b{++} e Decay
BEL	B(EL)	BELW	B(EL)(W.u.)
BERKELEY	Berkeley	BESSEL	Bessel
BETA	b	BETA*R	bR
BETAS	b's	BETHE	Bethe
BF3	BF{-3}	BG	b g
BGG	b g g	BGN	b gn
BGO	BGO	BGT	lb(GT)
BIEDENHARN	Biedenharn	BJ**2	$BJ\{+2\}$
BL	$ b\{-L\}$	BL**2	$ b\{-L\}\{+2\}$
BL*R	$ b{-L}R$	BL*R*A**(1/3)	$b{-L}RA{+1/3}$
BLAIR	Blair	BM(L)	BM(L)
BM1	B(M1)	BM1UP	B(M1) ^
BM1W	B(M1)(W.u.)	BM2	B(M2)
BM2UP	B(M2) ^	BM2W	B(M2)(W.u.)
BM3	B(M3)	BM3W	B(M3)(W.u.)
BM4	B(M4)	BM4W	B(M4)(W.u.)
BM5W	B(M5)(W.u.)	BM8UP	B(M8) ^
BML	B(ML)	BMLW	B(ML)(W.u.)
BN	bn	BOHR	Bohr
BORN	Born	BP	bp
BR	Branching	BREIT	Breit
BRINK	Brink	Be	Be
C	C	C.M.	c.m.
C12G	$\{+12\}C g$	C2S	$C\{+2\}S$

CA(OH)	Ca(OH)	CC	a
CCBA	CCBA	CCC	CCC
CE	ce	CEB	ce b
CEG	ce g	CEK	ce(K)
CEL	ce(L)	CEL1	ce(L1)
CEL12	ce(L12)	CEL2	ce(L2)
CEL23	ce(L23)	CEL3	ce(L3)
CEM	ce(M)	CEM1	ce(M1)
CEM2	ce(M2)	CEM23	ce(M23)
CEM3	ce(M3)	CEM4	ce(M4)
CEM45	ce(M45)	CEM5	ce(M5)
CEN	ce(N)	CEN1	ce(N1)
CEN2	ce(N2)	CEN3	ce(N3)
CEN4	ce(N4)	CEN45	ce(N45)
CEN5	ce(N5)	CEO	ce(O)
CEO+CEP	ce(O)+ce(P)	CEO1	ce(O1)
CERENKOV	Cerenkov	CERN	CERN
CHI	h	CHI**2	$ h\{+2\}$
СК	eK	CL	eL
CLEBSCH	Clebsch	СМ	eM
CM2	$cm\{+2\}$	CM3	$cm\{+3\}$
CN	eN	СО	Co
COMPTON	Compton	CONF	configuration
CONF=	configuration=	CORIOLIS	Coriolis
COS2TH	$\cos\{+2\} q$	COSTER	Coster
COUL	Coul	COULOMB	Coulomb
СР	СР	CRC	CRC
CSI	CsI	CURIE	Curie
Cm	Cm	D)	D)
D+(Q)	D+(Q)	D+Q	D+Q
D3HE	d{+3}He	DA	DA
DA2	DA{-2}	DA4	DA{-4}
DAVRSQ	{ D <r{+2}>}</r{+2}>	DAVRSQ4	$\{ D < r\{+4\} > \}$
DAVRSQ6	{ D <r{+6}>}</r{+6}>	DAVYDOV	Davydov
DBR	branching uncertainty	DCC	D a
DCO	DCO	DCOQ	DCOQ
DE	DE	DE/DX	dE/dx
DECEMBER	December	DEG	\ '
DELTA	D\	DFT	D(log ft)
DG	d g	DHF	D(HF)
DIA	DI a	DIB	DI b
DIE	DI e	DISPIN	DT
DJ	DJ	DJPI	DJ p

DK	DK	DL	DL
DMR	D d	DN	DN
DNB	D(b-normalization)	DNR	D(g-normalization)
DNT	D(g+ce- normalization)	DOMEGA	d W
DOPPLER	Doppler	DPAC	DPAC
DPAD	DPAD	DPI	D p
DQ+	DQ(e)	DQ-	$ DQ(b\{+-\}) $
DQA	DQ(a)	DRI	DI g
DS	DS	DS/DW	d s/d W
DSA	DSA	DSAM	DSAM
DSIGMA	d s	DSN	DS(n)
DSP	DS(p)	DT	$ DT\{-1/2\}$
DT1/2	DT{-1/2}	DTI	DI(g+ce)
DUBNA	Dubna	DWBA	DWBA
DWIA	DWIA	DWUCK	DWUCK
E	E	E'(THETA)	e'(q)
E(A)	E(a)	E(D)	E(d)
E(E)	E(e)	E(N)	E(n)
E(P)	E(p)	E(P1)	E(p{-1})
E(P2)	E(p{-2})	E(T)	E(t)
E**1/2	$E\{+1/2\}$	E**2	E{+2}
E+	e{++}	E+-	e{+ +}
E-E	E-E	E.G.	{Ie.g.}
E/DE	E/ DE	E0	E0
E1	E1	E10	E10
E2	E2	E3	E3
E4	E4	E5	E5
E6	E6	E7	E7
E8	E8	E9	E9
EA	Ela	EAV	av E b
EB	E b	EB-	$E b\{+-\}$
EBE2UP	eB(E2) ^	EBE3UP	eB(E3) ^
EB_	E b	EC	e
EC2P	e2p	ECA	e a
ECC	a(exp)	ECE	E(ce)
ECK	eK(exp)	ECL	eL(exp)
ECL1	eL1(exp)	ECL2	eL2(exp)
ECL3	eL3(exp)	ECM	jM(exp)
ECN	jN(exp)	ECP	ep
ED	E(d)	EDE	E DE
EE	Ee	EEC	Ele
EG	Elg	EG**3	$E g\{+3\}$

EG**5	$E g\{+5\}$	EKC	a(K)exp
EL	EL	EL12C	a(L12)exp
EL1C	a(L1)exp	EL23C	a(L23)exp
EL2C	a(L2)exp	EL3C	a(L3)exp
ELC	a(L)exp	EM1C	a(M1)exp
EM2C	a(M2)exp	EM3C	a(M3)exp
EM4C	a(M4)exp	EM5C	a(M5)exp
EMC	a(M)exp	EN	E(n)
EN1C	a(N1)exp	EN23C	a(N23)exp
EN2C	a(N2)exp	EN3C	a(N3)exp
EN4C	a(N4)exp	ENC	a(N)exp
ENDF/B-V	ENDF/B-V	ENDF/B_	ENDF/B
ENDOR	ENDOR	ENGE	Enge
EP	E(p)	EPR	EPR
EPSILON	e	EPSILONB	eB
ESR	ESR	ET	E(t)
EV	eV	EVEN-A	even-A
EWSR	EWSR	EX.	ex.
E{	E{	F+B	F+B
F-K	F-K	F/B	F/B
FEBRUARY	February	FERMI	Fermi
FESHBACH	Feshbach	FG	(fragment) g
FM	fm	FM**-1	fm{+-1}
FM**2	$fm\{+2\}$	FM**4	$fm\{+4\}$
FM-1	$fm\{+-1\}$	FOCK	Fock
FOURIER	Fourier	FWHM	FWHM
G FACTOR	g factor	G FACTORS	g factors
G(2+	g(2+	G*T	gT
G*W*WIDTHG0	$gw G\{- g0\}$	G*W*WIDTHG0**	$2 \text{ gW} G\{- g0\}\setminus\{+2\}$
G*WIDTH	g G	G*WIDTHG0	$g G\{- g0\}$
G*WIDTHG0**2	$g G\{+2\}\setminus\{- g0\}$	G*WIDTHN	$g G\{-n\}$
G+-	$ g\{+ +\}$	G-FACTOR	g-factor
G-FACTORS	g-factors	G-M	G-M
G/A	g/ a	G0	g{-0}
G1	g{-1}	G1*WIDTH	g{-1} G
G2	g{-2}	G2*WIDTH	g{-2} G
G=	g=	GA	?>
GA2	$g{-A} \setminus {+2}$	GALLAGHER	Gallagher
GAMMA	g	GAMOW	Gamow
GARVEY	Garvey	GAUSSIAN	Gaussian
GB	g b	GB-	g b{+-}
GCE	gce	GDR	GDR
GE	>	GE(LI)	Ge(Li)
GE-	ge{+-}	GEIGER	Geiger
---------------	---------------	---------------	---------------
GEIGER-MULLER	Geiger-Muller	GELI	Ge(Li)
GEV	GeV	GG	g g
GGG	g g g	GGN	g gn
GGT	g g t	GM	GM
GMR	GMR	GN	gn
GP	gp	GP'	gp'
GP(T)	gp(t)	GQR	GQR
GS	g.s.	GSI	GSI
GT	>	GT1/2	$gT\{-1/2\}$
GTOL	GTOL	GWIDTH0WIDTHG	$g G{-0} G g$
GX	gX	G_	g
H(H(H**2	$h\{+2\}$
H,	H,	H=	H=
HAGER	Hager	HARTREE	Hartree
HAUSER	Hauser	HERA	HERA
HF	HF	HI	HI
HOMEGA	$h \geq w$	HP	HP
HPGE	HPGe	Ι	Ι
I.E.	{Ii.e.}	IA	I a
IAR	IAR	IAS	IAS
IB	I b	IB+	$I b\{++\}$
IB-	$I b\{+-\}$	IBA	IBA
IBM	IBM	IBS	IBS
ICC	a	ICE	Ice
ICE(K)	Ice(K)	ICE(N)	Ice(N)
IE	I e	IEC	I e
IG	I g	IG*EG	I gE g
IGISOL	IGISOL	IMPAC	IMPAC
IN(In(INFNT	@
IPAC	IPAC	IS D	is D
ISOLDE	ISOLDE	ISPIN	Т
ISPINZ	T{-z}	IT BRANCHING	IT branching
IT DECAY	IT decay	IT DECAYS	IT decays
IT TRANSITION	IT transition	IT-	IT-
IT=	IT=	IX	I(x ray)
J	J	J**2	$J\{+2\}$
JO	J{-0}	J1	J{-1}
J2	J{-2}	JANUARY	January
JF	$J{-f}$	JI	J{-i}
JKP	JK p	JMAX	Jmax
JMIN	Jmin	JOSEF	JOSEF
JPI	J p	JULIE	JULIE

JULY	July	JUNE	June
Κ	Κ	K/L+M	K/L+M
K/LM	K/LM	K/T	ce(K)/(g+ce)
KAPPA	k	КС	la(K)
KELSON	Kelson	KEV	keV
KELVIN	Kelvin	KG	kG
KL1L1	KL{-1}L{-1}	KL1L2	KL{-1}L{-2}
KL1L3	KL{-1}L{-3}	KL1M1	KL{-1}M{-1}
KL1M2	$KL\{-1\}M\{-2\}$	KL1M3	KL{-1}M{-3}
KL2L2	KL{-2}L{-2}	KL2L3	KL{-2}L{-3}
KL2M1	KL{-2}M{-1}	KL2M3	KL{-2}M{-3}
KL2M4	$KL{-2}M{-4}$	KL3L3	KL{-3}L{-3}
KL3LM1	KL{-3}LM{-1}	KL3M2	KL{-3}M{-2}
KL3M3	$KL{-3}M{-3}$	KL3N	KL{-3}N
KLL	KLL	KLM	KLM
KM2M3	KM{-2}M{-3}	KM2N2	KM{-2}N{-2}
KM3M3	KM{-3}M{-3}	KNIGHT	Knight
KOE	kOe	KPI	K p
KRANE	Krane	KRONIG	Kronig
KUO-BROWN	Kuo-Brown	KURIE	Kurie
KXY	KXY	L	L
L+/T	ce(L+)/(g+ce)	L/T	ce(L)/(g+ce)
L1	L1	L12	L12
L12C	a(L12)	L1C	a(L1)
L2	L2	L23	L23
L23C	a(L23)	L2C	a(L2)
L3	L3	L3C	a(L3)
LA	?<	LAMBDA	1
LAMPF	LAMPF	LARMOR	Larmor
LASER	LASER	LBL	LBL
LC	la(L)	LE	<
LEGENDRE	Legendre	LI	Li
LITHERLAND	Litherland	LM	LM
LMN	LMN	LN	L(n)
LOGF1T	$\log \{If\{+1\}t\}$	LOGF1UT	$log \{If\{+1u\}t\}$
LOGF2UT	$\log \{If\{+2u\}t\}$	LOGF3UT	$log \{If\{+3u\}t\}$
LOGFT	log {Ift}	LOHENGRIN	LOHENGRIN
LORENTZIAN	Lorentzian	LP	L(p)
LT	<	М	М
M+/T	ce(M+)/(g+ce)	M+=	M+=
M-SHELL	M-shell	M-SUBSHELL	M-subshell
M/CE	M/total ce	M/T	ce(M)/(g+ce)
M1	M1	M12	M12

M1C	a(M1)	M2	M2
M23	M23	M2C	a(M2)
M3	M3	M3C	a(M3)
M4	M4	M45	M45
M4C	a(M4)	M5	M5
M5C	a(M5)	M6	M6
M8	M8	MARCH	March
MB	mb	MB/SR	mb/sr
MC	a(M)	MC+	a(M+)
MEDLIST	MEDLIST	MEV	MeV
MEV**-4	MeV{E4-4}	MG/CM2	$mg/cm\{+2\}$
MHZ	MHz	MILLI-EV	meV
MIT	MIT	ML	M+L
MNO	M+N+O	MOME2	Q
MOME3	Octupole mom(el)	MOMM1	m
MOMM3	Octupole mom(mag)	MOMM5	$2\{+5\}$ mom(mag)
MOMM7	$2\{+7\} mom(mag)$	MOSSBAUER	Mossbauer
MOSZKOWSKI	Moszkowski	MR	d
MR**2	$ d\{+2\}$	MS	ms
MU	m	MU-	m{+-}
N*SIGMA	N * s	N+/T	ce(N+)/(g+ce)
N-SHELL	N-shell	N-SUBSHELL	N-subshell
N-Z	N-Z	N/T	ce(N)/(g+ce)
N1	N1	N12	N12
N123	N123	N1C	a(N1)
N2	N2	N23	N23
N2C	a(N2)	N3	N3
N3C	a(N3)	N4	N4
N45	N45	N4C	a(N4)
N5	N5	N5C	a(N5)
N6C	a(N6)	N<	N<
N=	N=	NAI	NaI
NB	I b normalization	NB/SR	nb/sr
NBS	NBS	NC	a(N)
NC+	a(N+)	NC2S	NC{+2}S
NDS	Nuclear Data Sheets	NE	=
NE213	NE213	NG	n g
NGG	n g g	NILSSON	Nilsson
NMR	NMR	NOTE:	Note:
NOVEMBER	November	NP	Particle normalization
NQR	NQR	NR	I g normalization
NS*SIGMA	NS s	NT	I(g+ce) normalization
NU	n	NX	NX

Ne	Ne	0	0
O/Q	O/Q	O/T	ce(O)/(g+ce)
01	01	O123	0123
01C	a(O1)	O2	O2
O2C	a(O2)	O3	O3
O3C	a(O3)	O4C	a(O4)
OCTOBER	October	ODD-A	odd-A
OMEGA	W	OMEGA**2*TAU	$ w\{+2\} t$
OMEGA*T	w t	ORNL	ORNL
OSIRIS	OSIRIS	P DECAY	p decay
P(THETA)	p(q)	P+/T	ce(P+)/(g+ce)
P-WIDTH	p-width	PO	P{-0}
P1	P1	P1/2	p1/2
P1C	a(P1)	P2NG	p2n g
PAC	PAC	PAD	PAD
PALPHA	p a	PG	plg
PGG	p g g	PHI	F
PHI(P1)	$ F(p{-1}) $	PHI(P2)	$ F(p\{-2\}) $
PI	p	PI-	p{+-}
PIB	p b	PIBG	p b g
PIG	p g	PN	$P\{-n\}$
PNG	pn g	PRI	DI g(%)
PSI	Y	PWBA	PWBA
PWIA	PWIA	Q	Q
Q(Q(Q+O	Q+O
Q+_	Q(e)	Q-	$Q(b\{+-\})$
Q/D	Q/D	Q22	Q{-22}
Q2D	Q2D	Q2DM	Q2DM
Q3D	Q3D	QA	Q(a)
QDD	QDD	QDDM	QDDM
QDMDQ	QDMDQ	QMG	QMG
QP	Q(g.s.)	QQSP	QQSP
QS	Q{-s}	QSD	QSD
R	R	R(DCO)	R(DCO)
R**2	r{+2}	R**4	r{+4}
R**6	r{+6}	R0	r{-0}
RDDS	RDDS	RDM	RDM
RHO	r	RHO**2	$ r\{+2\}$
RI	I g	RITZ	Ritz
ROSE	Rose	RPA	RPA
RUL	RUL	RUTHERFORD	Rutherford
RYTZ	Rytz	S VALUE	S value
S VALUES	S values	S'	S'

S(2N)	S(2n)	S(2P)	S(2n)
S(CF)	S(ce)	S(21)	S(2p) $S\{+-1\}$
S-FACTOR	S-factor	S-FACTORS	S-factors
S-VALUE	S-value	S-VALUES	S-values
S-WAVE	S-wave	S/	S/
S=	S wave	SA	S(a)
SAXON	Saxon	SCHMIDT	Schmidt
SD	SD	SDB	SDB
SE(LI)	Se(Li)	SELTZER	Seltzer
SEPTEMBER	September	SELTEER	SE
SI(LI)	Si(Li)	SIGMA	s
SIGMA(0)	s(_0)	SIGMA*DE	5 s * DF
SIGMAG	s{- g}	SIGMAN	s DL
SIGMANU	s n	SIGNA	s(n a)
SIGNG	s	SILI	Si(I i)
SIGNO	SiO	SI IV-BAND	Sliv-Band
SN SN	S(n)	SORFO	SOREO
SD ST	S(n)	SUKLQ	Staffen
STOCKHOLM	S(p) Stockholm	SUMOE	
SV	svet	Solvior	S\ Sn
т	$T \left\{ \frac{1}{2} \right\}$		t)
Т	1 (-1/2) t	T/	ι) Τ/
1, T1/2	T(1/2)	T7 T20	T7
T21	T {-1/2}	T20	T20
	121		
	l Tollor		
TC	tla		1 th
	ιg	IП ТЦГТ \ **?	III
	$ \mathbf{q} $	THETA2	$ q\{+2\}$
	q{-1}		$ q\{-2\}$
	q a	THETAD1**2	$ q a\{\pm 2\}$
	$ \mathbf{q} \mathbf{g} $		$ q\{-p1\}\{+2\}$
TOF	$ q\{-p_2\}\{+2\}$		
TDISTAN			
TKISTAN T:		IKIUMPH	IKIUMPH
		U	
	$U\{-2\}A\{-2\}$		
UB*MEV	mb *Iviev	UB/SK	mb/sr
UG	mg	UG/CM	mg/cm
		UNISUK	UNISOK
UNIV	Univ	UNIVERSITY	University
US US	ms	USA	USA
USSK	USSK	V	V
VAP	VAP	W	W

W(THETA)*G*WIDTHG0	$W(q)g G\{- g0\}$	W.U.	W.u.
WEISSKOPF	Weisskopf	WIDTH	G
WIDTH**2	$ G\{+2\}$	WIDTHA	G a
WIDTHA0	G{- a0}	WIDTHA1	$ G\{- a1\}$
WIDTHA2	$ G\{- a2\}$	WIDTHA3	$ G\{- a3\}$
WIDTHA4	G{- a4}	WIDTHG	$ G\{- g\}$
WIDTHG0	$ G\{- g0\}$	WIDTHG0**2	$ G\{+2\} \setminus \{- g0\}$
WIDTHG1	$ G\{- g1\}$	WIDTHN	$ G{-n}$
WIDTHN0	$ G\{-n0\}$	WIDTHP	$ G{-p}$
WIDTHP'	G{-p'}	WIDTHP0	G{-p0}
WIDTHP1	G{-p1}	WIDTHP2	$ G{-p2}$
WIGNER	Wigner	WINTHER	Winther
X(X(X-RAY	x-ray
X-RAYS	x-rays	XG	X g
XK	K x ray	XKA	K a x ray
XKA1	$K a\{-1\} x ray$	XKA2	$K a\{-2\} x ray$
XKB	K b x ray	XKB1	$K b\{-1\} x ray$
XKB13	$K b\{-13\} x ray$	XKB1P	$K[b\{-1\}'] x ray$
XKB2	$K b\{-2\} x ray$	XKB2P	$K b\{-2\}' x ray$
XKB3	$K b\{-3\}$ x ray	XKB4	$K b\{-4\} x ray$
XKB5	$K b\{-5\}$ x ray	XKB5I	$K b\{-5\}\setminus\{+I\} x ray$
XKB5II	$K b\{-5\}\setminus\{+II\} x ray$	XKG	(K x ray) g
XKO2	K-O $\{-2\}$ x ray	XKO23	K-O $\{-23\}$ x ray
XKO3	K-O $\{-3\}$ x ray	XL	L x ray
XL1	$L{-1}$ x ray	XL2	L{-2} x ray
XL3	L{-3} x ray	XLA	$L\{- a\} x ray$
XLA1	$L a\{-1\} x ray$	XLA2	$L a\{-2\} x ray$
XLB	$L\{- b\} x ray$	XLB1	$L b\{-1\} x ray$
XLB10	$L b\{-10\} x ray$	XLB15	$L b\{-15\} x ray$
XLB2	$L b\{-2\} x ray$	XLB215	$L b\{-215\} x ray$
XLB3	$L b\{-3\} x ray$	XLB4	$L b\{-4\} x ray$
XLB5	$L b\{-5\} x ray$	XLB6	$L b\{-6\} x ray$
XLB9	$L b\{-9\} x ray$	XLC	$L\{- c\} x ray$
XLG	$L\{- g\} x ray$	XLG1	$L g\{-1\} x ray$
XLG2	$L g\{-2\} x ray$	XLG3	$L g\{-3\} x ray$
XLG4	$L g\{-4\} x ray$	XLG5	$L g\{-5\} x ray$
XLG6	$L g\{-6\} x ray$	XLL	$L{-{Sl}} x ray$
XM	M x ray	XPYNG	xpyn g
XX	XX	YTTRIUM	Y
Z	Z	Z>N	Z>N
[E2]	[E2]	[RI	[I g
a0	a{-0}	D	D

Приложение G Словарь ENSDF, упорядоченный по выходным символам

В тексте	ENSDF	В тексте	ENSDF
$(\alpha)(ce)$	ACE	B(E0)	BE0
(β)	(B)	B(E0)(W.u.)	BE0W
(θ,H,t,T)	(THETA,H,T,T)	B(E1	B(E1
(θ,H)	(THETA,H)	B(E1)(W.u.)	BE1W
(θ,T,H)	(THETA,T,H)	B(E1)↑	BE1UP
2J	2J	B(E1)	BE1
2Νσ	2N*SIGMA	B(E2	B(E2
2 ⁵ mom(mag)	MOMM5	B(E2)	BE2
2 ⁷ mom(mag)	MOMM7	B(E2)↑	BE2UP
$2\beta^-$	2N*SIGMA	B(E2)↓	BE2DWN
4π	4PI	B(E2)(W.u.)	BE2W
4πβγ	4PIBG	B(E3	B(E3
4πβ	4PIB	B(E3)↑	BE3UP
4πγ	4PIG	B(E3)(W.u.)↑	BE3WUP
<	LT	B(E3)	BE3
>	GT	B(E3)(W.u.)	BE3W
$A(\theta)$	A(THETA)	B(E4	B(E4
A-N	A-N	B(E4)↑	BE4UP
A=	A=	B(E4)(W.u.)	BE4W
AAS	AAS	B(E4)	BE4
AB	AB	B(E5)	BE5
AJ	AJ	B(E5)(W.u.)	BE5W
Aa ₀	AA0	B(E6)(W.u.)	BE6W
Alaga	ALAGA	B(E6)↑	BE6UP
April	APRIL	B(E6)	BE6
Auger	AUGER	B(E7)(W.u.)	BE7W
August	AUGUST	B(E7)	BE7
Ау	AY	B(E8)	BE8
A ^{1/3}	A**1/3	B(EL)(W.u.)	BELW
A ^{2/3}	A**2/3	B(EL)	BEL
A_0	A0	B(J	B(J
A ₁₁	A11	B(M1)	BM1
A_1	A1	B(M1)↑	BM1UP
A ₂₂	A22	B(M1)(W.u.)	BM1W
A_2/A_0	A2/A0	B(M2)	BM2
A_2	A2	B(M2)↑	BM2UP
A_2P_2	A2P2	B(M2)(W.u.)	BM2W
A ₃	A3	B(M3)(W.u.)	BM3W
A ₄₄	A44	B(M3)	BM3
A_4	A4	B(M4)	BM4
A ₅	A5	B(M4)(W.u.)	BM4W
A_6	A6	B(M5)(W.u.)	BM5W
A ₇	A7	B(M8)↑	BM8UP
B(E0	B(E0	B(ML)	BML

В тексте	ENSDF	В тексте	ENSDF
B(ML)(W.u.)	BMLW	DCO	DCO
B/A	B/A	DCOQ	DCOQ
B=	B=	DPAC	DPAC
BCS	BCS	DPAD	DPAD
BE(L)	BE(L)	DSA	DSA
BF ₃	BF3	DSAM	DSAM
BGO	BGO	DWBA	DWBA
BJ^2	BJ**2	DWIA	DWIA
BM(L)	BM(L)	DWUCK	DWUCK
Be	Be	Davydov	DAVYDOV
Berkeley	BERKELEY	December	DECEMBER
Bessel	BESSEL	Doppler	DOPPLER
Bethe	BETHE	Dubna	DUBNA
Biedenharn	BIEDENHARN	E	Е
Blair	BLAIR	E(ce)	ECE
Bohr	BOHR	E(d)	ED
Born	BORN	E(d)	E(D)
Branching	BR	E(e)	E(E)
Breit	BREIT	E(n)	E(N)
Brink	BRINK	E(n)	EN
B ₄ C	B4C	E(p)	EP
B×ρ	B*RHO	E(p)	E(P)
С	С	E(p ₂)	E(P2)
ССВА	ССВА	$E(p_1)$	E(P1)
CCC	CCC	E(t)	ET
CERN	CERN	E(t)	E(T)
СР	СР	Ε(α)	E(A)
CRC	CRC	E-E	E-E
Ca(OH)	CA(OH)	$E/\Delta E$	E/DE
Cerenkov	CERENKOV	E0	E0
Clebsch	CLEBSCH	E1	E1
Cm	Cm	E10	E10
Co	СО	E2	E2
Compton	COMPTON	E3	E3
Coriolis	CORIOLIS	E4	E4
Coster	COSTER	E5	E5
Coul	COUL	E6	E6
Coulomb	COULOMB	E7	E7
CsI	CSI	E8	E8
Curie	CURIE	E9	E9
C ² S	C2S	EL	EL
D)	D)	ENDF/B-V	ENDF/B-V
D+(Q)	D+(Q)	ENDF/B	ENDF/B_
D+Q	D+Q	ENDOR	ENDOR

В тексте	ENSDF	В тексте	ENSDF
EPR	EPR	Н,	Н,
ESR	ESR	H=	H=
EWSR	EWSR	HERA	HERA
Ee	EE	HF	HF
Enge	ENGE	HI	HI
Е	E	HP	HP
E ^{1/2}	E**1/2	HPGe	HPGE
E ²	E**2	Hager	HAGER
ΕΔΕ	EDE	Hartree	HARTREE
Εα	EA	Hauser	HAUSER
Εβ	EB	Ι	Ι
Εβ	EB_	I(x ray)	IX
Eβ ⁻	EB-	I(γ+ce)	TI
Εε	EEC	$I(\gamma+ce)$ normalization	NT
Εγ	*EG	IAR	IAR
Εγ	EG	IAS	IAS
$E\gamma^3$	EG**3	IBA	IBA
$E\gamma^5$	EG**5	IBM	IBM
F+B	F+B	IBS	IBS
F-K	F-K	IGISOL	IGISOL
F/B	F/B	IMPAC	IMPAC
FWHM	FWHM	IPAC	IPAC
February	FEBRUARY	ISOLDE	ISOLDE
Fermi	FERMI	IT branching	IT BRANCHING
Feshbach	FESHBACH	IT decay	IT DECAY
Fock	FOCK	IT decays	IT DECAYS
Fourier	FOURIER	IT=	IT=
G-M	G-M	Ice	ICE
GDR	GDR	Ice(K)	ICE(K)
GM	GM	Ice(N)	ICE(N)
GMR	GMR	In(IN(
GQR	GQR	Ια	IA
GSI	GSI	Ιβ	IB
GTOL	GTOL	Iβ normalization	NB
Gallagher	GALLAGHER	Ιβ-	IB-
Gamow	GAMOW	$I\beta^+$	IB+
Garvey	GARVEY	Ιε	IE
Gaussian	GAUSSIAN	Ιε	IEC
Ge(Li)	GE(LI)	Ιγ	IG
Ge(Li)	GELI	Ιγ	*RI
GeV	GEV	Ιγ	RI
Geiger-Muller	GEIGER-MULLER	Iy normalization	NR
Geiger	GEIGER	ΙγΕγ	IG*EG
H(H(J	J

В тексте	ENSDF	В тексте	ENSDF
JKπ	JKP	Kelvin	KELVIN
JOSEF	JOSEF	Knight	KNIGHT
JULIE	JULIE	Krane	KRANE
January	JANUARY	Kronig	KRONIG
Jmax	JMAX	Kuo-Brown	KUO-BROWN
Jmin	JMIN	Kurie	KURIE
July	JULY	K x ray	XK
June	JUNE	$K\alpha_2 x ray$	XKA2
J^2	J**2	$K\alpha_1 x ray$	XKA1
J ₀	JO	Ka x ray	XKA
J_1	J1	$K\beta_2 x ray$	XKB2
J ₂	J2	Kβ ₂ ' x ray	XKB2P
J _f	JF	$K\beta_4 x ray$	XKB4
J _i	JI	$K\beta_3 x ray$	XKB3
Jπ	JPI	$K\beta_1 x ray$	XKB1
К	K	$K\beta_1$ ' x ray	XKB1P
K-O ₂ x ray	XKO2	$K\beta_1^{I} x ray$	XKB1I
K-O ₃ x ray	ХКОЗ	$K\beta_1^{II} x ray$	XKB1II
K-O ₂₃ x ray	XKO23	$K\beta_{13} x ray$	XKB13
K/L+M	K/L+M	$K\beta_5 x ray$	XKB5
K/LM	K/LM	$K\beta x ray$	XKB
KLL	KLL	Κπ	KPI
KLM	KLM	L	L
KL_1L_1	KL1L1	L(n)	LN
KL_1M_2	KL1M2	L(p)	LP
KL_1L_3	KL1L3	L1	L1
KL_1M_3	KL1M3	L12	L12
KL_1M_1	KL1M1	L2	L2
KL_1L_2	KL1L2	L23	L23
KL_2M_1	KL2M1	L3	L3
KL_2L_2	KL2L2	LAMPF	LAMPF
KL_2L_3	KL2L3	LASER	LASER
KL_2M_3	KL2M3	LBL	LBL
KL_2M_4	KL2M4	LM	LM
KL ₃ L ₃	KL3L3	LMN	LMN
KL ₃ LM ₁	KL3LM1	LOHENGRIN	LOHENGRIN
KL ₃ N	KL3N	Larmor	LARMOR
KL_3M_3	KL3M3	Legendre	LEGENDRE
KL_3M_2	KL3M2	Li	LI
KM_2M_3	KM2M3	Litherland	LITHERLAND
KM_2N_2	KM2N2	Lorentzian	LORENTZIAN
KM_3M_3	KM3M3	L ₁ x ray	XL1
KXY	KXY	L ₂ x ray	XL2
Kelson	KELSON	L ₃ x ray	XL3

В тексте	ENSDF	В тексте	ENSDF
L _l x ray	XLL	MIT	MIT
$L_{\alpha} x$ ray	XLA	March	MARCH
$L_{\beta} x ray$	XLB	MeV	MEV
$L_{\eta} x$ ray	XLC	MeV ⁻⁴	MEV**-4
$L_{\gamma} x ray$	XLG	Mossbauer	MOSSBAUER
L x ray	XL	Moszkowski	MOSZKOWSKI
$L\alpha_1 x ray$	XLA1	N-Z	N-Z
$L\alpha_2 x ray$	XLA2	N-shell	N-SHELL
$L\beta_3 x ray$	XLB3	N-subshell	N-SUBSHELL
$L\beta_4 x ray$	XLB4	N1	N1
$L\beta_1 x ray$	XLB1	N12	N12
$L\beta_5 x ray$	XLB5	N123	N123
$L\beta_2 x ray$	XLB2	N2	N2
$L\beta_{215} x ray$	XLB215	N23	N23
Lβ ₉ x ray	XLB9	N3	N3
$L\beta_{15} x ray$	XLB15	N4	N4
$L\beta_6 x ray$	XLB6	N45	N45
$L\beta_{10} x ray$	XLB10	N5	N5
Lγ ₃ x ray	XLG3	N<	N<
Lγ ₄ x ray	XLG4	N=	N=
Lγ ₆ x ray	XLG6	NBS	NBS
Lγ ₅ x ray	XLG5	NC^2S	NC2S
$L\gamma_2 x ray$	XLG2	NE213	NE213
$L\gamma_1 x ray$	XLG1	NMR	NMR
М	М	NQR	NQR
M x ray	XM	NSσ	NS*SIGMA
M+=	M+=	NX	NX
M+L	ML	NaI	NAI
M+N+O	MNO	Ne	Ne
M-shell	M-SHELL	Nilsson	NILSSON
M-subshell	M-SUBSHELL	Note:	NOTE:
M/total ce	M/CE	November	NOVEMBER
M1	M1	Nuclear Data Sheets	NDS
M12	M12	N×σ	N*SIGMA
M2	M2	0	0
M23	M23	O/Q	O/Q
M3	M3	01	01
M4	M4	0123	O123
M45	M45	02	O2
M5	M5	O3	O3
M6	M6	ORNL	ORNL
M8	M8	OSIRIS	OSIRIS
MEDLIST	MEDLIST	October	OCTOBER
MHz	MHZ	Octupole mom(mag)	MOMM3

В тексте	ENSDF	В тексте	ENSDF
Octupole mom(el)	MOME3	S(2p)	S(2P)
P1	P1	S(n)	SN
PAC	PAC	S(p)	SP
PAD	PAD	$S(\alpha)$	SA
PWBA	PWBA	S-factors	S-FACTORS
PWIA	PWIA	S-factor	S-FACTOR
Particle normalization	NP	S-value	S-VALUE
P ₀	P0	S-values	S-VALUES
P _n	PN	S/	S/
Q	MOME2	S=	S=
Q	Q	SD	SD
Q(Q(SDB	SDB
Q(g.s.)	QP	SF	SF
Q(a)	QA	SOREQ	SOREQ
Q(β ⁻)	Q-	Saxon	SAXON
Q(ε)	Q+_	Schmidt	SCHMIDT
Q+O	Q+O	Se(Li)	SE(LI)
Q/D	Q/D	Seltzer	SELTZER
Q2D	Q2D	September	SEPTEMBER
Q2DM	Q2DM	Si(Li)	SI(LI)
Q3D	Q3D	Si(Li)	SILI
QDD	QDD	SiO	SIO
QDDM	QDDM	Sliv-Band	SLIV-BAND
QDMDQ	QDMDQ	Sn	Sn
QMG	QMG	Steffen	STEFFEN
QQSP	QQSP	Stockholm	STOCKHOLM
QSD	QSD	Т	TEMP
Q ₂₂	Q22	Т	ISPIN
Qs	QS	Τ/	Τ/
R	*R	T20	T20
R	R	T21	T21
R(DCO)	R(DCO)	T22	T22
RDDS	RDDS	TDPAD	TDPAD
RDM	RDM	TPAD	TPAD
RPA	RPA	TRISTAN	TRISTAN
RUL	RUL	TRIUMPH	TRIUMPH
Ritz	RITZ	Teller	TELLER
Rose	ROSE	Ti	Ti
Rutherford	RUTHERFORD	T _{1/2}	T1/2
Rytz	RYTZ	T _{1/2}	Т
S values	S VALUES	Tz	ISPINZ
S value	S VALUE	U	U
S'	S'	UK	UK
S(2n)	S(2N)	UNISOR	UNISOR

В тексте	ENSDF	В тексте	ENSDF
USA	USA	ce(M45)	CEM45
USSR	USSR	ce(M4)	CEM4
Univ	UNIV	ce(M5)	CEM5
University	UNIVERSITY	ce(N)/(γ+ce)	N/T
U_2A_2	U2A2	ce(N)	CEN
V	V	$ce(N+)/(\gamma+ce)$	N+/T
VAP	VAP	ce(N1)	CEN1
W	W	ce(N2)	CEN2
W.u.	W.U.	ce(N3)	CEN3
Weisskopf	WEISSKOPF	ce(N45)	CEN45
Wigner	WIGNER	ce(N4)	CEN4
Winther	WINTHER	ce(N5)	CEN5
X(X(ce(O)	CEO
XX	XX	ce(O)/(γ+ce)	O/T
Χγ	XG	ce(O)+ce(P)	CEO+CEP
Y	YTTRIUM	ce(O1)	CEO1
Ζ	Ζ	ce(P+)/(y+ce)	P+/T
Z>N	Z>N	ceβ	CEB
[E2]	[E2]	сеу	CEG
[Ιγ	[RI	cm ²	CM2
0	DEG	cm ³	CM3
×	*	configuration=	CONF=
αν Εβ	EAV	configuration	CONF
a ₀	a0	$\cos^2\theta$	COS2TH
branching uncertainty	DBR	dE/dx	DE/DEX
c.m.	C.M.	d ³ He	D3HE
ce	CE	dΩ	DOMEGA
ce(K)/(γ+ce)	K/T	dγ	DG
ce(K)	CEK	dσ	DSIGMA
ce(L)/(γ+ce)	L/T	$d\sigma/d\Omega$	DS/DW
ce(L)	CEL	$d\sigma/d\Omega$	*DS/DW
$ce(L+)/(\gamma+ce)$	L+/T	e'(θ)	E'(THETA)
ce(L1)	CEL1	eV	EV
ce(L12)	CEL12	even-A	EVEN-A
ce(L23)	CEL23	ex.	EX.
ce(L2)	CEL2	e^+	E+
ce(L3)	CEL3	e^{\pm}	E+-
ce(M)/(y+ce)	M/T	fm	FM
ce(M)	CEM	fm^{-1}	FM-1
$ce(M+)/(\gamma+ce)$	M+/T	fm^{-1}	FM**-1
ce(M1)	CEM1	fm ²	FM**2
ce(M2)	CEM2	fm ⁴	FM**4
ce(M23)	CEM23	g factor	G FACTOR
ce(M3)	CEM3	g factors	G FACTORS

g(2+ G(2+ p1/2 P1/2 g-factors G-FACTORS p2ny P2NG g-s. G-G pa PALPHA g- G- pY PG gT, G- pY PG gT,2 GT1/2 r ² R**2 gW, $_{70}^2$ G*WWDTHG0*r2 r ⁴ R**4 gwr, $_0$ G*WWDTHG0 r ⁶ R**6 g.f G1 S(ce) S(CE) g.f G2 syst SVP g. G2 syst SVP g.f G2 syst S-1 gT, $_{70}^2$ G42 i) T, gT, $_{70}^2$ G4WDTHG0**2 th TH gT, $_{70}^2$ G*WIDTHO*2 th TH gT, $_{70}^2$ G*WIDTHO*2 th TH gT, $_{70}^2$ G*WIDTHOWIDTM x-may X-RAY bis H*2 sypmy XPNG gT, $_{70}^4$ GWIDTHOW	В тексте	ENSDF	В тексте	ENSDF
g-factorsG-FACTORSp2nγP2NGgs.GSpaPALPHAg*G-spyPG GgT1G*TpyPGGgTr_2GT1/2r²R**2gWT _{g0} G*W*WIDTHG0**2r²R**4gwT _{g0} G*W*WIDTHG0**2r²R**6gwT_g1G1/12s(ce)S(CE)gJTG1s(ce)S(CE)gJTG2*WIDTHs-waveS-WAVEg2*62s'1S-1gJ4G2s'1T.gJ7G*WIDTHG0**2thT.gJ7G*WIDTHG0**2thT.gJ7G*WIDTHG0**2tofTOFgJ1G*WIDTHG0**2tofTOFgJ1G*WIDTHG0**2tofTOFgJ1G*WIDTHG0**2tofTOFgJ1G*WIDTHG0x-rayX-RAYSb0HOMEGAx-rayX-RAYSb1IS Ds ² >AVRSQkGKGs(s) ¹² AVRSQk6KEVA <d<sup>2>DAVRSQ6log/frLOGF1UT-3*-3log/frLOGF1UT-3*-3log/frLOGF1UT-3*-3log/frLOGF1UT-3*-3log/frLOGF1UT-3*-3log/frLOGF1UT-3*-3log/frLOGF1UT-3*-3log/frLOGF1UT-3*-3log/frLOGF1UT-3*-3</d<sup>	g(2+	G(2+	p1/2	P1/2
g.s.GSμαPALPHAg ⁻ G-γ7PGg ^T G ⁻ Tγ7PGg ^T G ^{T1/2} r ¹ R**2g ^{T1/2} G ^{T1/2} r ¹ R**2g ^{T1/2} G ^{T1/2} r ¹ R**4g ^{T1/2} G ^T WIDTHGO**2r ¹ R**4g ^{T1/2} G ^T WIDTHr ₀ R0g ₁ G ^T WIDTHsceoSCE)g ₁ G ^T WIDTHsceoSWAVEg ₂ C2*WIDTHs-waveS-WAVEg ₂ C2s ⁻¹ S-1g ² GA2ITg ¹ /2G*WIDTHGO**2thTg ¹ /2G*WIDTHGO**2thTg ¹ /2G*WIDTHGO**2thTGg ¹ /20G*WIDTHGOx-rayX-RAYhoHOMEGAx-raySX-RAYShoHOMEGAx-raySX-RAYSkKEVA <t<sup>2>DAVRSQkKEVA<t<sup>2>DAVRSQkKEVA<t<sup>2>DAVRSQlog/ⁿtLOGFUT-1*-1log/ⁿtLOGFUT-3*-3log/ⁿtLOGFUT-3*-1log/ⁿtMB1/2*-1log/ⁿtMG2*-2mb/srMS/SR-1*-1mb/srMS/SR-1*-1mb/srMS-1*-1mb/srMS-1*-1mb/srMG(CM22*-2mb/sr<</t<sup></t<sup></t<sup>	g-factors	G-FACTORS	p2ny	P2NG
g= G= $p\gamma$ PG gT G*T $p\gamma\gamma$ PGG gT ₁₂ GT1/2 r^2 R**2 gwT _p ² G*WWDTHG0**2 r^4 R**4 gwT _p ³ G*WWDTHG0**2 r^4 R**4 gwT _p ³ G*WWDTH r_0 R**4 gwT _p ³ G1 s(ce) SCE) gi G1 s(ce) SCE) gi G2 svave SWAVE g G2 s'1 S1 g' $_{70}^2$ G*WIDTHG0**2 th T g' $_{70}^2$ G*WIDTHG0**2 th T g' $_{70}^3$ G*WIDTHG0 x-ray X-RAY g' $_{70}^3$ G*WIDTHG0 w(0)g' r_{90} W(THETA)*G*WIDTHG0 g' $_{70}^3$ G*WIDTHG0 w(0) g' r_{90} W(THETA)*G*WIDTHG0 g' $_{70}^2$ G*WIDTHG0 w(0) g' r_{90} W(THETA)*G*WIDTHG0 g' $_{70}^2$ G*WIDTHG0 w(0) g' r_{90} W(THETA)*G*WIDTHG0	g.s.	GS	ρα	PALPHA
gT G*T $p\gamma\gamma$ PGG gT $_{12}$ GT1/2 r ² R**2 gW Γ_{y0}^2 G*W*WIDTHG0**2 r ⁴ R**4 gwT $_{y0}$ G*W*WIDTHG0**2 r ⁴ R**4 gwT $_{y0}$ G*W*WIDTH r $_0$ R**6 gr G1 s(ce) S(CE) gJ G1 s(ce) S(CE) gJ G2 syst S-1 g2 *G2 syst S-1 g ² GA2 t) T, g Γ_{y0}^2 G*WIDTHG0*22 th TH g Γ_{y0}^2 G*WIDTHG0**2 th TH g Γ_{y0}^2 G*WIDTHG0 w(ng) Γ_{y0} W(THETA)*G*WIDTHG0	g=	G=	рү	PG
gT GTI/2 r^2 R**2 gWT G*W*WIDTHG0**2 r^4 R**4 gwT G*W*WIDTHG0 r^6 R**6 grT G1*WIDTH r_0 R0 grT G1*WIDTH r_0 R0 grT G2*WIDTH s-wave SWAVE gr G2 syst SY gr G2 swIDTH60*2 th gr G2 swIDTH60*2 th gr G1	gT	G*T	рүү	PGG
gw $\Gamma_{\gamma 0}^2$ G*W*WIDTHG0**2 r ⁴ R**4 gw $\Gamma_{\gamma 0}$ G*W*WIDTHG0 r ⁶ R**6 g ₁ Γ G1 s(ce) RO g ₁ Γ G1 s(ce) S(CE) g ₁ Γ G2 syst SY g ₂ Γ G2 syst SY g ₁ Γ GA2 1 T g ² Γ_{1}^2 GA2 1 T g ² Γ_{10}^2 GA2 1 T g Γ_{20}^2 G*WIDTHG0**2 th TH g Γ_{70}^2 G*WIDTHOWIDTHG x-ray X-RAY ho HOMEGA x-rays X-RAY ho HOMEGA x-ray X-RAY ho HOMEGA x-ray X-RAY ho HOMEGA x-ray X-RAY </td <td>gT_{1/2}</td> <td>GT1/2</td> <td>r²</td> <td>R**2</td>	gT _{1/2}	GT1/2	r ²	R**2
gwT _{p0} G*W*WIDTHG0 r^6 R**6 g ₁ Γ G1*WIDTH r_0 R0 g ₁ G G1 s(ce) S(CE) g ₂ F G2*WIDTH s-wave S-WAVE g ₂ G2 syst SY g ₁ GA2 i S-1 g_{1}^2 GA2 i T, g Γ_{20}^2 *G*WIDTH60**2 th TH g Γ_{20}^2 G*WIDTH60**2 tof TG g Γ_{90}^0 G*WIDTH00**2 tof TG g Γ_{90}^1 G*WIDTH00 ×ray X-RAY bw HOMEGA ×ray X-RAYS is D si D ×ray X-RAYS keV KEV A <rb< td=""> DAVRSQ log/fr/t <t< td=""><td>$gW\Gamma_{\gamma 0}^2$</td><td>G*W*WIDTHG0**2</td><td>r^4</td><td>R**4</td></t<></rb<>	$gW\Gamma_{\gamma 0}^2$	G*W*WIDTHG0**2	r^4	R**4
$g_1 \Gamma$ $G1$ WIDTH r_0 $R0$ $g_1 \Gamma$ $G1$ $s(ce)$ $S(CE)$ $g_2 \Gamma$ $G2$ WIDTH $s-wave$ $S-WAVE$ g_2 $G2$ s^{-1} $S-I$ g_{1}^2 $GA2$ 1 T $g_{\gamma 0}^2$ G^*WIDTH t , T $g_{\gamma 0}^2$ $G^*WIDTHG0^{**2}$ th TH $g_{\gamma 0}^2$ $G^*WIDTHOO^{**2}$ to^2 TG $g_{\gamma 0}^1$ $G^*WIDTHOO^{**2}$ to^2 TG g_{10}^{-0} $G^*WIDTHOO^{**2}$ to^2 TG g_{10}^{-0} $G^*WIDTHOO^{**2}$ to^2 TG g_{10}^{-0} $G^*WIDTHOO^{**2}$ to^2 X -RAY b_{0} $G^*WIDTHOVIDTHG$ s -ray X -RAY b_{0} $GWIDTHOVIDTHG$ x -ray X -RAY b_{0} H^{**2} $pyn\gamma$ X -RAY b_{0} H^{**2} $pyn\gamma$ X -RAY b_{0} $AVRSQ$	$gw\Gamma_{\gamma 0}$	G*W*WIDTHG0	r^6	R**6
g1 G1 s(ce) S(CE) g2 G2*WIDTH s-wave S-WAVE g2 *G2 syst S g2 G2 s'1 S1 g1 GA2) T, g1 G*WIDTH L T, g1 $_{r0}^2$ *6*WIDTHG0**2 th TH g1 $_{r0}^2$ G*WIDTHG0**2 th TG g1 $_{r0}^2$ G*WIDTHG0 *(0) TOF g1 $_{r0}^2$ G*WIDTHG0 w(0) W(THETA)*G*WIDTHG0 g1 $_{r0}^2$ G*WIDTHGO w(0) W(THETA)*G*WIDTHG0 g1 $_{r0}^1$ G*WIDTHGO w(0) W(THETA)*G*WIDTHG0 g1 $_{r0}^1$ G*WIDTHO x-ray X-RAY bio HOMEGA x-ray X-RAY bio HOMEGA x-ray X-RAY bio HOMEGA x-ray X-RAYS bi' H**2 XPNG XPNG si D S A X-RAYS	$g_1\Gamma$	G1*WIDTH	r ₀	R0
$g_1 \Gamma$ G2*WIDTH s-wave S-WAVE g_2 *G2 syst SY g_1^2 G2 s^{-1} S-1 g_1^2 GA2 t) T) g_1^2 GA2 t) T) $g_{\gamma 0}^2$ GA2 t) T, $g_{\gamma 0}^2$ G*WIDTH t, T, $g_{\gamma 0}^2$ G*WIDTHG0**2 th TH $g_{\gamma 0}^2$ G*WIDTHO**2 tof TG $g_{\gamma 0}^2$ G*WIDTHO**2 tof TG $g_{\gamma 0}^1$ GWEGA x-ray X-RAY bio HOMEGA x-ray X-RAY bio HOMEGA x-ray X-RAY bio HSQ x-ray X-RAY bio HSQ XPNG XPNG b	g ₁	G1	s(ce)	S(CE)
g2 *G2 syst SY g2 G2 s ⁻¹ S-1 g_A^2 GA2 i) T) gГ G*WIDTH t, T, g $\Gamma_{\gamma 0}^2$ *G*WIDTHG0**2 th TH g $\Gamma_{\gamma 0}^2$ G*WIDTHG0**2 th TG g $\Gamma_{\gamma 0}$ G*WIDTHG0**2 tof TG g $\Gamma_{\gamma 0}$ G*WIDTHO**2 tof TG g $\Gamma_{\gamma 0}$ G*WIDTHO**2 tof TG g $\Gamma_{\gamma 0}$ G*WIDTHO**2 tof TG g $\Gamma_{\gamma 0}$ G*WIDTHOWIDTHG x-ray X-RAY ho HOMEGA x-ray X-RAY ho HOMEGA x-ray X-RAY ho ISD τ^{-2} AVRSQ kG KG $\varsigma 2^{-2}^{-1/2}$ BAVRSQ keV KEV $\Delta < \tau^{-5}$ DAVRSQ6 log/f*t LOGF1UT $\Delta < \tau^{-5}$ DAVRSQ log/f*t LOGF2UT -1 **-1	$g_2\Gamma$	G2*WIDTH	s-wave	S-WAVE
g_2 $G2$ s^{-1} $S-1$ g_A^2 $GA2$ t T $g_{\gamma 0}^2$ G^*WIDTH t , T , $g_{\gamma 0}^2$ $G^*WIDTHG0^{**2}$ th TH $g_{\gamma 0}^2$ $G^*WIDTHG0^{**2}$ th TG $g_{\gamma 0}^1$ $G^*WIDTHG0$ $v(\eta)g_{\gamma 0}$ $W(THETA)^*G^*WIDTHG0$ $g_{\gamma 0}^1$ $G^*WIDTHWIDTHG$ $x-ray$ $X-RAY$ $h\infty$ HOMEGA $x-rays$ $X-RAY$ $h\infty$ HOMEGA $x-rays$ $X-RAY$ h^2 H^*2 $xpnn^\gamma$ XPNG sD s^{-2}^2 $AVRSQ$ $ddeggggggggggggggggggggggggggggggggggg$	g ₂	*G2	syst	SY
g_A^2 GA2 t) T) $g\Gamma$ G*WIDTH t, T, $g_{\gamma 0}^2$ *G*WIDTHG0**2 th TH $g_{\gamma 0}^2$ G*WIDTHG0**2 tof TOF $g_{\gamma 0}$ G*WIDTHG0 try TG $g_{\gamma 0}$ G*WIDTHO try TG $g_{\gamma 0}$ GWIDTHOVIDTHG x-ray X-RAY ho HOMEGA x-rays X-RAY ho HOMEGA x-rays X-RAYS h ² H**2 xpnn XPNG is D IS D < τ^2 > AVRSQ keV KEV $\Delta < \tau^2$ > DAVRSQ4 keV KEV $\Delta < \tau^2$ > DAVRSQ log f ^{4t} t LOGF1UT $\Delta < \tau^2$ > DAVRSQ log fft LOGF2UT -1 **.1 log fft LOGF2UT -1 **.1 log fft LOGF1T -3 **.2 mb/sr MB/SR 1/3 **1/3	g ₂	G2	s^{-1}	S-1
gΓ G*WIDTH t, T, g $\Gamma_{\gamma0}^2$ *G*WIDTHG0**2 th TH g $\Gamma_{\gamma0}^2$ G*WIDTHG0**2 tof TOF g Γ_{η} G*WIDTHO * γ TG g $\Gamma_{\gamma0}$ G*WIDTHO * γ TG g $\Gamma_{\gamma0}$ G*WIDTHO *ray WITHETA)*G*WIDTHG0 g $\Gamma_{\gamma0}$ GWIDTHOUIDTHG *ray X-RAY ho HOMEGA *rays X-RAY ho HOMEGA *rays X-RAYS h ² H*2 xpnq XPNG is D AVRSQ AVRSQ k60 KG $4^{-2}^{-2}^{-1/2}$ BAVRSQ k60 KG $4^{-2}^{-5}^{-5}$ DAVRSQ6 log $f^{dr}t$ LOGF1UT $4^{-4}^{-5}^{-5}$ DAVRSQ6 log $f^{dr}t$ LOGF2UT -1 **-1 log $f^{dr}t$ LOGF1T $3^{-3}^{-2}^{-2}^{-2}^{-2}^{-2}^{-2}^{-2}^{-2$	g_A^2	GA2	t)	T)
g $\Gamma_{\gamma 0}^2$ *G*WIDTHG0**2 th TH g Γ _{γ0} G*WIDTHG0**2 tof TOF g Γ _n G*WIDTHO tγ TG g Γ _{γ0} G*WIDTHOW w(θ)g Γ _{γ0} W(THETA)*G*WIDTHG0 g Γ _{γ0} G*WIDTHOWIDTHG x-ray X-RAY hω HOMEGA x-rays X-RAYS h² H**2 xpmγ XPNG is D IS D <r<sup>2> AVRSQ kG KG <g<sup>2>^{1/2} BAVRSQ keV KEV Δ<r<sup>2> DAVRSQ6 log f⁴t LOGF1UT Δ<r<sup>4> DAVRSQ6 log f⁴t LOGF2UT -1 **.1 log f⁴t LOGF1T -3 **.3 log f⁴t LOGF1T -3 **.4 mb MB 1/2 **.1 log f⁴t LOGF1T -4 **.4 mb/sr MB/SR 1/3 **.1 mk/sr MG/CM2 2 **.2</r<sup></r<sup></g<sup></r<sup>	gΓ	G*WIDTH	t,	Τ,
$g \Gamma_{\gamma 0}^2$ G*WIDTHG0**2 tof TOF $g \Gamma_n$ G*WIDTHO $t \gamma$ TG $g \Gamma_{\gamma 0}$ G*WIDTHO w($\theta) g \Gamma_{\gamma 0}$ W(THETA)*G*WIDTHG0 $g \Gamma_0 \Gamma_\gamma$ GWIDTHOWIDTHG x-ray X-RAY ho HOMEGA x-rays X-RAYS h^2 H**2 xpm γ XPNG is D IS D $$ AVRSQ kG KG $^{1/2}$ BAVRSQ koe KOE $$ DAVRSQ4 keV KEV $$ DAVRSQ6 log $f^{lit}t$ LOGF1UT $$ DAVRSQ6 log $f^{lit}t$ LOGF2UT -1 **(1+1/2) log $f^{lit}t$ LOGF1T -3 **3 log ft LOGF1T -3 **1/2 mb/sr MB/SR 1/3 **1/3 meV MILLI-EV $^{12}C\gamma$ C12G mg/cm ² MG/CM2 2 **2 ms MS 2 **2 ms/sr MB/SR L E.	$g \Gamma_{\gamma 0}^2$	*G*WIDTHG0**2	th	TH
$g\Gamma_n$ G*WIDTHN $t\gamma$ TG $g\Gamma_{\gamma 0}$ G*WIDTHG0 w($\theta)g\Gamma_{\gamma 0}$ W(THETA)*G*WIDTHG0 $g\Gamma_0\Gamma_\gamma$ GWIDTH0WIDTHG x-ray X-RAY $h\omega$ HOMEGA x-rays X-RAYS h^2 H**2 xpyn γ XPNG is D IS D < r^2 > AVRSQ kG KG Δq^2 > ^{1/2} BAVRSQ koe KOE $\Delta < r^4$ > DAVRSQ keV KEV $\Delta < r^2$ > DAVRSQ log f ^{1/4} t LOGF1UT $\Delta < r^6$ > DAVRSQ6 log f ^{2/4} t LOGF2UT -1 *1-1 log f ¹ LOGF1T -3 *4.3 log ft LOGF1T -3 *1/2 mb MB 1/2 *1/2 mb/sr MB/SR 1/3 *1/2 ms/on MG/CM2 2 *2 ms MS 3 *3 nb/sr MB/SR L E.	$g \Gamma_{\gamma 0}^2$	G*WIDTHG0**2	tof	TOF
$g_{\gamma 0}$ $G^*WIDTHG0$ $w(\theta)g_{\Gamma \gamma 0}$ $W(THETA)*G^*WIDTHG0$ $g_{\Gamma 0} \Gamma_{\gamma}$ GWIDTHOWIDTHGx-rayX-RAYh\omegaHOMEGAx-rayX-RAYh\omegaH*2xpynyXPNGis DIS D $$ AVRSQkGKG $<\beta^2 >^{1/2}$ BAVRSQkOeKOE $\land $ DAVRSQ4keVKEV $\land $ DAVRSQ6 $\log f^{4u}t$ LOGF1UT $\land $ DAVRSQ6 $\log f^{4u}t$ LOGF2UT-1**(J+1/2) $\log f^{2u}t$ LOGF2UT-1**-1 $\log f^{2u}t$ LOGF1T-3**-3 $\log ft$ LOGF1T-3**-3 $\log ft$ LOGF1T-1**-1 $\log ft$ BMB1/2**1/2mbMB1/2**1/3meVMILLI-EV $1^2C\gamma$ C12G mg/cm^2 MG/CM22**2msMS3**3n/srNB/SRL**1nyNG $e.g.$ E.G.nymNGG $i.e.$ I.E.odd-AODD-A $\times E$ *Ep decayP DECAY $\times I\beta^2$ *IB- $p(\theta)$ P(THETA) $\times Ic$ *IE $p(\theta)$ PUTH $\times O$ *O	$g\Gamma_n$	G*WIDTHN	tγ	TG
Gr_{γ} GWIDTHOWIDTHG x -ray X -RAYhoHOMEGA x -rays X -RAYShoHOMEGA x -rays X -RAYS h^2 H**2 $xpyny$ $XPNG$ is DIS D $$ AVRSQkGKG $<\beta^2>^{1/2}$ BAVRSQkOeKOE $\Delta < r^2>$ DAVRSQ4keVKEV $\Delta < r^2>$ DAVRSQ6log $f^{4u}t$ LOGF1UT $\Delta < r^6>$ DAVRSQ6log $f^{2u}t$ LOGF2UT -1 $**.1$ log f^2ut LOGF1T -3 $**.3$ log f^1 LOGF1T -1 $**.1$ log f^1 LOGF1T -1 $**.13$ mbMB $1/2$ $**.1/2$ mb/srMB/SR $1/3$ $**.1/3$ meVMILLI-EV $1/2C\gamma$ C12Gmg/cm ² MG $e.g.$ $E.G.$ nyNGG $e.g.$ $E.G.$ nyNGG $i.e.$ $I.E.$ odd-AODD-A $\times E$ $*E$ p(θ)PLECAY $xI\beta^ *IB-$ p(θ)PUETA xO $*O$	$g\Gamma_{\gamma 0}$	G*WIDTHG0	$w(\theta)g\Gamma_{\nu0}$	W(THETA)*G*WIDTHG0
ho HOMEGA x-rays X-RAYS h ² H**2 xpynγ XPNG is D IS D $ AVRSQ kG KG <β^2>^{1/2} BAVRSQ kOe KOE < DAVRSQ4 keV LOGF1UT < DAVRSQ6 log fdit LOGF1UT < DAVRSQ6 log fdit LOGF2UT -1 **.1 log ffit LOGF1T -3 **.3 log ffit LOGFT -4 **.4 mb MB 1/2 **1/2 mb/sr MB/SR 1/3 **1/3 meV MILLI-EV 12Cγ C12G mg/cm2 MG 3 **3 nb/sr MS 3 **1 nγ NG e.g. E.G. nγγ NGG i.e. I.E. odd-A ODD-A ×E *E p decay P DECAY$	$g\Gamma_0\Gamma_\gamma$	GWIDTH0WIDTHG	x-ray	X-RAY
h^2 H**2 xpyη XPNG is D IS D $$ AVRSQ kG KG $<β^2>^{1/2}$ BAVRSQ kOe KOE $$ DAVRSQ4 keV LOGF1UT $}$ DAVRSQ6 log f ^{tu} t LOGF1UT $}$ DAVRSQ6 log f ^{bu} t LOGF2UT -1 **.1 log f ^t LOGF1T -3 **.3 log f ^t LOGFT -4 **.4 mb MB $1/2$ **1/2 mb/sr MB/SR $1/3$ **1/3 meV MILLI-EV $1/2$ Cγ C12G mg/cm ² MG/CM2 2 **2 ms MS 3 **3 n/γ NG e.g. E.G. nγγ NGG i.e. I.E. odd-A ODD-A ×E *E p decay P DECAY ×Iβ ⁷ *IB- p(0) P(THETA	hω	HOMEGA	x-rays	X-RAYS
is DIS D $\sqrt{2}^{2}$ AVRSQkGKG $\langle \beta^2 \rangle^{1/2}$ BAVRSQkOeKOE $\Delta < r^4 \rangle$ DAVRSQ4keVKEV $\Delta < r^2 \rangle$ DAVRSQlog f ^{lu} tLOGF1UT $\Delta < r^6 \rangle$ DAVRSQ6log f ^{lu} tLOGF3UT($^{1+\ell_0}$)**(I+1/2)log f ^{lu} tLOGF1UT -1 **-1log f ^{lu} tLOGF1T $^{-3}$ **-3log f ^l tLOGF1T $^{-4}$ **-3log flLOGFT $^{-4}$ **-4mbMB $^{1/2}$ **1/2mb/srMB/SR $^{1/3}$ **1/3meVMILLI-EV $^{12}C\gamma$ C12Gmg/cm ² MG/CM22**2msMS3**3nb/srNB/SRL**LnyNGe.g.E.G.nyNGGi.e.I.E.odd-AODD-A×E*Ep decayP DECAY×I β *IB-p(0)P(THETA)×I ϵ *IEe.widthP-WIDTH×O*O	h ²	H**2	xpynγ	XPNG
kG KG $\varsigma \beta^2 \sim 1/2$ BAVRSQ kOe KOE $\Delta < r^4 >$ DAVRSQ4 keV KEV $\Delta < r^2 >$ DAVRSQ log f ^{lu} t LOGF1UT $\Delta < r^6 >$ DAVRSQ6 log f ^{lu} t LOGF3UT (1+½) **(J+1/2) log f ^{lu} t LOGF2UT -1 **.1 log f ^{lu} t LOGF1T -3 **.3 log fl LOGFT -4 **.4 mb MB 1/2 **1/2 mb/sr MB/SR 1/3 **1/3 meV MILLI-EV $1^2 C \gamma$ C12G mg/cm ² MG/CM2 2 **2 ms MS 3 **3 nb/sr NB/SR L **1 ny NG e.g. E.G. ny NGG i.e. E. odd-A ODD-A ×E *E p decay P DECAY XI β^- *IB- p.*width P.WIDTH XO *O	is D	IS D	<r<sup>2></r<sup>	AVRSQ
kOeKOE $\Delta < r^{4}$ DAVRSQ4keVKEV $\Delta < r^{2}$ DAVRSQ $\log f^{lu}t$ LOGF1UT $\Delta < r^{6}$ DAVRSQ6 $\log f^{lu}t$ LOGF3UT $(l^{l+l/2})$ $**(J+1/2)$ $\log f^{lu}t$ LOGF2UT -1 $**-1$ $\log f^{l}t$ LOGF1T -3 $**-3$ $\log fl$ LOGFT -4 $**-4$ mbMB $1/2$ $**1/2$ mb/srMB/SR $1/3$ $**1/3$ meVMILLI-EV $1^2C\gamma$ C12Gmg/cm ² MG/CM22 $**2$ msMS 3 $**3$ nb/srNB/SRL $**1$ nyNGe.g.E.G.nyNGGi.e.I.E.odl-AODD-A \times E $*$ Ep decayP DECAY $XI\beta^{-}$ $*IB$ p(0)P(THETA) XO $*O$	kG	KG	$<\beta^{2}>^{1/2}$	BAVRSQ
keV KEV $\Delta < r^2 >$ DAVRSQ $\log f^{d_1}t$ LOGF1UT $\Delta < r^6 >$ DAVRSQ6 $\log f^{d_1}t$ LOGF3UT $(1+t/2)$ $*t(J+1/2)$ $\log f^{d_1}t$ LOGF2UT -1 $*t.1$ $\log f^{d_1}t$ LOGF1T -3 $*t.3$ $\log ft$ LOGFT -4 $*t.4$ mb MB $1/2$ $*t.1/2$ mb/sr MB/SR $1/3$ $*t.1/3$ meV MILLI-EV 1^2 C γ C12G mg/cm ² MG/CM2 2 $*t.2$ ms MS 3 $*t.2$ ny NG e.g. E.G. ny NGG i.e. I.E. odd-A ODD-A $\times E$ $\times E$ p decay P DECAY $\lambda [\beta^ *IB^-$ nwidth P-WIDTH $\times O$ $\times O$	kOe	KOE	$\Delta < r^4 >$	DAVRSQ4
$\log f^{d_u}t$ LOGF1UT $\bigtriangleup < r^{6}$ DAVRSQ6 $\log f^{d_u}t$ LOGF3UT $(l^{+1/2})$ $**(J+1/2)$ $\log f^{2^u}t$ LOGF2UT -1 $**-1$ $\log f^t$ LOGF1T -3 $**-3$ $\log f^t$ LOGFT -4 $**-4$ mb MB $1/2$ $*1/2$ mb/sr MB/SR $1/3$ $*1/3$ meV MILLI-EV 1^2 C γ C12G mg/cm ² MG/CM2 2 $**2$ ms MS 3 $**3$ nb/sr NB/SR L $**L$ n γ NG e.g. E.G. n γ NGG i.e. I.E. odd-A ODD-A \times E \times E p decay P DECAY $×I\beta^{-}$ $*IB$ - $p(\theta)$ P(THETA) $×I\varepsilon$ $*IE$	keV	KEV	$\Delta < r^2 >$	DAVRSQ
$\log f^{3u}t$ LOGF3UT $(1+1/2)$ $**(J+1/2)$ $\log f^{2u}t$ LOGF2UT -1 $**-1$ $\log f^{2u}t$ LOGF1T -3 $**-3$ $\log ft$ LOGFT -4 $**-4$ mbMB $1/2$ $**1/2$ mb/srMB/SR $1/3$ $**1/3$ meVMILLI-EV $^{12}C\gamma$ C12Gmg/cm ² MG/CM2 2 $**2$ msMS 3 $**3$ nb/srNB/SR L $**L$ nyNG $e.g.$ E.G.ny γ NGG $i.e.$ I.E.odd-AODD-A \times E $*$ Ep decayP DECAY $×I\beta^{-}$ $*IB-$ p(0)P(THETA) $×I\epsilon$ $*IE$	$\log f^{du}t$	LOGF1UT	$\Delta < r^6 >$	DAVRSQ6
$\log f^{2u}t$ LOGF2UT $^{-1}$ **-1 $\log f^t$ LOGF1T $^{-3}$ **-3 $\log ft$ LOGFT $^{-4}$ **-4mbMB $^{1/2}$ **1/2mb/srMB/SR $^{1/3}$ **1/3meVMILLI-EV 12 C γ C12Gmg/cm ² MG/CM22**2msMS3**3nb/srNB/SRL**Ln γ NGe.g.E.G.n $\gamma\gamma$ NGGi.e.I.E.odd-AODD-A×E*Ep decayP DECAY×I β^- *IB-p(θ)P(THETA)×I ϵ *IEn-widthP-WIDTH×O*O	$\log f^{3u}t$	LOGF3UT	(J+½)	**(J+1/2)
$\log f't$ LOGF1T -3 **-3 $\log ft$ LOGFT-4**-4mbMB $1/2$ **1/2mb/srMB/SR $1/3$ **1/3meVMILLI-EV 1^2 CγC12Gmg/cm ² MG/CM22**2msMS3**3nb/srNB/SRL**LnyNGe.g.E.G.nyYNGGi.e.I.E.odd-AODD-A×E*Ep decayP DECAY×Iβ ⁻ *IB-p(θ)P(THETA)×Iε*IEn-widthP-WIDTH×O*O	$\log f^{2u}t$	LOGF2UT	-1	**-1
$\log ft$ LOGFT -4 **-4 mb MB 1/2 **1/2 mb/sr MB/SR 1/3 **1/3 meV MB/SR 1/2 C12G mg/cm ² MG/CM2 2 **2 ms MS 3 **3 nb/sr NB/SR L **L nq NG e.g. E.G. nqγ NGG i.e. I.E. odd-A ODD-A ×E *E p decay P DECAY ×Iβ ⁻ *IB- p(θ) P(THETA) ×Iε *IE	$\log f^{d}t$	LOGF1T	-3	**-3
mb MB $1/2$ $**1/2$ mb/sr MB/SR $1/3$ $**1/3$ meV MILLI-EV 1^2 C γ C12G mg/cm ² MG/CM2 2 $**2$ ms MS 3 $**3$ nb/sr NB/SR L $**L$ n γ NG $e.g.$ E.G. n $\gamma\gamma$ NGG <i>i.e.</i> I.E. odd-A ODD-A \times E $*$ E p decay P DECAY $XI\beta^ *IB^-$ p(θ) P(THETA) XIc $*IE$	log ft	LOGFT	-4	**-4
mb/sr MB/SR $^{1/3}$ **1/3 meV MILLI-EV 12 C γ C12G mg/cm ² MG/CM2 2 C γ **2 ms MS 3 **3 nb/sr NB/SR L **L n γ NG e.g. E.G. n $\gamma\gamma$ NGG i.e. I.E. odd-A ODD-A ×E *E p decay P DECAY ×I β^- *IB- p(θ) P(THETA) ×I ϵ *IE	mb	MB	1/2	**1/2
meV MILLI-EV 12 Cγ C12G mg/cm ² MG/CM2 **2 ms MS 3 **3 nb/sr NB/SR L **L nγ NG e.g. E.G. nγγ NGG i.e. 1E. odd-A ODD-A ×E *E p decay P DECAY ×Iβ ⁻ *IB- p(θ) P(THETA) ×Iε *IE	mb/sr	MB/SR	1/3	**1/3
mg/cm ² MG/CM2 2 **2 ms MS 3 **3 nb/sr NB/SR L **L n\gamma NG e.g. E.G. nYY NGG i.e. I.E. odd-A ODD-A ×E *E p decay P DECAY ×I β^- *IB- p(θ) P(THETA) ×I ϵ *I	meV	MILLI-EV	¹² Cγ	C12G
msMS 3 **3msNB/SRL**LnyNGe.g.E.G.nyyNGGi.e.I.E.odd-AODD-A×E*Ep decayP DECAY×Iβ ⁻ *IB-p(θ)P(THETA)×Iε*IEn-widthP-WIDTH×O*O	mg/cm ²	MG/CM2	2	**2
nb/sr NB/SR L **L n\gamma NG $e.g.$ E.G. n\gamma\gamma NGG $i.e.$ I.E. odd-A ODD-A ×E *E p decay P DECAY ×Iβ ⁻ *IB- p(θ) P(THETA) ×Iε *IC	ms	MS	3	**3
nγ NG e.g. E.G. nγγ NGG i.e. I.E. odd-A ODD-A \times E *E p decay P DECAY ×Iβ ⁻ *IB- p(θ) P(THETA) ×Iε *IE	nb/sr	NB/SR	L	**L
nyyNGG <i>i.e.</i> I.E.odd-AODD-A $\times E$ $*E$ p decayP DECAY $\times I\beta^ *IB$ -p(θ)P(THETA) $\times I\epsilon$ $*IE$ p-widthP-WIDTH $\times O$ $*O$	nγ	NG	e.g.	E.G.
odd-AODD-A $\times E$ *Ep decayP DECAY $\times I\beta^-$ *IB-p(θ)P(THETA) $\times I\epsilon$ *IEp-widthP-WIDTH $\times O$ *O	nγγ	NGG	i.e.	I.E.
p decayP DECAY $\times I\beta^-$ *IB- $p(\theta)$ $P(THETA)$ $\times I\epsilon$ *IEp-width $P-WIDTH$ $\times O$ *O	odd-A	ODD-A	×E	*E
$ \begin{array}{c} p(\theta) \\ p (\text{THETA}) \\ p (\text{WIDTH} \\ \text{WIDTH} \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	p decav	P DECAY	$\times I\beta^{-}$	*IB-
n-width P-WIDTH ×O *O	p(θ)	P(THETA)	×Iɛ	*IE
	p-width	P-WIDTH	×Q	*Q

В тексте	ENSDF	В тексте	ENSDF
$\times T_{1/2}$	*T1/2	Φ	PHI
$\times A^{1/3}$	*A**(1/3)	$\Phi(p_2)$	PHI(P2)
$\times \sigma$	*SIGMA	$\Phi(\mathbf{p}_1)$	PHI(P1)
\leq	LE	Γ	*WIDTH
≠	NE	Γ	WIDTH
2	GE	$\Gamma^2_{\gamma 0}$	WIDTHG0**2
\approx	AP	Γ^2	WIDTH**2
\approx <	LA	Γ_{n}	WIDTHN
\approx >	GA	Γ_{n0}	WIDTHN0
00	INFNT	$\Gamma_{ m p0}$	WIDTHP0
Δ	Δ	Γ_{p1}	WIDTHP1
Δ (HF)	DHF	$\Gamma_{\rm p}$	*WIDTHP
Δ (log ft)	DFT	$\Gamma_{p'}$	WIDTHP'
Δ (β -normalization	DNB	Γ_{p2}	WIDTHP2
Δ (γ -normalization	DNR	$\Gamma_{\rm p}$	WIDTHP
Δ (γ +ce-normalization	DNT	$\Gamma_{\alpha 4}$	WIDTHA4
ΔΑ	DA	$\Gamma_{\alpha 1}$	WIDTHA1
ΔA_2	DA2	Γ_{γ}	WIDTHG
ΔA_4	DA4	$\Gamma_{\gamma 1}$	WIDTHG1
ΔΕ	DE	$\Gamma_{\alpha 2}$	WIDTHA2
$\Delta I(\gamma + ce)$	DTI	$\Gamma_{\alpha 0}$	WIDTHA0
ΔΙα	DIA	$\Gamma_{\gamma 0}$	WIDTHG0
ΔΙβ	DIB	$\Gamma_{\alpha 3}$	WIDTHA3
ΔΙε	DIE	Γ_{α}	WIDTHA
ΔΙγ	DRI	Σ	*SUMOF
ΔΙγ (%)	PRI	Σ	SUMOF
ΔJ	DJ	Ψ	PSI
$\Delta J\pi$	DJPI	α	ICC
ΔΚ	DK	α	ALPHA
ΔL	DL	α	CC
ΔΝ	DN	α decay	A DECAY
$\Delta Q(\varepsilon)$	DQ+	a decays	A DECAYS
$\Delta Q(\beta^{-})$	DQ-	α syst	A SYST
$\Delta Q(\alpha)$	DQA	α'	A'
ΔS	DS	α's	ALPHAS
$\Delta S(n)$	DSN	α(K)exp	*EKC
$\Delta S(p)$	DSP	α(K)exp	EKC
ΔΤ	DISPIN	α(K)	KC
$\Delta T_{1/2}$	DT	α(L)exp	ELC
$\Delta T_{1/2}$	DT1/2	$\alpha(L)$	LC
Δ	DELTA	$\alpha(L12)exp$	EL12C
Δα	DCC	α(L12)	L12C
Δδ	DMR	$\alpha(L1)$ exp	EL1C
$\Delta \pi$	DPI	α(L1)	L1C

В тексте	ENSDF	В тексте	ENSDF
α (L2)	L2C	α ₃	ALPHA3
α (L23)exp	EL23C	αα	AA
α (L23)	L23C	αγ	AG
α (L2)exp	EL2C	β	BETA
α (L3)exp	EL3C	β	В
α (L3)	L3C	β's	BETAS
a (M)exp	EMC	β (GT)	BGT
α (M)	MC	β (IS	B(IS
α (M+)	MC+	β-vibrational	B-VIBRATIONAL
α (M1)	M1C	βR	B*R
α (M1)exp	EM1C	βR	BETA*R
α (M2)	M2C	βc	BC
α (M2)exp	EM2C	βce	BCE
α (M3)	M3C	βe ⁻	BE-
a (M3)exp	EM3C	βn	BN
α (M4)	M4C	βp	BP
a (M4)exp	EM4C	β^+	B+
a (M5)	M5C	$\beta^+\epsilon$	BEC DECAY
a (M5)exp	EM5C	$\beta^{-}2n$	B-2N
α (N)exp	ENC	β-	B
α (N)	NC	β ⁻ n	B-N
α (N+)	NC+	β_0	B0
α (N1)exp	EN1C	β_{04}	B04
α (N1)	N1C	β_{03}	B03
α (N2)exp	EN2C	β_{02}	B02
α (N2)	N2C	β_{00}	B00
a (N23)exp	EN23C	β_{12}	B12
α (N3)	N3C	β_1	B1
α (N3)exp	EN3C	β_{20}	B20
α (N4)exp	EN4C	β_{24}	B24
α (N4)	N4C	β_{22}	B22
α (N5)	N5C	$\beta_2 R$	B2*R
α (N6)	N6C	β_2	B2
α(O1)	01C	β ₃	B3
α (O2)	O2C	$\beta_3 R$	B3*R
α (O3)	O3C	β_{30}	B30
α (O4)	O4C	β_4	B4
α (P1)	P1C	β_{42}	B42
α (exp)	ECC	$\beta_4 R$	B4*R
α -decay	A-DECAY	β ₅	B5
α-syst	A-SYST	$\beta_5 R$	B5*R
α ₀	ALPHA0	β_{6}	B6
α_1	ALPHA1	$\beta_6 R$	B6*R
α_2	ALPHA2	β ₇	B7

В тексте	ENSDF	В тексте	ENSDF
β_L	BL	γγτ	GGT
$\beta_L RA^{1/3}$	BL*R*A**(1/3)	γγγ	GGG
β_{L}^{2}	BL**2	χ	CHI
$\beta_L R$	BL*R	χ^2	CHI**2
βα	BA	εM(exp)	ECM
ββ	BB	εN(exp)	ECN
βγ	BG	κ	KAPPA
βγn	BGN	λ	LAMBDA
βγγ	BGG	μ	MOMM1
δ	MR	μ	MU
δ^2	MR**2	μb	UB
3	EPSILON	u b/sr	UB/SR
3	EC	μ b×MeV	UB*MEV
ε2p	EC2P	μg	UG
εB	EPSILONB	u g/cm	UG/CM
εB(E2)↑	EBE2UP	us	US
εB(E3)↑	EBE3UP	u ⁻	MU-
εК	СК	v	NU
εK(exp)	ECK	π	PI
εL	CL	π^-	PI-
εL(exp)	ECL	πβ	PIB
εL1(exp)	ECL1	π βγ	PIBG
εL2(exp)	ECL2	πγ	PIG
εL3(exp)	ECL3	θ	THETA
εM	СМ	θ^2	THETA**2
εN	CN	θ_1	THETA1
εр	ECP	θ_2	THETA2
εα	ECA	$\theta_{\rm pl}^2$	THETAP1**2
γ	GAMMA	θ_{p2}^{2}	THETAP2**2
γ	G	θα	THETAA
γ /α	G/A	$\theta \alpha^2$	THETAA**2
γX	GX	θγ	THETAG
ү се	GCE	ρ	RHO
γ e ⁻	GE-	ρ^2	RHO**2
γ n	GN	σ	SIGMA
γр	GP	$\sigma(n \gamma)$	SIGNG
γ p'	GP'	σ (n α)	SIGNA
$\gamma p(t)$	GP(T)	σ_0	SIGMA(0)
γ^{\pm}	G+-	σ_n	SIGMAN
γ_0	G0	σγ	SIGMAG
γβ	GB	$\sigma \times \Delta E$	SIGMA*DE
$\gamma\beta^-$	GB-	σν	SIGMANU
γγ	GG	τ	*TAU
γγn	GGN	τ	TAU
		ω	OMEGA
		$\omega^2 \tau$	OMEGA**2*TAU
		ωτ	OMEGA*TAU

Приложение H Политика ENSDF

Общая политика - представление данных

Nuclear Data Sheets готовятся из Evaluated Nuclear Structure Data File (ENSDF) – компьютерного файла, поддерживаемого National Nuclear Data Center в интересах International Network for Nuclear Structure and Decay Data Evaluations. Представление материала в *Nuclear Data Sheets* отражает организацию ENSDF, который является коллекцией "наборов данных". Для каждого ядра эти наборы данных предоставляют следующую информацию:

- 1. Принятые свойства ядра
- Оцененные результаты одиночных типов экспериментов, таких как радиоактивный распад, отдельная ядерная реакция, или комбинированные результаты ряда однотипных экспериментов, таких как реакции (HI,xny), например. Данные, представленные в ENSDF, выводятся, в основном, из экспериментальной информации.

Далее обсуждаются общая политика и соглашения, используемые для подготовки этих наборов данных и представления материалов в *Nuclear Data Sheets* (NDS).

Общие положения

Следующие соглашения применяются к оценке или представлению данных. Отступления от этих соглашений должны быть указаны оценщиком в явном виде.

- 1. Энергии возбуждения уровней, связанных электромагнитными переходами, получают оценкой по методу наименьших квадратов из принятых энергий переходов.
- 2. Господствующая ветвь распада (например, при распаде основных состояний и изомерных состояний) округляется до 100 в случае, когда конкурирующие ветви в сумме составляют меньше чем 0,001%. В том случае, когда наблюдалась только одна ветвь распада и не могут быть приведены оценки для ожидаемых конкурирующих ветвей, основная ветвь кодируется как ≤100, а конкурирующие ветви как "%branching=?".
- 3. Полные коэффициенты внутренней конверсии (α) каждого перехода являются теоретическими значениями соответствующих указанным мультипольностям и коэффициентам смеси (δ). В случае сложных переходов, то есть с двумя и более мультипольностями и неизвестным коэффициентом смеси, δ является средним значением возможных крайних значений, а значение погрешности перекрывает весь диапазон значений. Во всех вычислениях, использующих коэффициенты внутренней конверсии, оценщик должен полагать погрешность в 3% для теоретических значений коэффициентов.
- 4. Флаги перекрестных ссылок (XREF), определенные в ADOPTED LEVELS, приводятся для каждого оцененного уровня. В том случае, когда уровню в наборе индивидуальной реакции или распада может соответствовать более одного уровня в наборе ADOPTED LEVELS, то флаг для этого набора приводится в нижнем регистре. В случае неоднозначности энергия из частного набора данных приводится как комментарий.

Наборы данных ADOPTED LEVELS, GAMMAS

Таблицы Adopted Levels и γ-излучения в NDS генерируются из наборов ADOPTED LEVELS, GAMMAS ENSDF. Этот набор данных представляет наилучшие значения для свойств уровней и переходов, определенные оценщиком на основе всей доступной информации.

В наборы ADOPTED LEVELS, GAMMAS включается следующая информация.

Для нуклида:

- 1. **Q**(β⁻): энергия β⁻-распада (всегда представленная как Q(β⁻)=M(A,Z)-M(A,Z+1)) и энергия α-распада (**Q**(α)) для основного состояния.
- 2. S(n) и S(p): энергии отделения нейтрона и протона.
- 3. **XREF:** символы перекрестных ссылок, назначенные различным наборам экспериментальных данных.

Для каждого уровня:

- 1. E(lev): энергия возбуждения уровня (относительно основного состояния).
- 2. **Ј^π:** спин и четность с аргументацией по их назначению.
- 3. Т_{1/2} или Г: период полураспада или полная ширина уровня в системе центра масс.
- 4. Коэффициент ветвления основного состояния и изомеров (изомер определяется как ядерный уровень с периодом полураспада ≥0,1 с или для которого в ENSDF есть отдельный набор распада).
- 5. Q, µ: статические электрический и магнитные моменты.
- 6. **Флаги XREF** для указания наборов реакций и/или распадов, в которых наблюдается данный уровень.
- 7. Конфигурация (например, Нильссоновские орбитали в деформированных ядрах, параметры оболочечной модели в сферических ядрах).
- 8. Назначение полосы и возможные параметры полосы (например, ротационные полосы в областях деформации).
- 9. Изомер- и изотоп-сдвиг (обычно приводится только ссылка на литературу).
- 10. Распределение заряда основного состояния (обычно приводится только ссылка на литературу).
- 11. Параметры деформации.
- 12. **B(E2)↑**, **B(M1)↑**, ...: электрические или магнитные вероятности возбуждения (данного уровня), когда неизвестны период полураспада уровня или распад основного состояния.

Для ү-излучения и Е0-переходов:

- 1. Размещение в схеме уровней.
- 2. Еу: измеренная энергия у-излучения или ЕО-перехода.
- 3. Іу: относительная интенсивность фотонов для каждого уровня.
- 4. **Мультипольность**, δ: характер электрической или магнитной мультипольности, коэффициент смеси и параметр проникновения конверсионных электронов.
- 5. СС: полный коэффициент внутренней конверсии (когда величина значима).
- 6. **B(EL)(W.u.), B(M1)(W.u.), ...** : приведенные вероятности переходов в единицах Вайскопфа.

Наборы данных для реакций и распадов

В эти наборы данных включается информация о различных типах экспериментов и может включать в себя наборы данных о β -распаде, α -распаде, изомерном переходе (IT), кулоновском возбуждении, реакциях на заряженных частицах (таких как (d,p) и (t,p)), реакциях на тяжелых ионах (таких как (⁴⁰Ar,xn γ)), (γ , γ), мезоатомах.

Следующие правила применяются для представления данных в наборах данных реакций и распадов. Отступления от этих соглашений должны быть указаны оценщиком в явном виде.

- Значения J^π в наборах данных о распадах и реакциях с гамма-лучами берутся из соответствующего набора Adopted Levels, Gammas. Для других наборов реакций значения J^π берутся из данных по реакции. Значение J^π для захватного состояния в захвате тепловых нейтронов назначается в предположении захвата s-волны.
- 2. Характеристики γ-излучения (электромагнитного перехода) и его коэффициентов смеси берутся из соответствующей таблицы оцененного γ-излучения.
- Термин "абсолютная интенсивность" означает то же, что и термин "вероятность испускания", а термин "относительная интенсивность" эквивалентен терминам "относительная вероятность испускания" или "скорость относительного испускания". Абсолютные интенсивности приводятся на 100 распадов.
- 4. Интенсивности бета-распада и захвата электрона приводятся на 100 распадов родительского ядра и обычно выводятся из несоответствия распада уровней электромагнитными переходами и заселяемости уровней. Разделение $I(\varepsilon+\beta^+)$ на $I(\varepsilon)$ и $I(\beta^+)$ основывается на теоретическом значении отношения ε/β^+ . Значения $\log ft$ для неуникальных переходов вычисляются как для разрешенных переходов.
- 5. Интенсивности испускания частиц (отличных от бета-частиц) приводятся на 100 распадов с испусканием частиц. Коэффициенты ветвления перехода с испусканием частицы приводятся как на рисунках, так и в таблицах.
- 6. Табличные интенсивности гамма-излучения являются относительными. Нормировочный коэффициент для перевода их в абсолютные интенсивности (фотонов на 100 распадов родительского ядра для наборов распадов или фотонов на 100 захватов нейтронов для наборов (n,γ), и т.д.) дается в примечании.
- Излучения из распадов нейтронных и протонных резонансов не приводятся. Включаются энергии и другие свойства уровней для граничных уровней, выведенных из резонансных экспериментов. Обычно включаются как первичные, так и вторичные гаммакванты из реакции захвата тепловых нейтронов.
- 8. Обычно приводятся значения ВЕλ, ВМλ возбуждения уровней.
- 9. В заголовке набора данных приводится до трех ссылок, в которых содержится основной вклад в информацию в данном наборе. Эти главные ссылки также приводятся в рисунках.

Организация материала

Внутри каждой массовой цепочки А информация представлена по отдельным нуклидам, которые располагаются в порядке возрастания Z. Приводится содержание каждой оценки, за которым следует диаграмма изобаров. Далее дается таблица свойств основных и изомерных состояний всех нуклидов массовой цепочки А.

Для каждого нуклида ^AZ установлен следующий порядок представления материала и включения в таблицы:

- 1. Оцененные уровни в ^AZ все свойства оцененных уровней показываются для каждого уровня, вместе с поясняющими комментариями.
- 2. Оцененные электромагнитные переходы в ^AZ.
- 3. Если известна, то показывается структура полос.
- 4. Уровни и излучение в ^AZ из радиоактивных распадов распады упорядочиваются в порядке увеличения A, Z и энергии возбуждения родительского ядра.
 - а. Таблица уровней, выведенных из распада.
 - b. Таблицы излучений, наблюденных в распаде.
 - с. Схема распада.
- 5. Уровни и электромагнитные переходы в ^AZ из ядерных реакций реакции упорядочиваются в порядке увеличения A, Z мишени, затем в порядке увеличения A, Z налетающих ядер. Заголовок дается для каждой реакции.
 - а. Таблица уровней, выведенных из реакции.
 - b. Таблицы электромагнитных переходов, наблюденных в реакции (если есть).
 - с. Схема распада (если наблюдалось гамма-излучение и оно размещено в схеме).

Общая политика – "теория"

Ссылка "Теория 1967Ху01" означает теоретические предсказания, вычисленные авторами работы 1967Ху01. Ссылка "Теория" указывает на определение оценщиком теоретических предсказаний, описанных ниже.

Коэффициенты внутренней конверсии

Теоретические значения коэффициентов конверсии получены сплайнинтерполяцией таблиц Hager and Seltzer (1968На53) для К-, L_{1..3}-, M_{1..5}-оболочек и Dragoun, Plajner and Schmutzler (1971Dr11) для (N+O+...)-оболочек. Для N_{1..5}-подоболочек значения получены графической интерполяцией из таблиц Dragoun, Pauli and Schmutzler (1969Dr09). Для К-, L_{1..3}-оболочек вне диапазонов E_γ, Λ или Z для таблиц Hager and Seltzer КВК получены следующим образом: для E_γ \leq 6000 кэВ для Z=3,6,10 и в диапазоне 14 \leq Z \leq 30 – интерполяцией таблиц Band *et al.* (1976Ва63); для E_γ > 2600 кэВ – графической интерполяцией таблиц Trusov (1972Tr09). Для E0-переходов отношения K/L₁ и L₁/L₂ получены графической интерполяцией из таблиц Hager and Seltzer (1969На61).

Коэффициенты угловых распределений и корреляций

Коэффициенты, требуемые для анализа корреляций направлений, поляризационных корреляций, распределений направлений и распределений поляризации, берутся согласно Steffen (1971St47, 1971St48). В частности, принимаются фазовые соглашения для коэффициентов смеси δ, определенные Krane and Steffen (1970Kr03). Параметры частиц, требуемые для анализа корреляций и распределений, включая конверсионные электроны, берутся из графической интерполяции таблиц Hager and Seltzer (1968Ha54). Выражения для коэффициентов деориентации, требуемые для учета промежуточных ненаблюдаемых смешанных излучений, берутся согласно Anicin (1972An20) (как отмечено этими авторами, в большинстве ранних ссылок, посвященных этому коэффициенту, он определяется некорректно).

Табулированные коэффициенты корреляции направлений гамма-гамма даются в Taylor *et al.* (1971Та32). Эти авторы используют Стеффеновские фазовые соглашения.

Параметры проникновения

Параметры проникновения, требуемые для анализа данных по внутренней конверсии и угловых корреляций или распределений, включая электроны, берутся из графической интерполяции по таблицам из Hager and Seltzer (1969Ha61).

Коэффициенты внутренней парной конверсии

Теоретические значения коэффициентов внутренней парной конверсии для Λ=E1, М1, Е2 берутся из графической интерполяции по таблицам Lombard *et al.* (1968Lo16).

Вероятности β-распада

Значения $\log ft$, отношений вероятностей электронного захвата к испусканию позитрона и отношений вероятностей электронных захватов для разрешенных, уникальнозапрещенных первого порядка и уникально-запрещенных второго порядка переходов берутся согласно Gove and Martin (1971Go40). Эта работа содержит также протабулированные значения $\log ft$ и отношения полных вероятностей электронного захвата к испусканию позитрона для разрешенных и уникально-запрещенных первого порядка переходов.

Атомные процессы

Выходы флюоресценции рентгеновских лучей для элементов до урана включительно взяты из Bambynek *et al.* (1972Bb16), и для элементов, более тяжелых, взяты из Ahmad (1979Ah01).

Энергии связи электронов для элементов до висмута включительно взяты из Bearden and Burr (1967Be73); для более тяжелых – из Porter and Freedman (1978Po08).

Коэффициенты замедления α-распада

Коэффициенты замедления α -распада (отношение измеренного периода полураспада для α -распада к его теоретическому значению) получаются из спин-независимых уравнений Preston (1947Pr17). Ядерный радиус для каждого четно-четного ядра вычисляется, по определению, для переходов из основного состояния в основное состояние и HF=1. Для нечетных A и нечетно-нечетных ядер радиус предполагается как среднее радиусов соседних четно-четных ядер (1992Ak04). В тех нескольких случаях, когда известен только один радиус соседнего четно-четного ядра, в вычислениях используется экстраполированное/интерполированное значение для неизвестного радиуса. В 1972El21 дан обзор зависимостей коэффициентов замедления α -распада от асимптотичных квантовых чисел и коэффициентов замедления α -распада в ротационных полосах для A≥229.

Вероятности электромагнитных переходов

Вайскопфовские одночастичные оценки времен жизни состояний электрических и магнитных мультиполей от Е_γ согласно (1952В179)

$$T_{1/2W}(EL) = 0.190 \left(\frac{L}{L+1}\right) \left(\frac{3+L}{3}\right)^2 \frac{\left[(2L+1)!!\right]^2}{A^{2L/3}} \left(\frac{164.44}{E_{\gamma}(MeV)}\right)^{2L+1} \times 10^{-21} s\,,$$

 $T_{1/2W}(ML) = 3,255 \times A^{2/3} \times T_{1/2W}(EL)$

для ядерного радиуса 1,2× $A^{1/3}$ ×10⁻¹³ см .

Взвешенные и невзвешенные средние

Если $x_1 \pm \Delta x_1$, $x_2 \pm \Delta x_2$, ... $x_n \pm \Delta x_n$ обозначают п независимых измерений данной величины с их погрешностями, то взвешенное $\overline{x} \pm \Delta \overline{x}$ вычисляется по следующим формулам:

$$\overline{x} = W \sum x_i / (\Delta x_i)^2,$$

$$W = 1 / \sum (\Delta x_i)^{-2},$$

и $\Delta \overline{x}$ есть наибольшее из:

$$(W)^{1/2}$$

 $\left[W\sum_{i} (\Delta x_{i})^{-2} (\bar{x} - x_{i})^{2} / (n-1)\right]^{1/2}.$

Невзвешенное среднее $\overline{x} \pm \Delta \overline{x}$ тех же величин вычисляется по следующим формулам:

.

$$\overline{x} = \sum x_i / n,$$

$$\Delta \overline{x} = \left[\sum \left(\overline{x} - x_i \right)^2 / n(n-1) \right]^{1/2}$$

Краткая сводка по правилам назначения спина и четности

Утверждения, на основе которых базируется сильная аргументация

Основные состояния:

1. Основные состояния четно-четных ядер имеют спин/четность 0^+ .

2. Значение спина считается установленным точно, если оно получено при помощи таких методов, как резонанс на атомных пучках, парамагнитный резонанс, спинэлектронный «спин-эхо» резонанс и оптическая спектроскопия.

Электромагнитные переходы:

3. Согласие измеренного значения коэффициента одиночной конверсии с теоретическим значением для мультипольности, которое хорошо отделяется от значения для любой другой мультипольности, определяет мультипольность перехода.

4. Во всех других случаях, если нет других оснований для назначения мультипольности, для установления мультипольностей перехода и коэффициента смеси необходимо согласие двух или более измеренных коэффициентов конверсии или их отношений с теоретическими значениями.

5. Так как Е0-переходы могут идти только путем конверсии или образования пары, то, если наблюдались фотоны, чистые Е0 исключаются.

6. Рекомендуемые верхние пределы на силы гамма-переходов (Γ_γ/Γ_w, где Γ_w – оценка Вайскопфа) для различных значений массовых чисел таковы:

	$\Gamma_{\gamma}/\Gamma_{w}$	(верхний преде	л)		
- Переход [*]	A=6-44 ^{a\$}	A=45-150 ^{b,c}	A>150 ^d		
E1 (IV)	0 , 3 [#]	0,01	0,01		
E2 (IS) ^e	100	300	1000		
E3	100	100	100		
E4	100	1000			
M1 (IV)	10	3	2		
M2 (IV)	3	1	1		
M3 (IV)	10	10	10		
M4	30	10			
 'IV' и 'IS Г_ү/Г_w (верхи Г_γ/Г_w (верхи Г_γ/Г_w (верхи 10 - для из 1979Епо Из 1979Епо Из 1981Епо Выведено й в супердео 	S' означают ний предел) ний предел) Е2 (IV), 0, 05 04 06 4. J. Martyn	изовектор и и =30 для A=90-1 =0,1 для A=21- =0,003 для E1 03 - для M1 (I n из ENSDF ых полосах E2-:	зоскаляр 50 44 (IS), S), 0,1 -	для M2 (IS) могут иметь) F _v /F _u >1000.

Бета-переходы (см. 1973Ra10):

7. Если $\log ft < 5,9$, то переходы являются разрешенными: $\Delta J=0$ или 1, $\Delta \pi=$ по (четность не изменяется). Сверхразрешенные ($\Delta T=0$) переходы 0⁺→0⁺ имеют $\log ft$ в диапазоне 3,48-3,50. Запрещенные по изоспину ($\Delta T=1$) переходы 0⁺→0⁺ имеют $\log ft > 6,4$. Если 3,6 < log ft < 6,4, то переход не 0⁺→0⁺.

8. Если $\log f^{lu} t < 8,5$ ($\log f' t < 7,4$), то $\Delta J=0,1$; $\Delta \pi=$ yes или по.

9. Если $\log ft < 11,0$, то $\Delta J=0,1$; $\Delta \pi=$ yes или по, или $\Delta J=2$; $\Delta \pi=$ yes.

10. Если $\log ft < 12,8$, то $\Delta J=0,1,2$; $\Delta \pi=$ yes или по.

11. Если $\log f^{1u} t \ge 8,5$ ($\log f' t \ge 7,4$) и если график Ферми имеет изгиб, соответствующий формфактору (p^2+q^2), то переход является уникальным запрещенным первого порядка ($\Delta J=2, \Delta \pi=yes$).

Смотрите раздел "Вероятность бета-распада", стр. 95.

Отметим, что $log f^{lu}t = log f't + 1,079$.

Замечание: для нуклидов с заполненной оболочкой или очень близких к заполненным оболочкам, значения могут быть меньше. Например, в районе около Z=82, верхний предел 5,9, приведенный в пункте 7, будет приблизительно 5,1.

үү-корреляция направлений:

$$W(\theta) = \sum_{k-\text{even}} A_k P_k(\cos \theta).$$

12. Если экспериментальные значения коэффициентов $\gamma\gamma$ -корреляции направлений составляют $A_2 \approx +0,36$ и $A_4 \approx +1,1$, то соответствующая последовательность спинов есть $0\rightarrow 2\rightarrow 0$.

13. Результаты $\gamma\gamma(\theta)$ являются сильным основанием для исключения последовательностей спинов, для которых теоретические значения A_2 или A_4 лежат достаточно далеко вне экспериментального диапазона.

βγ-корреляция направлений:

$$W(\theta) = \sum_{k-\text{even}} A_k(\beta) A_k(\gamma) P_k(\cos \theta).$$

14. Если $|A_2(\beta)| \ge 0, 1, (A_4=0)$, то переход не разрешенный. Обратное неверно.

15. Если $A_4(\beta) \neq 0$, то переход не является ни разрешенным, ни первым запрещенным.

16. Если А₄(β)=0, то переход разрешенный или первый запрещенный.

βγ-поляризационная корреляция:

$$P(\theta) = \frac{\sum_{k = \text{odd}} A_k(\beta) A_k(\gamma) P_k(\cos \theta)}{W(\theta)}$$

17. Для разрешенных переходов

- $\beta^{-} A_{1}(\beta) < 0$, если $J_{i} = J_{f}$,
- $\beta^+ A_1(\beta) > 0$, если $J_i = J_f$,
- $\beta^{-} A_{1}(\beta) \ge 0$, если $J_{i}=J_{f}+1$, $A_{1}(\beta) < 0$, если $J_{i}=J_{f}-1$,
- $\beta^+ A_1(\beta) \leq 0$, если $J_i = J_f + 1$, $A_1(\beta) > 0$, если $J_i = J_f - 1$.

18. Если $A_3(\beta) \neq 0$, то β-переход не разрешенный. Обратное верно не всегда.

Угловое распределение ү:

19. В угловом распределении гамма-излучения из разрядки состояний, заселенных в реакциях с большим спином (с типичным значением $\sigma/J=0,3$, где σ – параметр заселения магнитного подсостояния):

а. Если $A_2 \approx +0,3$ и $A_4 \approx -0,1$ то, в общем, переход имеет $\Delta J=2$ (квадрупольный). (Такие же значения A_2 и A_4 возможны и для переходов с $\Delta J=0$, D+Q, но такие переходы встречаются существенно реже. $A_4=0$ для $\Delta J=0$ определяет дипольный переход.)

b. Если $A_2 \approx -0.2$ и $A_4 \approx 0$, то переход, в общем, имеет $\Delta J=1$ (дипольный).

с. Если $A_4>0$ и A_2 приблизительно от +0,5 до -0,8, то переход имеет $\Delta J=1, D+Q.$

у DCO отношение:

В угловом распределении (DCO) гамма-излучения из разрядки состояний, заселенных в реакциях с большим спином (с типичным значением $\sigma/J=0,3$, где σ – параметр заселения магнитного подсостояния):

20. Для $\Delta J=2$; выстроенный квадрупольный как опорный переход:

а. R(DCO) \approx 1,0, то, в общем, переход имеет $\Delta J=2$ (выстроенный квадрупольный). (Такое же значение возможно и для $\Delta J=0$, дипольного, но такие переходы встречаются существенно реже.)

b. Если R(DCO)≈ 0,5 то, в общем, переход имеет ΔJ=1 (выстроенный дипольный).

с. Если R(DCO) значимо отличается и от $\approx 0,5$ и от $\approx 1,0$, то переход имеет $\Delta J=1$ (или 0), D+Q.

21. Для $\Delta J=1$; выстроенный дипольный как опорный переход:

а. Если R(DCO) \approx 2,0 то, в общем, переход имеет $\Delta J=2$ (выстроенный квадрупольный). (Такое же значение возможно и для $\Delta J=0$, дипольных, но такие переходы встречаются существенно реже.)

b. Если R(DCO)≈1,0 то, в общем, переход имеет ΔJ=1 (выстроенный дипольный).

с. Если R(DCO) значимо отличается и от $\approx 2,0$ и от $\approx 1,0$, то переход имеет $\Delta J=1$ (или 0), D+Q.

Реакции:

22. Кулоновское возбуждение при низких энергиях в основном приводит к Е2возбуждению.

23. Кулоновское возбуждение определяет J^{π} , если вероятность возбуждения находится в согласии с вычисленными значениями в работе Alder (1960Al23).

24. Спин компаунд-состояния, полученного захватом теплового нейтрона, равен спину исходного ядра плюс или минус 1/2.

25. Первичное гамма-излучение из реакции захвата нейтрона может быть E1, M1, E2 или M1+E2.

26. Если угловое распределение в реакции однонуклонной передачи может быть описано одним значением L, то спин конечного состояния J_f может быть выражен через спин исходного состояния J_i (векторно):

 $\vec{J}_{f} = \vec{J}_{i} + \vec{L} + \vec{S}$

с изменением четности, если значение L нечетно.

27. Если из векторного анализа однонуклонной реакции передачи следует явное преобладание либо J=L+1/2, либо J=L-1/2 и, если L известно, то считается, что значение J установлено.

28. В общем случае для состояний, заселяемых в реакциях с большим значением спина, спины увеличиваются с увеличением энергии возбуждения. Это является результатом того факта, что эти реакции имеют тенденцию к заселению ираст-состояний или близких к ним.

29. Если угловое распределение может быть описано единственным значением L, то J^{π} конечного состояния связано с J^{π} исходного состояния, $\vec{J}_{f} = \vec{J}_{i} + \vec{L}$, $\pi_{f}\pi_{i} = (-1)^{L}$, в следующих случаях:

а. Сильная группа наблюдается в реакциях (p,t), (t,p) и (³He,n) (подразумевается, что сильные группы являются результатом передачи двух идентичных нуклонов в относительном s-состоянии).

b. Сильная группа наблюдается в реакции с α-частицей (⁶Li,d).

с. Неупругое рассеяние (e,e') и (α , α ').

30. В реакциях с $J^{\pi}=0^+$ мишени, налетающей и улетающей частицы, если выход группы при 0° и 180°:

а. ненулевой, то четность конечного состояния $(-1)^{J_{f}}$,

b. нулевой при нескольких некоррелированных значениях энергии, то четность конечного состояния $(-1)^{J_f+1}$.

31. В реакциях с поляризованными частицами при $J^{\pi}=1$ в подсостоянии налетающих частиц с m=0, при $J^{\pi}=0^+$ вылетающих частиц и мишени, если выход группы при 0° и 180°:

а. ненулевой, то четность конечного состояния $(-1)^{J_f+1}$;

b. нулевой при нескольких некоррелированных значениях энергии, то четность конечного состояния $(-1)^{J_{\rm f}}$.

Области сильной ядерной деформации:

Систематическое проявление структуры ротационных полос в сильнодеформированных ядрах может оказать значительную помощь в приписывании J^{π} , так как можно также привлечь энергию уровня как один из аргументов. Зачастую это позволяет с уверенностью произвести назначение J^{π} уровню из данных, для которых, при отсутствии такой структуры, нельзя было бы вывести однозначное приписывание.

32. Соображения, основанные на энергиях уровней. Если группирование состояний не является слишком сильным, то энергии наиболее низколежащих членов полосы могут быть выражены относительно простым соотношением (см. 1971Bu16 и ссылки в ней):

$$E(J,K) = AX + BX^{2} + CX^{3} + \dots + (-1)^{J+K} \prod_{i=1-K}^{K} (J+i) \{A_{2K} + B_{2K}X + \dots\}$$
(1)

где
$$X=J(J+1)-K^2$$
.

Инерциальный параметр, А, проявляет систематическое поведение в различных областях сильнодеформированных ядер, что может быть полезно для приписания уровней ротационным полосам. В некоторых примерах (*например*, сильное Кориолисово связывание), когда значения А могут сильно отклоняться от систематического поведения, такие наблюдения могут быть полезны сами по себе, так как могут позволить установить наличие таких эффектов и, следовательно, помочь найти основания для приписания ядерной конфигурации.

В случае полос с K=1/2 *параметр развязывания*, который характерен для каждой такой полосы, дается отношением A₁/A в формуле (1). Установление значения параметра развязывания предполагаемой полосы может оказаться полезным при назначении ей ядерной конфигурации, *и наоборот*.

33. Разрешенные незаторможенные бета-переходы. В этой области бетапереходы, имеющие значения $\log ft < 5,0$, классифицируются как "разрешенные незаторможенные" (*au*). Такие переходы происходят между одночастичными орбиталями, имеющими одни и те же асимптотические квантовые числа. В области "редких земель" (90 \le N \le 112, 60 \le Z \le 76), известно 4 таких орбитальных пары: [532], недалеко от начала этой области; [523], недалеко от середины этой области; [514], выше середины этой области; и [505] – в конце этой области. Наблюдение *аи*-перехода является определенным указанием на присутствие отдельной пары орбиталей.

34. Кулоновское возбуждение. Если обнаружена последовательность уровней "ротационно-подобного" характера по энергиям, возбуждаемая с повышенной вероятностью, то это является основанием того, что эта последовательность (по крайней мере, несколько наинизших, до первого «бэкбендинга») образует ротационную полосу на базе основного состояния. Если вероятности Е2-переходов являются большими (десятки единиц Вайскопфа или более) и сравнимыми друг с другом, то имеется основание рассматривать их как имеющих структуру полосы и приписать последовательные значения J^{π} , если спин хотя бы одного уровня известен.

35. Альфа-распад. Наблюдение "благоприятного" (не замедленного – ред.) альфаперехода (HF<4) указывает на то, что оба вовлеченных состояния имеют одинаковую ядерную конфигурацию. Если последовательность уровней, связанных с заселяемым уровнем этим "благоприятным" переходом, имеет "ротационно-подобный" характер и эти уровни имеют значения HF, которые изменяются в соответствии с установленной тенденцией ротационных полос (1972El21), то эта последовательность может рассматриваться как образующая ротационную полосу, и ее ядерная конфигурация та же, что и в распадающемся состоянии. Если значение J^{π} последнего состояния и его конфигурация известны, то можно считать, что соответствующие величины известны для полосы в дочернем ядре, *и наоборот*.

36. Реакции однонуклонной передачи (инициированные легкими ядрами). Для реакций однонуклонной передачи, инициированных легкими ядрами (⁴He и более легкими), характерное поведение сечения взаимодействия среди членов ротационной полосы ("отпечаток") может использоваться для назначения набора уровней ротационной полосе основанной на данной Нильссоновской конфигурации с соответствующими J^π, при условии, что "отпечаток" хорошо согласуется с предсказанными волновыми функциями Нильссоновской модели и заметно отличается от ожидаемых других конфигураций в данном массовом диапазоне. (Этот метод даже более строг, если угловые распределения, дающие уникальные значения L или векторную анализирующую способность, поддерживают назначения одному или большему числу уровней.)

Высокоспиновые состояния

При распаде высокоспиновых состояний, обычно появляющихся при реакциях на тяжелых ионах или при образовании высоковозбужденных состояний в реакциях деления или кулоновского возбуждения, мультипольности разряжающих состояний гамма-квантов и относительные спины и четности уровней обычно определяются из угловых распределений, угловых корреляций (отношений DCO), линейных поляризаций и коэффициентов внутренней конверсии. Вдобавок, относительное расположение энергий уровней и увеличение гамма-интенсивностей с уменьшением энергии возбуждения, является важной информацией.

37. Для сильнодеформированных ядер, когда наблюдается регулярная последовательность переходов с $\Delta J=2$ (выстроенные квадрупольные) при больших спинах как каскад, то такой последовательности может быть приписана общая полоса с мультипольностью E2 для всех переходов в каскаде. Подобная, но более слабая аргументация приложима для менее деформированных ядер, где общая последовательность уровней также связана выстроенными переходами с $\Delta J=2$ в каскаде.

38. Для ядер, близких к сферическим, где наблюдаются переходы с регулярной последовательностью $\Delta J=1$ (выстроенные дипольные) при высоких спинах как каскад, то такая последовательность может быть приписана общей полосе с мультипольностью (M1) для всех переходов в каскаде. (Каскады с $\Delta J=1$ и переходами Е1 могут наблюдаться в редких случаях – в ядрах, которые демонстрируют полосы с переменной четностью или зеркальную симметрию.)

39. В случае отсутствия данных по угловым распределениям/корреляциям регулярная последовательность переходов в каскаде может быть приписана общей структуре или полосе, если:

a) низколежащие уровни этой структуры имеют хорошо установленные значения спина и четности и

б) существуют серьезные основания считать, что при больших значениях энергий и спинов полоса не меняет внутреннюю структуру по причине пересечения полос или других возмущений.

Альфа-распад

40. Фактор замедления для альфа-переходов из основного состояния четно-четных ядер в основное состояние дочерних ядер по определению равен 1. Для ядер с нечетным А или нечетно-нечетных ядер величина фактора замедления ≤4 обозначает "благоприятные" альфа-переходы, и они связывают состояния, имеющие те же спин, четность и ядерную конфигурацию.

41. Для альфа-распада между двумя состояниями, одно из которых имеет J=0, изменение четности дается выражением $\Delta \pi = (-1)^{\Delta J}$.

Протонная радиоактивность

42. Спин и четность уровня, проявляющего протонную радиоактивность и принадлежащего к околосферическому Z-четному, N-нечетному ядру, могут быть приняты равными величинам J^{π} излучаемого протона если:

а) переход идет на основное состояние дочернего ядра;

б) значения J^π протона физически приемлемы, то есть поддерживаются систематикой или вычислениями по оболочечной модели;

в) вычисленное значение времени жизни относительно протонного распада для этих значений J^{π} меньше, чем полученное в эксперименте и

г) вычисленное значение времени жизни относительно протонного распада для других физически возможных значений J^{π} много больше или много меньше, чем полученное в эксперименте.

Утверждения, на которых базируется слабая аргументация

1. В случаях, когда гамма-переходы одной мультипольности собираются в «кластер» в одном временном районе на графике зависимости времен жизни уровней от энергии, как это справедливо для М4, другим переходам, чьи времена жизни попадают в этот же район, можно приписать соответствующую мультипольность.

2. В тех случаях, когда «кластер» для двух мультипольностей, как, например, для M1 и E2, занимает один район времен, то новым переходам, для которых соответствующие времена жизни попадают в этот район, можно приписать любую из этих мультипольностей или их смесь.

3. Всякий раз, когда ∆J≥2, ощутимая часть гамма-переходов происходит посредством наименьшей возможной мультипольности.

Это утверждение основано на недостатке контрпримеров и наблюдении, что немногочисленные E2 гамма-переходы так же медленны, как M3, немногочисленные M2 гамма-переходы так же медленны, как E3, *и так далее*.

4. Спин и четность родительского состояния может быть выведен из измеренных свойств их предполагаемого изобарно-аналогового резонанса, и *наоборот*.

5. Низколежащие состояния ядер с нечетным А имеют спины и четности, следующие из оболочечной модели, за исключением областей деформированных ядер. Это утверждение является более строгим, если оно поддержано значениями силовой функции (C²S) в реакциях однонуклонной передачи.

Здесь признается, что некоторые выводы оболочечной модели более сильны, чем другие. Например, оболочечная модель достаточно мягко отрицает, что J^{π} основного состояния 39-го протона будет $3/2^-$, но достаточно серьезно отрицает, что это состояние будет $3/2^+$. Однако мы не включаем сюда это различие и рассматриваем всю аргументацию оболочечной модели как слабую.

6а. Для низколежащих состояний нечетно-нечетных сферических ядер правила Нордхейма (1950No10):

 $J = j_p + j_n$, если $j_p = l_p \pm 1/2$ и $j_n = l_n \pm 1/2$;

 $J = |j_p - j_n|$, если $j_p = l_p \pm 1/2$ и $j_n = l_n \mp 1/2$.

могут быть полезны для назначения спинов и четностей основных состояний, при условии, что они подтверждаются какими-либо еще основаниями.

6б. Для возбужденных состояний сильнодеформированных нечетно-нечетных ядер могут быть полезны правила Галлахера-Мошковского (1958Ga27), показывающие относительное положение двух двухквазичастичных состояний, образуемых двумя различными состояниями спаривания квазичастичных составляющих, при условии, что выводы из правил подтверждаются еще какими-либо основаниями. Так, для состояния, которое соответствует параллельному выстраиванию (Σ =1) проекций (=1/2) внутренних спинов двух нечетных частиц, можно ожидать, что оно будет лежать ниже, чем при антипараллельном (Σ =0) выстраивании. В частности, это может быть полезно при установлении значений J^{π} основных состояний и ядерных конфигураций нечетно-нечетных ядер.

(В сильнодеформированных четно-четных ядрах можно ожидать обратную картину, то есть при Σ =0 в результате спаривания состояние будет лежать ниже, чем при Σ =1. В этих ядрах, однако, экспериментальная ситуация менее прозрачна, так как двухквазичастичные возбуждения зачастую лежат выше или около щели, где плотность уровней высока и спаривание вибрационных возбуждений может воздействовать различно на два двухквазичастичные состояния.)

7. Утверждения, подобные пунктам 5 и 6, основанные на других моделях.

8. Утверждения, основанные на интерполяции или экстраполяции тенденций, подмеченных в каких-либо районах ядер, таких как показано в 1971Bu16, 1972El21, 1977Ch27, 1990Ja11 и 1998Ja08 для районов "редких земель" и тяжелых ядер.

9. Все утверждения, связанные с ненаблюдением ожидаемых переходов.

10. Правила, извлеченные из обзора 1972El21 по "неблагоприятным" (замедленным – ред.) альфа-переходам, могут использоваться для вывода конфигурации родительского или дочернего уровня, при условии, что конфигурация другого известна.

11. Для магнитных моментов крайняя редкость чистых одночастичных состояний и наблюдение больших отклонений от g-фактора свободного нуклона в ядрах означает, что сравнение между экспериментом и оценками из «Шмидтовских ограничений» (основанных на таких чистых состояниях) не дает основания для назначения спина и четности. Магнитные моменты или g-факторы, тем не менее, могут дать некоторые основания для назначений, если предсказания для возможных альтернатив, сделанных с использованием g-факторов, основанных на локальных систематиках измеренных моментов, сильно отличаются.

Для возбужденных состояний коллективные аспекты состояния часто дают существенный вклад в магнитный момент. Поправка g-фактора на этот вклад – дело детальной теории, и любые назначения, основанные на подразумеваемом g(коллективное)=Z/A должны рассматриваться с осторожностью.

Соглашения, используемые в Nuclear Data Sheets

Единицы измерения

Энергии	кэВ (keV)
Сечения	барны (barns)
Магнитные дипольные моменты	ядерные магнетоны (μ_{N}))
Электрические квадрупольные моменты	барны (barns)
B(EL)	$e^{2}b^{L}$
B(ML)	$\mu_{\rm N}{}^2 b^{\rm L-1}$

Погрешности ("Ошибки"). Погрешности в любом числе отделяются одним пробелом от самого числа:

4.623 3	означает 4.623±0.003
4.6 h 12	означает 4.6±1.2 h
5.4×10 ³ 2	означает 5400±200
4.2 +8-10	означает $4.2^{+0.8}_{-1}$
-4.2 +8-10	означает $-4.2^{+0.8}_{-1}$

Вопросительный знак, ?, после величины зачастую указывает на сомнительность существования или значения величины. Например, вопросительный знак после значения периода полураспада указывает на то, что назначение периода полураспада данному уровню не является уверенным.

Круглые скобки, (), имеют следующую интерпретацию для различных величин в таблицах:

Величина	Смысл круглых скобок
J^{π}	Ј ^π основано на слабой аргументации. Смотрите "Краткую сводку по правилам назначения спина и четно- сти".
Переданное значение L или мультипольность	Возможно, но не окончательно установлено экспериментально.
Другие	Значение выведено (то есть не прямо измерено) или получено из других источников.

Примеры:

 $J^{\pi} = (1/2, 3/2)^{-}$.

Слабая аргументация ограничивает значение спина в диапазоне от 1/2 до 3/2. Сильная аргументация указывает на отрицательную четность.

 $J^{\pi}=4^{(+)}$.

Сильная аргументация указывает на спин 4; слабая аргументация говорит о положительной четности.

L=(3).

Значение L предварительно установлено как 3.

Mult=(M1).

Мультипольность предварительно установлена как М1.

Mult.=M1(+E2).

Характер излучения включает примесь Е2 с коэффициентом смеси $|\delta|$, который должен быть >0.

Квадратные скобки, []

 $7/2^{-}[514]$ – Нильссоновские асимптотические квантовые числа $K^{\pi}[N n_z \Lambda]$.

Предполагаемые значения, например [М1+Е2].
Библиография

- 1947Pr17 M. A. Preston Phys. Rev. 71, 865 (1947); The Theory of Alpha-Radioactivity.
- 1950No10 L. W. Nordheim Phys. Rev. <u>78</u>, 294 (1950); Beta-Decay and the Nuclear Shell Model.
- 1952B197 J. M. Blatt, V. F. Weisskopf Theoretical Nuclear Physics, John Wiley and Sons, Inc., New York, p. 627 (1952).
- 1958Ga27 C. J. Gallagher and S. A. Moszkowski Phys. Rev. <u>111</u>, 1282 (1958); Coupling of Angular Momenta in Odd-Odd Nuclei.
- 1958Ro60 M. E. Rose Internal Conversion Coefficients, North-Holland Publishing Co., Amsterdam (1958).
- 1960Al23 K. Adler, A. Winther Kgl. Danske Videnskab, Selskab, Mat.-Fys. Medd. <u>32</u>, No. 8 (1960); On the Theory of Multiple Coulomb Excitation with Heavy Ions.
- 1967Be73 J. A. Bearden, A. F. Burr Rev. Mod. Phys. <u>39</u>, 125 (1967); Reevaluation of X-Ray Atomic Energy Levels.
- 1968Ha53 R. S. Hager, E. C. Seltzer Nucl. Data <u>A4</u>, 1 (1968); Internal Conversion Tables. Part I: K-, L-, M-Shell Conversion Coefficients for Z=30 to Z=103.
- 1968Ha54 R. S. Hager, E. C. Seltzer Nucl. Data <u>A4</u>, 397 (1968); Internal Conversion Tables. Part II: Directional and Polarization Particle Parameters for Z=30 to Z=103.
- 1968Lo16 R. J. Lombard, C. F. Perdrisat, J. H. Brunner Nucl. Phys. <u>A110</u>, 41 (1968); Internal Pair Formation and Multipolarity of Nuclear Transitions.
- 1969Dr09 O. Dragoun, H. C. Pauli, F. Schmutzler Nucl. Data Tables <u>A6</u>, 235 (1969); Tables of Internal Conversion Coefficients for N-Subshell Electrons.
- 1969Ha61 R. S. Hager, E. C. Seltzer Nucl. Data Tables <u>A6</u>, 1 (1969); Internal Conversion Tables. Part III: Coefficients for the Analysis of Penetration Effects in Internal Conversion and E0 Internal Conversion.
- 1970Kr03 K. S. Krane, R. M. Steffen Phys. Rev. <u>C2</u>, 724 (1970); Determination of the E2/M1 Multipole Mixing Ratios of the Gamma Transitions in ¹¹⁰Cd.
- 1971Bu16 M. E. Bunker and C. W. Reich Rev. Mod. Phys. <u>43</u>, 348 (1971); A Survey of Non-rotational States of Odd-A Nuclei (150<A<190).
- 1971Dr11 O. Dragoun, Z. Plajner, F. Schmutzler Nucl. Data Tables <u>A9</u>, 119 (1971); Contribution of Outer Atomic Shells to Total Internal Conversion Coefficients.
- 1971Go40 N. B. Gove, M. J. Martin Nucl. Data Tables <u>A10</u>, 205 (1971); Log-*f* Tables for Beta Decay.
- 1971St47 R. M. Steffen Report LA-4565-MS, Los Alamos Scientific Laboratory (1971); Angular Distributions and Correlations of Radiation Emitted from Oriented Nuclei.
- 1971St48 R. M. Steffen Proc. Int. Conf. Angular Correlations in Nuclear Disintegration, Delft, Netherlands (1970), H. van Krugten, B. van Nooijen, Eds., Wolters-Noordhoff Publ., Groningen, p. 1 (1971); Angular Distributions and Correlations of Nuclear Radiations in Nuclear Spectroscopy.
- 1971Ta32 H. W. Taylor, B. Singh, F. S. Prato, R. McPherson Nucl. Data Tables <u>A9</u>, No. 1, 1 (1971); A Tabulation of Gamma-Gamma Directional-Correlation Coefficients.
- 1972An20 I. V. Anicin, R. B. Vukanovic, A. H. Kukoc Nucl. Instrum. Methods <u>103</u>, 395 (1972); The New Feature of 1-3 Directional Correlations with Mixed Unobserved Transitions.

- 1972Bb16 W. Bambynek, B. Crasemann, R. W. Fink, H.-U. Fruend, H. Mark, C. D. Swift, R. E. Price, P. Venugopala Rao – Rev. Mod. Phys. <u>44</u>, 716 (1972); X-Ray Fluorescence Yields, Auger, and Coster-Kronig Transition Probabilities.
- 1972El21 Y. A. Ellis, M. R. Schmorak Nucl. Data Sheets <u>B8</u>, 345 (1972); Survey of Nuclear Structure Systematics for A≥229.
- 1972Tr09 V. F. Trusov Nucl. Data Tables <u>10</u>, 477 (1972); Internal Conversion Coefficients for High-Energy Transitions.
- 1973Ra10 S. Raman, N. B. Gove Phys. Rev. <u>C7</u>, 1995 (1973); Rules for Spin and Parity Assignments Based on log *ft* Values.
- 1976Ba63 I. M. Band, M. B. Trzhaskovskaya, M. A. Listengarten At. Data Nucl. Data Tables <u>18</u>, 433 (1976); Internal Conversion Coefficients for Atomic Numbers Z≤30.
- 1977Ch27 R. R. Chasman, I. Ahmad, A. M. Friedman and J. R. Erskine Rev. Modern Phys. <u>49</u>, 833 (1977); Survey of Single-Particle States in Mass Region A>228.
- 1978Po08 F. T. Porter and M. S. Freedman J. Phys. Chem. Ref. Data <u>7</u>, 1267 (1978); Recommended Atomic Electron Binding Energies, 1s to 6p_{3/2}, for Heavy Elements, Z=84 to 103
- 1979Ah01 I. Ahmad Z. Phys. <u>A290</u>, 1 (1979); Precision Measurement of K-Shell Fluorescence Yields in Actinide Elements.
- 1979En04 P. M. Endt At. Data Nucl. Data Tables <u>23</u>, 547 (1979); Strengths of Gamma-Ray Transitions in A=45-90 Nuclei.
- 1979En05 P. M. Endt At. Data Nucl. Data Tables <u>23</u>, 3 (1979); Strengths of Gamma-Ray Transitions in A=6-44 Nuclei (III).
- 1981En06 P. M. Endt At. Data Nucl. Data Tables <u>26</u>, 47 (1981); Strengths of Gamma-Ray Transitions in A=91-150 Nuclei.
- 1990Ja11 A. K. Jain, R. K. Sheline, P. C. Sood and K. Jain, Rev. Modern Phys. <u>62</u>, 393 (1990); Intrinsic States of Deformed Odd-A Nuclei in Mass Regions (151≤A≤193) and A≥221.
- 1998Ak04 Y. A. Akovali Nucl. Data Sheets <u>84</u>, 1 (1998); Review of Alpha-Decay Data from Double-Even Nuclei.
- 1998Ja07 A. K. Jain, R. K. Sheline, D. M. Headly, P. C. Sood, D. G. Burke, I. Hrivnacova, J. Kvasil, D. Nosek, R. W. Hoff – Rev. Modern Phys. <u>70</u>, 843 (1998); Nuclear Structure in Odd-Odd Nuclei, 144≤A≤194

Символы и аббревиатуры, используемые в Nuclear Data Sheets

А	массовое число*: A=Z+N					
A_2, A_4	коэффициенты полиномов Лежандра в экспериментах по угловым корреляциям и угловым распределениям					
av	среднее					
B(EL), B(ML)	приведенные вероятности переходов EL, ML в единицах $e^2 \times (barn)^L$, $\mu_N^2 \times (barn)^{L-1}$					
calc, CA	вычисленное, вычисление					
CCBA	Борновское приближение связанных каналов					
ce	конверсионный электрон					
chem	химическое разделение					
circ	круговой, циркулярный					
c.m.	центр масс					
coef	коэффициент					
coin	совпадение					
Coul. ex.	Кулоновское возбуждение					
СР	круговая (циркулярная) поляризация					
cryst	кристалл-дифракционный спектрометр					
C^2S, C^2S'	однонуклонная спектроскопическая сила для реакции подхвата, срыва					
d	день					
D	диполь					
DSA	ослабление Допплеровского сдвига					
DWBA	Борновское приближение искаженных волн					
DWIA	импульсное приближение искаженных волн					
E	энергия					
Ε(ε)	энергия электронного захвата (конечная энергетическая точка					
	ү-континуума + энергия отрыва К-электрона дочернего ядра)					
E1, E2, EL	электрический диполь(ный), квадруполь(ный), 2 ^L -поль(ный)					
excit	функция возбуждения					
expt	эксперимент, экспериментальный					
F	деление					
F-K	(график) Ферми-Кюри					
FWHM	энергетическое разрешение: полуширина на полувысоте					
g	гиромагнитное отношение*					
GDR	гигантский дипольный резонанс					
GQR	гигантский квадрупольный резонанс					
g.s.	основное состояние					
h	час					
Н	магнитное поле					
HF	фактор замедления					
hfs	сверхтонкая структура					
HI	тяжелый ион					

Ι	интенсивность						
IAR	изобар-аналоговый резонанс						
IAS	изобар-аналоговое состояние						
IBS	спектр внутреннего торможения						
IMPAC	техника ион-имплантированных возмущенных угловых корреляций						
inel	неупругий						
ion chem	химическое разделение ионной перезарядкой						
IT	изомерный переход						
J	квантовое число полного углового момента*						
K	проекция ядерного углового момента Ј на ось симметрии ядра						
K, L, M	внутренняя конверсия на К-, L-, М-оболочках						
K/L	отношение К-конверсионных электронов к L-конверсионным электронам						
L	(1) квантовое число орбитального углового момента*;(2) мультипольность						
L(n), L(p)	момент, переданный в реакциях однонуклонной передачи (нейтрона, протона)						
min	минута						
M+	M+N+O+						
M1, M2, ML	магнитный диполь(ный), квадруполь(ный), 2 ^L -поль(ный)						
mag spect	магнитный спектрометр						
max	максимум						
Moss	эффект Мессбауера						
ms	(1) масс-спектрометр;(2) миллисекунда						
mult	мультипольность						
Ν	число нейтронов*: N=A-Z						
NMR, NQR	ядерный магнитный, квадрупольный резонанс						
norm	нормировка						
PAC	возмущенная угловая корреляция						
pc	пропорциональный счетчик						
p,γ(θ)	угловое распределение гамма-излучения по отношению к протонному пучку						
p ,γ(t)	временное распределение фотонов по отношению к пульсирующему протонному пучку						
pol	поляризованный, поляризация						
priv comm	частное сообщение						
PWBA	Борновское приближение плоских волн						
Q	 (1) энергия реакции*; (2) энергия распада*; (3) квадрупольный момент* в барнах; (4) квадруполь(ный) 						
Q(E)	полная энергия электронного захвата						
Q(β-)	полная энергия β ⁻ -распада						
Q(a)	полная энергия α-распада: Е _α + Е _{отдачи}						

R	радиус ядра*: $r_0 A^{1/3}$					
RDM	измерение времени жизни по отдаче					
RUL	рекомендованное значение для верхнего предела на силу у-излучения (см. стр. 97)					
rel	относительный					
res	резонанс(ный)					
S	секунда					
S	спектроскопический фактор					
S'	$[(2J_f+1)/(2J_i+1)]S$					
S(n) или S _n	энергия отделения нейтрона от ядра					
S(p) или S _p	энергия отделения протона от ядра					
scatt	рассеяние					
scin	сцинтилляционный счетчик					
semi	полупроводниковый детектор					
SF	спонтанное деление					
spall	расщепление					
sr	стерадиан					
syst, SY	систематика					
t	тритон					
Т	(1) изоспин;(2) температура					
Tz	Z-компонента изоспина: (N–Z)/2					
T _{1/2}	период полураспада*					
th	тепловой					
thresh	порог(овый)					
tof	измерение методом времени пролета					
vib	вибрационный					
W.u.	скорость перехода в одночастичных единицах Вайскопфа					
у	год					
Ζ	атомный номер*: Z=A-N					
α	коэффициент полной внутренней конверсии N(ce)/N(γ)*					
α(K), α(L)	коэффициент внутренней конверсии для электронов с К- и L-оболочек					
αγ, βγ, γγ	совпадения α и γ, β и γ, γ и γ					
αγ (θ,H,t), βγ (θ,H,t), γγ (θ,H,t)	совпадения α и γ , β и γ , γ и γ как функция угла, магнитного поля и времени					
$\beta_2, \beta_3, \beta_L$	квадрупольный, октупольный, 2 ^L -польный параметр деформации ядра					
βγ(pol), γγ(pol)	поляризационная корреляция γ-квантов в совпадении с β или γ					
Γ , $\Gamma(\gamma)$, $\Gamma(n)$	ширина уровня*, частичная ширина по отношению к испусканию гамма- излучения и нейтронов					
γ(θ,Η,Τ)	гамма-интенсивность как функция угла, магнитного поля, температуры					
γ^{\pm}	аннигиляционное излучение					

δ	отно L-по деле	отношение приведенных матричных элементов (L+1)-польного к L-польному излучению с соглашением относительно фазы, как это опре- делено в Krane and Steffen, Phys. Rev. <u>C2</u> , 724 (1970)								
3	элен	электронный захват								
εΚ, εL, εΜ	элен	электронный захват с К-, L-, М-оболочки								
ε (γ)B(E2), ε(ce)B(E2)	парі	парциальные В(Е2) для ү, конверсионных электронов								
θ	03На	означает угловую зависимость								
λ	(1) I (2) 1	(1) проекция углового момента частицы на ось симметрии ядра;(2) тип излучения, то есть M1, M2,								
μ	маг	магнитный момент частицы*, приведенный в ядерных магнетонах								
ν	кон	конфигурация нейтрона в оболочечной модели								
π	(1) ч (2) 1	(1) четность;(2) конфигурация протона в оболочечной модели								
σ	сече	сечение*								
Σ(γγ)	сові	совпадения с суммированием гамма-излучения								
ω(K), ω(L)	вых	выходы К-, L-флюоресценции								
%α	веро	вероятность α-ветви распада уровня, в процентах								
%β ⁻	верс	оятности	ь β-ветви распа	ада уровн	ия, в процен	тах				
$\%\beta^+$	веро	оятности	ь β ⁺ -ветви распа	ада уровн	ия, в процен	тах				
%ε	веро	вероятность распада уровня посредством электронного захвата, в процентах								
%IT	веро в пр	вероятность ветви распада уровня через изомерный переход (γ+се), в процентах								
%SF	верс в пр	вероятность ветви распада уровня посредством спонтанного деления, в процентах								
<r2></r2>	среднеквадратичный радиус ядра									
	Т	tera	(=10 ¹²)	μ	micro (=10) ⁻⁶)				
	G	giga	$(=10^{9})$	n	nano (=10) ⁻⁹)				
	М	mega	$(=10^{6})$	р	pico (=10	(-12)				
	k	kilo	$(=10^3)$	f	femto (=10	$()^{-15})$				
	c	centi	$(=10^{-2})$	а	atto (=10	(-18)				
	m	milli	$(=10^{-3})$							
		n l	Нейтрон		π	пион				
		p]	- Протон		u	мюон				
		d 2	Дейтон		e	электрон				
		t	Гритон		ν	нейтрино				
		α	альфа-частипа		ν	фотон				
			1 1.		1	1				

* – рекомендовано Комиссией по символам, единицам и номенклатуре Международного союза по фундаментальной и прикладной физике