References quoted in the ENSDF dataset: 47P ADOPTED LEVELS
9 references found.
Clicking on a keynumber will list datasets that reference the given article.
Phys.Rev. C 78, 024613 (2008)
G.G.Adamian, N.V.Antonenko, S.M.Lukyanov, Yu.E.Penionzhkevich
Possibility of production of neutron-rich isotopes in transfer-type reactions at intermediate energies
NUCLEAR REACTIONS 181Ta(48Ca, X)38Si/40Si/42Si/44Si/46Si/36Mg/38Mg/40Mg/41Al/43Al/45Al/45P/47P/46S/48S/50S/49Cl/51Cl/53Cl/50Ar/52Ar/54Ar/53K/55K/57K/59K/56Ca/58Ca/60Ca/59Sc/61Sc/63Sc/60Ti/62Ti/64Ti/66Ti, E=64, 140 MeV/nucleon; W(48Ca, X)41Si/42Si/43Si/44Si/46Si/36Mg/37Mg/38Mg/40Mg, E=142 MeV/nucleon; calculated production σ of neutron-rich isotopes of Mg, Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti. Comparison with experimental data.
doi: 10.1103/PhysRevC.78.024613
Phys.Rev. C 79, 014310 (2009)
F.Nowacki, A.Poves
New effective interaction for 0(h-bar)ω shell-model calculations in the sd-pf valence space
NUCLEAR STRUCTURE 35Si, 35P, 37S, 39,47Ar, 41,49Ca, 47,49K; calculated levels, J, π, single-particle energies. 36,38,40,42,44Si, 34,36,38,40Mg; calculated B(E2), quadrupole moments, energy of 2+ state. 39,41,43,45,47,49,51K, 35,37,39,41,43,45,47P, 37,39,41,43,45,47,49Cl; calculated energy splitting between 1/2+ and 3/2+ states. Shell-model calculations in sd-pf valence space. Comparison with experimental data.
doi: 10.1103/PhysRevC.79.014310
Phys.Rev. C 90, 024307 (2014)
Z.Wang, Z.Ren, T.Dong, C.Xu
Spins and parities of the odd-A P isotopes within a relativistic mean-field model and elastic magnetic electron-scattering theory
NUCLEAR STRUCTURE 25,27,29,31,33,35,37,39,41,43,45,47P; calculated ground-state properties, binding energies per nucleon, rms radii, occupation probabilities, spin-orbit splitting gaps, J and π, s-d level inversion. Relativistic mean-field (RMF) model. Comparison with data in NUBASE-2012.
NUCLEAR REACTIONS 25,27,29,31,33,35,37,39,41,43,45,47P, 29Si(e, e); calculated magnetic form factors, variations of the potentials. Relativistic elastic magnetic electron-scattering theory (REMES). Discussed contributions of upper and lower components of the Dirac four-spinors to the form factors and isotopic shifts of magnetic form factors.
doi: 10.1103/PhysRevC.90.024307
Phys.Rev.Lett. 121, 022501 (2018)
O.B.Tarasov, D.S.Ahn, D.Bazin, N.Fukuda, A.Gade, M.Hausmann, N.Inabe, S.Ishikawa, N.Iwasa, K.Kawata, T.Komatsubara, T.Kubo, K.Kusaka, D.J.Morrissey, M.Ohtake, H.Otsu, M.Portillo, T.Sakakibara, H.Sakurai, H.Sato, B.M.Sherrill, Y.Shimizu, A.Stolz, T.Sumikama, H.Suzuki, H.Takeda, M.Thoennessen, H.Ueno, Y.Yanagisawa, K.Yoshida
Discovery of 60Ca and Implications For the Stability of 70Ca
NUCLEAR REACTIONS 9Be(70Zn, X)47P/49S/52Cl/54Ar/57K/59Ca/60Ca/62Sc, E=345 MeV/nucleon; measured reaction products. 59K; deduced new isotopes discovery. Comparison with the drip-line predictions of a wide variety of mass models.
doi: 10.1103/physrevlett.121.022501
Phys.Rev. C 97, 054321 (2018); Erratum Phys.Rev. C 109, 029904 (2024)
S.Yoshida, Y.Utsuno, N.Shimizu, T.Otsuka
Systematic shell-model study of β-decay properties and Gamow-Teller strength distributions in A ≈ 40 neutron-rich nuclei
RADIOACTIVITY 39,40S, 40P, 41Cl(β-); calculated logft values and compared with experimental data. 35,36,37,38,39,40,41,42,43,44,45,46,47Al, 36,37,38,39,40,41,42,43,44,45,46,47,48Si, 37,38,39,40,41,42,43,44,45,46,47,48,49P, 38,39,40,41,42,43,44,45,46,47,48,49,50S, 39,40,41,42,43,44,45,46,47,48,49,50,51Cl, 40,41,42,43,44,45,46,47,48,49,50,51,52Ar(β-)(β-n); calculated β-decay T1/2, β-delayed neutron emission probabilities (Pn), Gamow-Teller (GT) strength distributions, and location of the Gamow-Teller giant resonances using large-scale shell-model with and without first-forbidden (FF) transitions included. Comparison with experimental values from the ENSDF database, and with other theoretical predictions.
doi: 10.1103/PhysRevC.97.054321
At.Data Nucl.Data Tables 125, 1 (2019)
P.Moller, M.R.Mumpower, T.Kawano, W.D.Myers
Nuclear properties for astrophysical and radioactive-ion-beam applications (II)
NUCLEAR STRUCTURE Z=8-136; calculated the ground-state odd-proton and odd-neutron spins and parities, proton and neutron pairing gaps, one- and two-neutron separation energies, quantities related to β-delayed one- and two-neutron emission probabilities, average energy and average number of emitted neutrons, β-decay energy release and T1/2 with respect to Gamow-Teller decay with a phenomenological treatment of first-forbidden decays, one- and two-proton separation energies, and α-decay energy release and half-life.
doi: 10.1016/j.adt.2018.03.003
Chin.Phys.C 45, 030001 (2021)
F.G.Kondev, M.Wang, W.J.Huang, S.Naimi, G.Audi
The NUBASE2020 evaluation of nuclear physics properties
COMPILATION A=1-295; compiled, evaluated nuclear structure and decay data.
Phys.Rev. C 104, 044321 (2021)
F.Minato, T.Marketin, N.Paar
β-delayed neutron-emission and fission calculations within relativistic quasiparticle random-phase approximation and a statistical model
RADIOACTIVITY Z=8-110, N=11-209, A=19-318(β-), (β-n); calculated T1/2, β--delayed neutron emission (BDNE) branching ratios (P0n, P1n, P2n, P3n, P4n, P5n, P6n, P7n, P8n, P9n, P10n), mean number of delayed neutrons per beta-decay, and average delayed neutron kinetic energy, total beta-delayed fission and α emission branching ratios for four fission barrier height models (ETFSI, FRDM, SBM, HFB-14). Z=93-110, N=184-200, A=224-318; calculated T1/2, β--delayed fission (BDF) branching ratios (P0f, P1f, P2f, P3f, P4f, P5f, P6f, P7f, P8f, P9f, P10f), total beta-delayed fission and beta-delayed neutron emission branching ratios for four fission barrier height models 140,162Sn; calculated β strength functions, β--delayed neutron branching ratios from P0n to P10n by pn-RQRPA+HFM and pn-RQRPA methods. 137,138,139,140,156,157,158,159,160,161,162Sb; calculated isotope production ratios as a function of excitation energy. 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156Pd, 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159Ag, 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250Os, 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255Ir; calculated β-delayed one neutron branching ratio P1n by pn-RQRPA+HFM, pn-RQRPA, and FRDM+QRPA+HFM methods, and compared with available experimental data. 89Br, 138I; calculated β-delayed neutron spectrum by pn-RQRPA+HFM method, and compared with experimental spectra. 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330Fm; calculated fission barrier heights for HFB-14, FRDM, ETFSI and SBM models, mean numbers and mean energies of emitted β-delayed neutrons by pn-RQRPA+HFM and pn-RQRPA methods. 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99Ni, 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,161,162,163,164,165,166,167,168,169,170Sn; calculated mean numbers and mean energies of emitted β-delayed neutrons by pn-RQRPA+HFM and pn-RQRPA methods. Z=70-110, N=120-190; calculated β--delayed α branching ratios Pα (%) for FRDM fission barrier data. Fully self-consistent covariant density-functional theory (CDFT), with the ground states of all the nuclei calculated with the relativistic Hartree-Bogoliubov (RHB) model with the D3C* interaction, and relativistic proton-neutron quasiparticle random-phase approximation (pn-RQRPA) for β strength functions, with particle evaporations and fission from highly excited nuclear states estimated by Hauser-Feshbach statistical model (pn-RQRPA+HFM) for four fission barrier height models (ETFSI, FRDM, SBM, HFB-14). Detailed tables of numerical data for β-delayed neutron emission (BDNE), β-delayed fission (BDF) and β-delayed α-particle emission branching ratios are given in the Supplemental Material of the paper.
doi: 10.1103/PhysRevC.104.044321
Chin.Phys.C 45, 030003 (2021)
M.Wang, W.J.Huang, F.G.Kondev, G.Audi, S.Naimi
The AME 2020 atomic mass evaluation (II). Tables, graphs and references
ATOMIC MASSES A=1-295; compiled, evaluated atomic masses, mass excess, β-, ββ and ββββ-decay, binding, neutron and proton separation energies, decay and reaction Q-value data.