References quoted in the XUNDL dataset: 189LU 9BE(198PT,X):NUC ID: XUNDL-1
3 references found.
Clicking on a keynumber will list datasets that reference the given article.
At.Data Nucl.Data Tables 125, 1 (2019)
P.Moller, M.R.Mumpower, T.Kawano, W.D.Myers
Nuclear properties for astrophysical and radioactive-ion-beam applications (II)
NUCLEAR STRUCTURE Z=8-136; calculated the ground-state odd-proton and odd-neutron spins and parities, proton and neutron pairing gaps, one- and two-neutron separation energies, quantities related to β-delayed one- and two-neutron emission probabilities, average energy and average number of emitted neutrons, β-decay energy release and T1/2 with respect to Gamow-Teller decay with a phenomenological treatment of first-forbidden decays, one- and two-proton separation energies, and α-decay energy release and half-life.
doi: 10.1016/j.adt.2018.03.003
Phys.Rev. C 104, 044321 (2021)
F.Minato, T.Marketin, N.Paar
β-delayed neutron-emission and fission calculations within relativistic quasiparticle random-phase approximation and a statistical model
RADIOACTIVITY Z=8-110, N=11-209, A=19-318(β-), (β-n); calculated T1/2, β--delayed neutron emission (BDNE) branching ratios (P0n, P1n, P2n, P3n, P4n, P5n, P6n, P7n, P8n, P9n, P10n), mean number of delayed neutrons per beta-decay, and average delayed neutron kinetic energy, total beta-delayed fission and α emission branching ratios for four fission barrier height models (ETFSI, FRDM, SBM, HFB-14). Z=93-110, N=184-200, A=224-318; calculated T1/2, β--delayed fission (BDF) branching ratios (P0f, P1f, P2f, P3f, P4f, P5f, P6f, P7f, P8f, P9f, P10f), total beta-delayed fission and beta-delayed neutron emission branching ratios for four fission barrier height models 140,162Sn; calculated β strength functions, β--delayed neutron branching ratios from P0n to P10n by pn-RQRPA+HFM and pn-RQRPA methods. 137,138,139,140,156,157,158,159,160,161,162Sb; calculated isotope production ratios as a function of excitation energy. 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156Pd, 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159Ag, 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250Os, 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255Ir; calculated β-delayed one neutron branching ratio P1n by pn-RQRPA+HFM, pn-RQRPA, and FRDM+QRPA+HFM methods, and compared with available experimental data. 89Br, 138I; calculated β-delayed neutron spectrum by pn-RQRPA+HFM method, and compared with experimental spectra. 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330Fm; calculated fission barrier heights for HFB-14, FRDM, ETFSI and SBM models, mean numbers and mean energies of emitted β-delayed neutrons by pn-RQRPA+HFM and pn-RQRPA methods. 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99Ni, 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,161,162,163,164,165,166,167,168,169,170Sn; calculated mean numbers and mean energies of emitted β-delayed neutrons by pn-RQRPA+HFM and pn-RQRPA methods. Z=70-110, N=120-190; calculated β--delayed α branching ratios Pα (%) for FRDM fission barrier data. Fully self-consistent covariant density-functional theory (CDFT), with the ground states of all the nuclei calculated with the relativistic Hartree-Bogoliubov (RHB) model with the D3C* interaction, and relativistic proton-neutron quasiparticle random-phase approximation (pn-RQRPA) for β strength functions, with particle evaporations and fission from highly excited nuclear states estimated by Hauser-Feshbach statistical model (pn-RQRPA+HFM) for four fission barrier height models (ETFSI, FRDM, SBM, HFB-14). Detailed tables of numerical data for β-delayed neutron emission (BDNE), β-delayed fission (BDF) and β-delayed α-particle emission branching ratios are given in the Supplemental Material of the paper.
doi: 10.1103/PhysRevC.104.044321
Phys.Rev. C 108, 034608 (2023)
K.Haak, O.B.Tarasov, P.Chowdhury, A.M.Rogers, K.Sharma, T.Baumann, D.Bazin, P.C.Bender, J.Chen, A.Estrade, M.A.Famiano, D.C.Foulds-Holt, N.Fukuda, A.Gade, T.N.Ginter, R.W.Gohier, M.Hausmann, A.M.Hill, D.E.M.Hoff, L.Klankowski, E.Kwan, J.Li, S.N.Liddick, B.Longfellow, S.Lyons, C.Morse, M.Portillo, D.Rhodes, A.L.Richard, S.Samaranayake, B.M.Sherrill, M.K.Smith, M.Spieker, C.S.Sumithrarachchi, H.Suzuki, K.Wang, S.Waniganeththi, D.Weisshaar, S.Zhu
Production and discovery of neutron-rich isotopes by fragmentation of 198Pt
NUCLEAR REACTIONS 9Be, Ni(198Pt, X)182Yb/183Lu/184Lu/185Lu/186Lu/187Lu/188Lu/189Lu/184Hf/185Hf/186Hf/187Hf/188Hf/189Hf/190Hf/191Hf/192Hf/185Ta/186Ta/187Ta/188Ta/189Ta/190Ta/191Ta/192Ta/193Ta/186W/187W/188W/189W/190W/191W/192W/193W/194W/187Re/188Re/189Re/190Re/191Re/192Re/193Re/194Re/195Re/196Re/190Os/191Os/192Os/193Os/194Os/195Os/196Os/197Os/192Ir/193Ir/194Ir/195Ir/196Ir/197Ir/198Ir, E=85 MeV/nucleon from the NSCL-MSU Coupled Cyclotron Facility (CCF); measured reaction products, particle identification spectra using A1900 fragment separator, S800 spectrograph for fragment analysis, PIN diode telescope of five silicon detectors for particle detection, γ rays using GRETINA array, and LISE+ Monte Carlo calculations of charge state fractions; deduced production cross sections of about 70 nuclei in Z=70-77 region. 189Lu, 191,192Hf; deduced new nuclides. 190W; measured γ-ray spectrum from the emission of a 166-μs isomer. Comparison of measured production cross sections with theoretical calculations using EFAX3 and COFRA codes. Numerical values of production cross sections are listed in the Supplemental Material.
doi: 10.1103/PhysRevC.108.034608