References quoted in the ENSDF dataset: 159EU ADOPTED LEVELS, GAMMAS

21 references found.

Clicking on a keynumber will list datasets that reference the given article.


Proc.Phys.Soc.(London) 64A, 395 (1951)


New Radioactive Isotopes Produced by Nuclear Photo-Disintegration

doi: 10.1088/0370-1298/64/4/306


J.Phys.Soc.Japan 16, 2393 (1961)

T.Kuroyanagi, H.Yuta, K.Takahashi, H.Morinaga

New Activities in Rare Earth Region Produced by the (γ, p) Reactions

NUCLEAR STRUCTURE 159Eu, 175Tm, 179Lu, 178Lu, 173Tm; measured not abstracted; deduced nuclear properties.


Bull.Am.Phys.Soc. 8, No.6, 482, Q8 (1963)

W.R.Daniels, D.C.Hoffman

Eu157, Eu158, and Eu159

NUCLEAR STRUCTURE 158Eu, 157Eu, 159Eu; measured not abstracted; deduced nuclear properties.


J.Phys.Soc.Japan 20, 2105 (1965)


Decay of Eu159

NUCLEAR STRUCTURE 159Eu; measured not abstracted; deduced nuclear properties.


Radiochim.Acta 4, 119 (1965)

V.H.Munzel, E.Gantner

Uber den Zerfall von 158Eu und 159Eu

RADIOACTIVITY 158,159Eu; measured Eγ, Iγ, T1/2, γγ-coin; deduced β-branching. 158Gd deduced levels, γ-branching.


J.Inorg.Nucl.Chem. 28, 2424 (1966)

W.R.Daniels, D.C.Hoffman

Half-Lives of Some Europium and Gadolinium Nuclides

RADIOACTIVITY 156,157,158,159Eu, 159Gd; measured T1/2.

doi: 10.1016/0022-1902(66)80144-6


Nucl.Phys. A318, 77 (1979)

D.G.Burke, G.Lovhoiden, E.R.Flynn, J.W.Sunier

Single-Proton States in 157Eu and 159Eu Studied with the (t, α) Reaction

NUCLEAR REACTIONS 158,160Gd(polarized t, α), E=17 MeV; measured σ(Eα, θ), Ay(Eα, θ), Q. 157,159Eu deduced levels, J, π. Nilsson assignments. Enriched targets.

doi: 10.1016/0375-9474(79)90471-8


Izv.Akad.Nauk SSSR, Ser.Fiz. 48, 875 (1984)

B.A.Alikov, K.Zuber, V.V.Pashkevich, E.G.Tsoi

Equilibrium Deformations of Single-Particle States of Odd Nuclei in the Rare Earth Region

NUCLEAR STRUCTURE 147,149,151,153,155,157,159,161Eu, 153,155,157,159,161,163,165,167,169,171,173Ho, 155,157,159,161,163,165,167,169,171,173Tm, 149,151,153,155,157,159,161Sm, 151,153,155,157,159,161,163Gd, 155,157,159,161,163,165,167,169,171,173Er, 157,159,161,163,165,167,169,171,173Yb; calculated quadrupole, hexadecapole moments, ground state energies. 151Pm, 155,157,161,163,165Dy, 175,177Lu, 157Tb; calculated quadrupole moments. 165Er, 165Tm; calculated hexadecapole moment level dependence.


Phys.Rev. C36, 1540 (1987)

H.Willmes, R.A.Anderl, J.D.Cole, R.C.Greenwood, C.W.Reich

Level Structure of 159Eu from the β- Decay of the recently Discovered Isotope 159Sm

RADIOACTIVITY 159Sm(β-); measured Eγ, Iγ, E X-ray, I X-ray ; deduced level J, π, Nilsson assignment. 159Eu deduced levels, J, π, Nillson assignment.

doi: 10.1103/PhysRevC.36.1540


Phys.Scr. 39, 196 (1989)

R.Bengtsson, J.Dudek, W.Nazarewicz, P.Olanders

A Systematic Comparison between the Nilsson and Woods-Saxon Deformed Shell Model Potentials

NUCLEAR STRUCTURE 164,168Er; calculated single particle densities. Nilsson, Woods-Saxon deformed shell model potentials.


Z.Phys. A337, 257 (1990)

G.D.Alkhazov, A.E.Barzakh, V.A.Bolshakov, V.P.Denisov, V.S.Ivanov, Yu.Ya.Sergeev, I.Ya.Chubukov, V.I.Tikhonov, V.S.Letokhov, V.I.Mishin, S.K.Sekatsky, V.N.Fedoseyev

Odd-Even Staggering in Nuclear Charge Radii of Neutron-Rich Europium Isotopes

RADIOACTIVITY 155,156,157,158,159Eu; measured hfs, isotope shifts; deduced hyperfine constants. 155,156,157,158,159Eu deduced μ, quadrupole moment, rms charge radii differences.


Nucl.Phys. A512, 61 (1990)

W.Nazarewicz, M.A.Riley, J.D.Garrett

Equilibrium Deformations and Excitation Energies of Single-Quasiproton Band Heads of Rare-Earth Nuclei

NUCLEAR STRUCTURE 148,150,152,154,156,158,160Sm, 150,152,154,156,158,160,162,164,166Gd, 152,154,156,158,160,162,164,166,168Dy, 154,156,158,160,162,164,166,168,170Er, 154,156,158,160,162,164,166,168,170,172,174,176,178,180Yb, 158,160,162,164,166,168,170,172,174,176,178,180,182Hf, 164,166,168,170,172,174,176,178,180,182,184,186,188W, 170,172,174,176,178,180,182,184,186,188,190,192,194Os, 151,153,155,157,159,161Eu, 153,155,157,159,161,163,165Tb, 153,155,157,159,161,163,165,167,169,171Ho, 157,159,161,163,165,167,169,171,173Tm, 161,163,165,167,169,171,173,175,177Lu, 167,169,171,173,175,177,179,181,183,185Ta, 173,175,177,179,181,183,185,187,189Re; calculated equilibrium deformations. Shell correction method, average Woods-Saxon potential, monopole pairing residual interaction.

doi: 10.1016/0375-9474(90)90004-6


Z.Phys. A359, 237 (1997)

T.Asaga, T.Fujita, K.Ito

Hyperfine Structure Constants for Eu Isotopes: Is the empirical formula of HFS anomaly universal ( Question )

NUCLEAR STRUCTURE 145,147,149,151,153,155,157,159Eu; calculated isotope shifts, hfs anomaly. Shell model calculations, comparison with Moskowitz-Lombardi empirical formula.

doi: 10.1007/s002180050396


Phys.Rev. C61, 031301 (2000)

C.Vargas, J.G.Hirsch, T.Beuschel, J.P.Draayer

Shell Model Description of Normal Parity Bands in Odd-Mass Heavy Deformed Nuclei

NUCLEAR STRUCTURE 159Eu, 159Tb, 159Dy; calculated levels, J, π, B(E2). Shell model, pseudo-SU(3) symmetry, comparison with data.

doi: 10.1103/PhysRevC.61.031301


Phys.Rev. C 85, 045805 (2012)

J.Van Schelt, D.Lascar, G.Savard, J.A.Clark, S.Caldwell, A.Chaudhuri, J.Fallis, J.P.Greene, A.F.Levand, G.Li, K.S.Sharma, M.G.Sternberg, T.Sun, B.J.Zabransky

Mass measurements near the r-process path using the Canadian Penning Trap mass spectrometer

ATOMIC MASSES 133,134Sb, 134,135,136,137Te, 135,136,137,138,139I, 137,138,139,140,141Xe, 141,142Cs, 153,155Pr, 153,155,157Nd, 153,155,156,157,158,159Pm, 155,157,158,159,160,161Sm, 158,159,160,161Eu, 163Gd; measured cyclotron frequency ratios; deduced mass excess, atomic masses. Canadian Penning Trap mass spectrometer at ANL. Comparison with AME-2003 evaluation and theoretical mass models. Systematics of S(2n) values.

doi: 10.1103/PhysRevC.85.045805


At.Data Nucl.Data Tables 99, 69 (2013)

I.Angeli, K.P.Marinova

Table of experimental nuclear ground state charge radii: An update

COMPILATION Z=0-96; compiled nuclear radii, rms nuclear charge radii.

doi: 10.1016/j.adt.2011.12.006


Eur.Phys.J. A 53, 201 (2017)

R.K.Pandit, R.Devi, S.K.Khosa, G.H.Bhat, J.A.Sheikh

A systematic study of band structure and electromagnetic properties of neutron rich odd mass Eu isotopes in the projected shell model framework

NUCLEAR STRUCTURE 153,155,157,159Eu; calculated levels, J, π, rotational bands, B(E2), B(M1); deduced change of deformation with increasing angular momentum. Compared with data.

doi: 10.1140/epja/i2017-12393-3


Phys.Atomic Nuclei 82, 55 (2019)

V.K.Nikulin, M.B.Trzhaskovskaya

L-Shell Ionization during the Alpha Decay of Superheavy Nuclei from 294117Ts Tennessine Decay Chain and the Alpha Decay of the Polonium Isotope 21084Po

doi: 10.1134/S1063778819010095


INDC(NDS)-0794 (2019)


Table of Recommended Nuclear Magnetic Dipole Moments: Part I - Long-lived States

COMPILATION Z=0-99; compiled experimental values of nuclear magnetic moments.


Chin.Phys.C 45, 030003 (2021)

M.Wang, W.J.Huang, F.G.Kondev, G.Audi, S.Naimi

The AME 2020 atomic mass evaluation (II). Tables, graphs and references

ATOMIC MASSES A=1-295; compiled, evaluated atomic masses, mass excess, β-, ββ and ββββ-decay, binding, neutron and proton separation energies, decay and reaction Q-value data.

doi: 10.1088/1674-1137/abddaf


Phys.Rev. C 106, 024306 (2022)

F.Minato, Z.Niu, H.Liang

Calculation of β-decay half-lives within a Skyrme-Hartree-Fock-Bogoliubov energy density functional with the proton-neutron quasiparticle random-phase approximation and isoscalar pairing strengths optimized by a Bayesian method

RADIOACTIVITY 87,88,89,90,91,92,93,94,95,96,97,98,99,100Kr, 88,89,90,91,92,93,94,95,96,97,98,99,100,101Rb, 101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137Mo, 102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138Tc(β-); 113,115,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143Cd, 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144In(β-); 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192Sm, 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193Eu(β-); Z=8-110(β-); A=20-368(β-); calculated β--decay T1/2, partial T1/2 for Gamow-Teller decays, Q values, isoscalar spin-triplet strength for neutron-rich nuclei using proton-neutron quasiparticle random-phase approximation (pnQRPA), proton-neutron quasiparticle Tamm-Dancoff approximation (pnQTDA), with Skryme energy density functional, and Bayesian neural network (BNN), the last for isoscalar spin-triplet strength. Calculated T1/2, Q values, isoscalar spin-triplet strength for 5580 neutron-rich nuclei spanning Z=8-110, N=12-258 and A=20-368 are listed in Supplemental Material of the paper. Comparison with available experimental T1/2 in NUBASE2016.

doi: 10.1103/PhysRevC.106.024306