References quoted in the ENSDF dataset: 55ZN ADOPTED LEVELS

19 references found.

Clicking on a keynumber will list datasets that reference the given article.


1991DE26

Z.Phys. A340, 227 (1991)

C.Detraz

The Branching Ratio of β-Delayed Two-Proton Emission

RADIOACTIVITY 22Al, 22,23Si, 26P, 27S, 31Ar, 35Ca, 39Ti, 43Cr, 46Mn, 46,47Fe, 49,50,51Ni, 55Zn; calculated β-delayed one-, two-proton emission probability ratios. Compound nucleus decay.


1997OR04

Phys.Rev. C55, 2407 (1997)

W.E.Ormand

Mapping the Proton Drip Line up to A = 70

NUCLEAR STRUCTURE 46,47,48Mn, 46,47,48,49Fe, 47,48,49,50,51,52Co, 49,50,51,52,53Ni, 49,50,51,52,53,54,55,56Cu, 50,52,53,54,55,56,57Zn, 54,55,56,57,58,59,60,61Ga, 56,57,58,59,60,61,62,63Ge, 58,59,60,61,62,63,64,65As, 62,63,64,65,66,67Se, 65,66,67,68,69Br, 66,67,68,69Kr, 68,70Rb; calculated binding energy, one-, two-proton separation energy, β-decay endpoint energy, Q(EC). 38Ti, 45Fe, 48,49Ni, 55Zn, 59Ge, 63,64Se, 66,67,68,69Kr; calculated di-proton emission T1/2, one-, two-proton separation energies. Coulomb energy difference from shell model.

doi: 10.1103/PhysRevC.55.2407


2001FI23

At.Data Nucl.Data Tables 79, 241 (2001)

J.L.Fisker, V.Barnard, J.Gorres, K.Langanke, G.Martinez-Pinedo, M.C.Wiescher

Shell Model Based Reaction Rates for rp-Process Nuclei in the Mass Range A = 44-63

NUCLEAR REACTIONS 44,45,46Ti, 45,46,47V, 45,46,47,48,49,50Cr, 45,46,47,48,49,50,51,52,53Mn, 50,51,52,53,54,55,56Fe, 50,51,52,53,54,55,56,57Co, 55,56,57,58,59Ni, 54,55,56,57,58,59,60,61Cu, 59,60,61,62,63Zn, 59,60,61,62,63Ga(p, γ), E not given; calculated astrophysical reaction rates vs temperature.

NUCLEAR STRUCTURE 45,46,47V, 46,47,48Cr, 46,47,48,49,50,51Mn, 46,47,48,49,50,51,52,53,54Fe, 51,52,53,54,55,56,57Co, 51,52,53,54,55,56,57,58Ni, 56,57,58,59,60Cu, 55,56,57,58,59,60,61,62Zn, 60,61,62,63,64Ga, 60,61,62,63,64Ge; calculated levels, J, π, decay widths. Shell model.

doi: 10.1006/adnd.2001.0867


2001GI10

Eur.Phys.J. A 11, 247 (2001)

J.Giovinazzo, B.Blank, C.Borcea, M.Chartier, S.Czajkowski, G.de France, R.Grzywacz, Z.Janas, M.Lewitowicz, F.de Oliveira Santos, M.Pfutzner, M.S.Pravikoff, J.C.Thomas

First Observation of 55, 56Zn

NUCLEAR REACTIONS Ni(58Ni, X)55Zn/56Zn, E=74.5 MeV/nucleon; measured σ. Discussed possible decay modes.

doi: 10.1007/s100500170060


2005JI06

Eur.Phys.J. A 25, 29 (2005)

W.Z.Jiang, Z.Z.Ren, T.T.Wang, Y.L.Zhao, Z.Y.Zhu

Relativistic mean-field study for Zn isotopes

NUCLEAR STRUCTURE 52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75Zn; calculated binding energies, radii, deformation. Relativistic mean-field approach.

doi: 10.1140/epja/i2004-10235-1


2006AG14

Phys.Scr. T125, 178 (2006)

M.Aggarwal

Two-proton radioactivity in proton-rich fp shell nuclei at high spin

NUCLEAR STRUCTURE 45,46Fe, 48,49,50Ni, 54,55,56Zn; calculated one- and two-proton separation energies vs spin.

doi: 10.1088/0031-8949/2006/T125/039


2007DO17

Nucl.Phys. A792, 18 (2007)

C.Dossat, N.Adimi, F.Aksouh, F.Becker, A.Bey, B.Blank, C.Borcea, R.Borcea, A.Boston, M.Caamano, G.Canchel, M.Chartier, D.Cortina, S.Czajkowski, G.de France, F.de Oliveira Santos, A.Fleury, G.Georgiev, J.Giovinazzo, S.Grevy, R.Grzywacz, M.Hellstrom, M.Honma, Z.Janas, D.Karamanis, J.Kurcewicz, M.Lewitowicz, M.J.Lopez Jimenez, C.Mazzocchi, I.Matea, V.Maslov, P.Mayet, C.Moore, M.Pfutzner, M.S.Pravikoff, M.Stanoiu, I.Stefan, J.C.Thomas

The decay of proton-rich nuclei in the mass A = 36-56 region

NUCLEAR REACTIONS Ni(58Ni, X), E=74.5 MeV/nucleon; measured fragments isotopic yields.

RADIOACTIVITY 36,37Ca, 39,40,41Ti, 43V, 42,43,44,45Cr, 46,47Mn, 46,47,48,49Fe, 50,51Co, 49,50,51,52,53Ni, 55Cu, 55,56Zn(β+), (EC), (β+p) [from Ni(58Ni, X)]; measured T1/2, β-delayed proton and γ spectra, branching ratios. 43,45Cr, 46Mn, 46,47,48Fe, 50Co, 50,51,52,53Ni deduced levels. Two-proton decay observed. Comparison with model predictions.

doi: 10.1016/j.nuclphysa.2007.05.004


2012SI16

Int.J.Mod.Phys. E21, 1250076 (2012); Erratum Int.J.Mod.Phys. E22, 1392001 (2013)

D.Singh, G.Saxena

Study of two-proton radioactivity within the relativistic mean-field plus BCS approach

RADIOACTIVITY 38Ti, 42Cr, 45Fe, 48Ni, 55Zn, 60Ge, 63,64Se, 68Kr, 72Sr, 76Zr(2p); calculated one- and two-proton separation energies, quadrupole deformation parameters, pairing gap, radial wave functions and density distributions. Comparison with available data.

doi: 10.1142/S0218301312500760


2013TI01

Phys.Rev. C 87, 014313 (2013)

J.Tian, N.Wang, C.Li, J.Li

Improved Kelson-Garvey mass relations for proton-rich nuclei

ATOMIC MASSES 5Be, 6B, 13F, 15Ne, 18Mg, 16,17Na, 19,20,21,22Al, 21,22,23Si, 22,23,24,25,26P, 24,25,26,27S, 25,26,27,28,29,30Cl, 28,29,30,31,32,33,34K, 27,28,29,30,31Ar, 30,31,32,33,34,35Ca, 31,32,33,34,35,36,37,38Sc, 33,34,35,36,37,38,39Ti, 35,36,37,38,39,40,41,42,43V, 37,38,39,40,41,42,43,44,45Cr, 39,40,41,42,43,44,45,46,47Mn, 41,42,43,44,45,46,47,48,49Fe, 43,44,45,46,47,48,49,50,51,52Co, 45,46,47,48,49,50,51,52,53Ni, 47,48,49,50,51,52,53,54,55,56Cu, 49,50,51,52,53,54,55,56,57Zn, 60Ga, 62Ge, 64As, 66Se, 68Br, 70Kr, 72Rb, 74Sr; calculated binding energies, mass excess, Sp, S2p using improved Kelson-Garvey (ImKG) mass relations. Comparison with experimental data for mirror analogs. Predictions of masses for proton-rich nuclides. Discussed diproton emission.

doi: 10.1103/PhysRevC.87.014313


2016ME17

Phys.Rev. C 94, 064313 (2016)

T.J.Mertzimekis

Prediction and evaluation of magnetic moments in T = 1/2, 3/2, and 5/2 mirror nuclei

NUCLEAR MOMENTS A=3-63; 13N, 23Mg, 25Al, 27Si, 29P, 31S, 39Ca, 43Ti, 45V, 49Mn, 51Fe, 53Co, 55Ni, 59Zn, 63Ge; 9C, 9Li, 13O, 17N, 21F, 25Si, 27,33P, 35S, 35K, 37Ca, 39Sc, 41Ti, 43V, 45Cr, 47Mn, 49Fe, 51Co, 53Ni, 57Zn, 61Ge, 63As; 27S, 31Ar, 43Cr, 47Fe, 51Ni, 55Zn, 59Ge; compiled, analyzed, and predicted magnetic dipole moments for isospin 1/2, 3/2 and 5/2 mirror nuclei. 57Cu; evaluated magnetic dipole moment of the ground state.

doi: 10.1103/PhysRevC.94.064313


2019MO01

At.Data Nucl.Data Tables 125, 1 (2019)

P.Moller, M.R.Mumpower, T.Kawano, W.D.Myers

Nuclear properties for astrophysical and radioactive-ion-beam applications (II)

NUCLEAR STRUCTURE Z=8-136; calculated the ground-state odd-proton and odd-neutron spins and parities, proton and neutron pairing gaps, one- and two-neutron separation energies, quantities related to β-delayed one- and two-neutron emission probabilities, average energy and average number of emitted neutrons, β-decay energy release and T1/2 with respect to Gamow-Teller decay with a phenomenological treatment of first-forbidden decays, one- and two-proton separation energies, and α-decay energy release and half-life.

doi: 10.1016/j.adt.2018.03.003


2020CU01

Phys.Rev. C 101, 014301 (2020), Erratum Phys.Rev. C 104, 029902 (2021)

J.P.Cui, Y.H.Gao, Y.Z.Wang, J.Z.Gu

Two-proton radioactivity within a generalized liquid drop model

RADIOACTIVITY 6Be, 12O, 16Ne, 19Mg, 45Fe, 48Ni, 54Zn, 67Kr(2p); calculated half-lives for 2p decay mode using generalized liquid drop model (GLDM) and compared with experimental half-lives, and other theoretical calculations. 22Si, 26S, 34Ca, 38,39Ti, 42Cr, 49Ni, 55Zn, 58,59,60Ge, 64Se(2p); predicted half-lives using GLDM for 2p radioactivity.

doi: 10.1103/PhysRevC.101.014301


2020NE02

Phys.Rev. C 101, 014319 (2020)

L.Neufcourt, Y.Cao, S.Giuliani, W.Nazarewicz, E.Olsen, O.B.Tarasov

Beyond the proton drip line: Bayesian analysis of proton-emitting nuclei

RADIOACTIVITY 19Mg, 45Fe, 48Ni, 54Zn, 67Kr(2p); calculated Q(2p) using eleven global mass models: Skyrme models SkM*, SkP, SLy4, SV-min, UNEDF0, UNEDF1, UNEDF2, BCPM and D1M, FRDM-2012 and HFB-24, and Bayesian model averaging (BMA) results: BMA-0, BMA-I, BMA-II, BMA-III, and comparing with experimental data from AME2016 and later literature. Z=17-82; calculated nuclear binding-energy, and probability of proton decay, relative to the neutron number of the lightest proton-bound isotope with known experimental S(p) or S(2p), in the proton-rich region using BMA-I and BMA-II model averaging methods. 25,26,27S, 29,30,31Ar, 33,34,35Ca, 37,38,39Ti, 40,41,42,43Cr, 44,45,46Fe, 47,48,49,50Ni, 52,53,54,55Zn, 56,57,58,59Ge, 61,62,63,64Se, 64,65,66,67,68Kr, 68,69,70,71,72Sr, 72,73,74,75,76Zr, 76,77,78,79,80Mo, 80,81,82,83,84Ru, 83,84,85,86,87,88Pd, 87,88,89,90,91Cd, 91,92,93,94,95Sn, 100,101,102,103Te, 104,105,106,107Xe, 108,109,110,111,112Ba, 111,112,113,114,115,116Ce, 115,116,117,118,119Nd, 119,120,121,122,123,124Sm, 123,124,125,126,127,128,129Gd, 128,129,130,131,132,133,134Dy, 131,132,133,134,135,136,137Er, 135,136,137,138,139,140,141,142Yb, 141,142,143,144,145,146,147Hf, 145,146,147,148,149,150W, 150,151,152,153,154,155Os, 152,153,154,155,156,157,158Pt, 156,157,158,159,160,161,162Hg(2p); calculated Q(2p) and half-lives using BMA-1 method. 30Ar, 34Ca, 39Ti, 42Cr, 58Ge, 62Se, 66Kr, 70Sr, 74Zr, 78Mo, 82Ru, 86Pd, 90Cd, 103Te; predicted as most promising 2p emitters. 131,132Dy, 134,135Er, 144,145Hf; predicted as excellent candidates for the sequential emission of two protons. Bayesian Gaussian processes for separation-energy residuals and combined via Bayesian model averaging for mass predictions, with uncertainty quantification of theoretical predictions.

doi: 10.1103/PhysRevC.101.014319


2021KL02

Phys.Rev. C 103, 024316 (2021)

O.Klochko, N.A.Smirnova

Isobaric-multiplet mass equation in a macroscopic-microscopic approach

NUCLEAR STRUCTURE A=20-100; analyzed Isobaric-multiplet mass equation (IMME) for T=1/2, 1, 3/2, 2, and 5/2 multiplets using P. Moller's macroscopic-microscopic approach with finite-range liquid-drop model (FRLDM); deduced coefficients of the IMME, and mass excesses of Z>N nuclei up to A=100. 43,44,45,46,47,48,49Mn, 44,45,46,47,48,49,50,51Fe, 46,47,48,49,50,51,52,53Co, 48,49,50,51,52,53,54,55Ni, 50,51,52,53,54,55,56,57Cu, 52,53,54,55,56,57,58,59Zn, 54,55,56,57,58,59,60,61Ga, 56,57,58,59,60,61,62,63Ge, 58,59,60,61,62,63,64,65As, 60,61,62,63,64,65,66,67Se, 62,63,64,65,66,67,68,69Br, 64,65,66,67,68,69,70,71Kr, 66,67,68,69,70,71,72,73Rb, 68,69,70,71,72,73,74,75Sr, 70,71,72,73,74,75,76,77Y, 72,73,74,75,76,77,78,79Zr, 74,75,76,77,78,79,80,81Nb, 76,77,78,79,80,81,82,83Mo, 78,79,80,81,82,83,84,85Tc, 80,81,82,83,84,85,86,87Ru, 82,83,84,85,86,87,88,89Rh, 84,85,86,87,88,89,90,91Pd, 86,87,88,89,90,91,92,93Ag, 88,89,90,91,92,93,94,95Cd, 90,91,92,93,94,95,96,97In, 92,93,94,95,96,97,98,99Sn, 94,95,96,97,98,99,100Sb, 96,97,98,99,100,101Te; deduced S(p), S(2p), positions of proton-drip lines. Comparison with available experimental data.

doi: 10.1103/PhysRevC.103.024316


2021KO07

Chin.Phys.C 45, 030001 (2021)

F.G.Kondev, M.Wang, W.J.Huang, S.Naimi, G.Audi

The NUBASE2020 evaluation of nuclear physics properties

COMPILATION A=1-295; compiled, evaluated nuclear structure and decay data.

doi: 10.1088/1674-1137/abddae


2021KU30

Phys.Rev. C 104, 064610 (2021)

A.Kubiela, H.Suzuki, O.B.Tarasov, M.Pfutzner, D.-S.Ahn, H.Baba, A.Bezbakh, A.A.Ciemny, W.Dominik, N.Fukuda, A.Giska, R.Grzywacz, Y.Ichikawa, Z.Janas, L.Janiak, G.Kaminski, K.Kawata, T.Kubo, M.Madurga, C.Mazzocchi, H.Nishibata, M.Pomorski, Y.Shimizu, N.Sokolowska, D.Suzuki, P.Szymkiewicz, A.Swiercz, M.Tajima, A.Takamine, H.Takeda, Y.Takeuchi, C.R.Thornsberry, H.Ueno, H.Yamazaki, R.Yokoyama, K.Yoshida

Production of the most neutron-deficient Zn isotopes by projectile fragmentation of 78Kr

NUCLEAR REACTIONS 9Be(78Kr, X)54Zn/55Zn/56Zn, E=345 MeV/nucleon; measured reaction products, production σ using BigRIPS separator at the RIBF-RIKEN facility. Comparison of measured σ for Zn isotopes in this work, and for germanium, selenium, and krypton isotopes in other studies with predictions of the EPAX3 parametrization, LISE++ abrasion-ablation model using the HFB22 mass model and the AME2020 mass tables. Relevance to production of nuclei decaying by 2p radioactivity such as 54Zn.

doi: 10.1103/PhysRevC.104.064610


2021SA53

Phys.Rev. C 104, 064613 (2021)

K.P.Santhosh

Theoretical studies on two-proton radioactivity

RADIOACTIVITY 6Be, 12O, 16Ne, 19Mg, 45Fe, 48Ni, 54Zn, 67Kr(2p); calculated T1/2 using Coulomb and proximity potential model for deformed nuclei (CPPMDN) with and without deformation effects, and compared with experimental values, and various other theoretical calculations: generalized liquid drop model (GLDM), effective liquid drop model (ELDM), Gamow-like model (GLM), screened electrostatic barrier (SEB), two-potential approach with Skyrme Hartree Fock (SHF), unified fission model (UFM), new Geiger-Nuttall law (GNL), and four-parameter empirical formula (EF). 16Ne, 19Mg, 22Si, 26S, 30Ar, 34Ca, 38,39Ti, 42Cr, 49Ni, 55Zn, 58,59,60Ge, 64Se(2p); calculated T1/2 with and without deformation effects, and compared with various other theoretical calculations as stated above.

doi: 10.1103/PhysRevC.104.064613


2021WA16

Chin.Phys.C 45, 030003 (2021)

M.Wang, W.J.Huang, F.G.Kondev, G.Audi, S.Naimi

The AME 2020 atomic mass evaluation (II). Tables, graphs and references

ATOMIC MASSES A=1-295; compiled, evaluated atomic masses, mass excess, β-, ββ and ββββ-decay, binding, neutron and proton separation energies, decay and reaction Q-value data.

doi: 10.1088/1674-1137/abddaf


2021XI06

Chin.Phys.C 45, 124105 (2021)

F.Xing, J.Cui, Y.Wang, J.Gu

Two-proton radioactivity of ground and excited states within a unified fission model

RADIOACTIVITY 6Be, 12O, 16Ne, 19Mg, 45Fe, 48Ni, 54Zn, 67Kr(2p); 5Be, 6,7B, 8C, 10N, 11O, 13,14F, 15Ne, 17Na, 22Si, 24P, 26S, 28,29Cl, 29,30Ar, 31,32K, 33,34Ca, 45Sc, 35,37Sc, 37,38,39Ti, 39,40V, 41,42Cr, 43,44Mn, 47Co, 49Ni, 52Cu, 55Zn, 56,57,58Ga, 58,59Ge, 60,61,62As, 63,64Se, 65,66Br, 68Kr, 81Mo, 85Ru, 108Xe(2p); analyzed available data; calculated T1/2. Comparison with the AME2020 table, available data.

doi: 10.1088/1674-1137/ac2425