References quoted in the ENSDF dataset: 55ZN ADOPTED LEVELS
19 references found.
Clicking on a keynumber will list datasets that reference the given article.
Z.Phys. A340, 227 (1991)
C.Detraz
The Branching Ratio of β-Delayed Two-Proton Emission
RADIOACTIVITY 22Al, 22,23Si, 26P, 27S, 31Ar, 35Ca, 39Ti, 43Cr, 46Mn, 46,47Fe, 49,50,51Ni, 55Zn; calculated β-delayed one-, two-proton emission probability ratios. Compound nucleus decay.
Phys.Rev. C55, 2407 (1997)
W.E.Ormand
Mapping the Proton Drip Line up to A = 70
NUCLEAR STRUCTURE 46,47,48Mn, 46,47,48,49Fe, 47,48,49,50,51,52Co, 49,50,51,52,53Ni, 49,50,51,52,53,54,55,56Cu, 50,52,53,54,55,56,57Zn, 54,55,56,57,58,59,60,61Ga, 56,57,58,59,60,61,62,63Ge, 58,59,60,61,62,63,64,65As, 62,63,64,65,66,67Se, 65,66,67,68,69Br, 66,67,68,69Kr, 68,70Rb; calculated binding energy, one-, two-proton separation energy, β-decay endpoint energy, Q(EC). 38Ti, 45Fe, 48,49Ni, 55Zn, 59Ge, 63,64Se, 66,67,68,69Kr; calculated di-proton emission T1/2, one-, two-proton separation energies. Coulomb energy difference from shell model.
At.Data Nucl.Data Tables 79, 241 (2001)
J.L.Fisker, V.Barnard, J.Gorres, K.Langanke, G.Martinez-Pinedo, M.C.Wiescher
Shell Model Based Reaction Rates for rp-Process Nuclei in the Mass Range A = 44-63
NUCLEAR REACTIONS 44,45,46Ti, 45,46,47V, 45,46,47,48,49,50Cr, 45,46,47,48,49,50,51,52,53Mn, 50,51,52,53,54,55,56Fe, 50,51,52,53,54,55,56,57Co, 55,56,57,58,59Ni, 54,55,56,57,58,59,60,61Cu, 59,60,61,62,63Zn, 59,60,61,62,63Ga(p, γ), E not given; calculated astrophysical reaction rates vs temperature.
NUCLEAR STRUCTURE 45,46,47V, 46,47,48Cr, 46,47,48,49,50,51Mn, 46,47,48,49,50,51,52,53,54Fe, 51,52,53,54,55,56,57Co, 51,52,53,54,55,56,57,58Ni, 56,57,58,59,60Cu, 55,56,57,58,59,60,61,62Zn, 60,61,62,63,64Ga, 60,61,62,63,64Ge; calculated levels, J, π, decay widths. Shell model.
Eur.Phys.J. A 11, 247 (2001)
J.Giovinazzo, B.Blank, C.Borcea, M.Chartier, S.Czajkowski, G.de France, R.Grzywacz, Z.Janas, M.Lewitowicz, F.de Oliveira Santos, M.Pfutzner, M.S.Pravikoff, J.C.Thomas
First Observation of 55, 56Zn
NUCLEAR REACTIONS Ni(58Ni, X)55Zn/56Zn, E=74.5 MeV/nucleon; measured σ. Discussed possible decay modes.
Eur.Phys.J. A 25, 29 (2005)
W.Z.Jiang, Z.Z.Ren, T.T.Wang, Y.L.Zhao, Z.Y.Zhu
Relativistic mean-field study for Zn isotopes
NUCLEAR STRUCTURE 52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75Zn; calculated binding energies, radii, deformation. Relativistic mean-field approach.
doi: 10.1140/epja/i2004-10235-1
Phys.Scr. T125, 178 (2006)
M.Aggarwal
Two-proton radioactivity in proton-rich fp shell nuclei at high spin
NUCLEAR STRUCTURE 45,46Fe, 48,49,50Ni, 54,55,56Zn; calculated one- and two-proton separation energies vs spin.
doi: 10.1088/0031-8949/2006/T125/039
Nucl.Phys. A792, 18 (2007)
C.Dossat, N.Adimi, F.Aksouh, F.Becker, A.Bey, B.Blank, C.Borcea, R.Borcea, A.Boston, M.Caamano, G.Canchel, M.Chartier, D.Cortina, S.Czajkowski, G.de France, F.de Oliveira Santos, A.Fleury, G.Georgiev, J.Giovinazzo, S.Grevy, R.Grzywacz, M.Hellstrom, M.Honma, Z.Janas, D.Karamanis, J.Kurcewicz, M.Lewitowicz, M.J.Lopez Jimenez, C.Mazzocchi, I.Matea, V.Maslov, P.Mayet, C.Moore, M.Pfutzner, M.S.Pravikoff, M.Stanoiu, I.Stefan, J.C.Thomas
The decay of proton-rich nuclei in the mass A = 36-56 region
NUCLEAR REACTIONS Ni(58Ni, X), E=74.5 MeV/nucleon; measured fragments isotopic yields.
RADIOACTIVITY 36,37Ca, 39,40,41Ti, 43V, 42,43,44,45Cr, 46,47Mn, 46,47,48,49Fe, 50,51Co, 49,50,51,52,53Ni, 55Cu, 55,56Zn(β+), (EC), (β+p) [from Ni(58Ni, X)]; measured T1/2, β-delayed proton and γ spectra, branching ratios. 43,45Cr, 46Mn, 46,47,48Fe, 50Co, 50,51,52,53Ni deduced levels. Two-proton decay observed. Comparison with model predictions.
doi: 10.1016/j.nuclphysa.2007.05.004
Int.J.Mod.Phys. E21, 1250076 (2012); Erratum Int.J.Mod.Phys. E22, 1392001 (2013)
D.Singh, G.Saxena
Study of two-proton radioactivity within the relativistic mean-field plus BCS approach
RADIOACTIVITY 38Ti, 42Cr, 45Fe, 48Ni, 55Zn, 60Ge, 63,64Se, 68Kr, 72Sr, 76Zr(2p); calculated one- and two-proton separation energies, quadrupole deformation parameters, pairing gap, radial wave functions and density distributions. Comparison with available data.
doi: 10.1142/S0218301312500760
Phys.Rev. C 87, 014313 (2013)
J.Tian, N.Wang, C.Li, J.Li
Improved Kelson-Garvey mass relations for proton-rich nuclei
ATOMIC MASSES 5Be, 6B, 13F, 15Ne, 18Mg, 16,17Na, 19,20,21,22Al, 21,22,23Si, 22,23,24,25,26P, 24,25,26,27S, 25,26,27,28,29,30Cl, 28,29,30,31,32,33,34K, 27,28,29,30,31Ar, 30,31,32,33,34,35Ca, 31,32,33,34,35,36,37,38Sc, 33,34,35,36,37,38,39Ti, 35,36,37,38,39,40,41,42,43V, 37,38,39,40,41,42,43,44,45Cr, 39,40,41,42,43,44,45,46,47Mn, 41,42,43,44,45,46,47,48,49Fe, 43,44,45,46,47,48,49,50,51,52Co, 45,46,47,48,49,50,51,52,53Ni, 47,48,49,50,51,52,53,54,55,56Cu, 49,50,51,52,53,54,55,56,57Zn, 60Ga, 62Ge, 64As, 66Se, 68Br, 70Kr, 72Rb, 74Sr; calculated binding energies, mass excess, Sp, S2p using improved Kelson-Garvey (ImKG) mass relations. Comparison with experimental data for mirror analogs. Predictions of masses for proton-rich nuclides. Discussed diproton emission.
doi: 10.1103/PhysRevC.87.014313
Phys.Rev. C 94, 064313 (2016)
T.J.Mertzimekis
Prediction and evaluation of magnetic moments in T = 1/2, 3/2, and 5/2 mirror nuclei
NUCLEAR MOMENTS A=3-63; 13N, 23Mg, 25Al, 27Si, 29P, 31S, 39Ca, 43Ti, 45V, 49Mn, 51Fe, 53Co, 55Ni, 59Zn, 63Ge; 9C, 9Li, 13O, 17N, 21F, 25Si, 27,33P, 35S, 35K, 37Ca, 39Sc, 41Ti, 43V, 45Cr, 47Mn, 49Fe, 51Co, 53Ni, 57Zn, 61Ge, 63As; 27S, 31Ar, 43Cr, 47Fe, 51Ni, 55Zn, 59Ge; compiled, analyzed, and predicted magnetic dipole moments for isospin 1/2, 3/2 and 5/2 mirror nuclei. 57Cu; evaluated magnetic dipole moment of the ground state.
doi: 10.1103/PhysRevC.94.064313
At.Data Nucl.Data Tables 125, 1 (2019)
P.Moller, M.R.Mumpower, T.Kawano, W.D.Myers
Nuclear properties for astrophysical and radioactive-ion-beam applications (II)
NUCLEAR STRUCTURE Z=8-136; calculated the ground-state odd-proton and odd-neutron spins and parities, proton and neutron pairing gaps, one- and two-neutron separation energies, quantities related to β-delayed one- and two-neutron emission probabilities, average energy and average number of emitted neutrons, β-decay energy release and T1/2 with respect to Gamow-Teller decay with a phenomenological treatment of first-forbidden decays, one- and two-proton separation energies, and α-decay energy release and half-life.
doi: 10.1016/j.adt.2018.03.003
Phys.Rev. C 101, 014301 (2020), Erratum Phys.Rev. C 104, 029902 (2021)
J.P.Cui, Y.H.Gao, Y.Z.Wang, J.Z.Gu
Two-proton radioactivity within a generalized liquid drop model
RADIOACTIVITY 6Be, 12O, 16Ne, 19Mg, 45Fe, 48Ni, 54Zn, 67Kr(2p); calculated half-lives for 2p decay mode using generalized liquid drop model (GLDM) and compared with experimental half-lives, and other theoretical calculations. 22Si, 26S, 34Ca, 38,39Ti, 42Cr, 49Ni, 55Zn, 58,59,60Ge, 64Se(2p); predicted half-lives using GLDM for 2p radioactivity.
doi: 10.1103/PhysRevC.101.014301
Phys.Rev. C 101, 014319 (2020)
L.Neufcourt, Y.Cao, S.Giuliani, W.Nazarewicz, E.Olsen, O.B.Tarasov
Beyond the proton drip line: Bayesian analysis of proton-emitting nuclei
RADIOACTIVITY 19Mg, 45Fe, 48Ni, 54Zn, 67Kr(2p); calculated Q(2p) using eleven global mass models: Skyrme models SkM*, SkP, SLy4, SV-min, UNEDF0, UNEDF1, UNEDF2, BCPM and D1M, FRDM-2012 and HFB-24, and Bayesian model averaging (BMA) results: BMA-0, BMA-I, BMA-II, BMA-III, and comparing with experimental data from AME2016 and later literature. Z=17-82; calculated nuclear binding-energy, and probability of proton decay, relative to the neutron number of the lightest proton-bound isotope with known experimental S(p) or S(2p), in the proton-rich region using BMA-I and BMA-II model averaging methods. 25,26,27S, 29,30,31Ar, 33,34,35Ca, 37,38,39Ti, 40,41,42,43Cr, 44,45,46Fe, 47,48,49,50Ni, 52,53,54,55Zn, 56,57,58,59Ge, 61,62,63,64Se, 64,65,66,67,68Kr, 68,69,70,71,72Sr, 72,73,74,75,76Zr, 76,77,78,79,80Mo, 80,81,82,83,84Ru, 83,84,85,86,87,88Pd, 87,88,89,90,91Cd, 91,92,93,94,95Sn, 100,101,102,103Te, 104,105,106,107Xe, 108,109,110,111,112Ba, 111,112,113,114,115,116Ce, 115,116,117,118,119Nd, 119,120,121,122,123,124Sm, 123,124,125,126,127,128,129Gd, 128,129,130,131,132,133,134Dy, 131,132,133,134,135,136,137Er, 135,136,137,138,139,140,141,142Yb, 141,142,143,144,145,146,147Hf, 145,146,147,148,149,150W, 150,151,152,153,154,155Os, 152,153,154,155,156,157,158Pt, 156,157,158,159,160,161,162Hg(2p); calculated Q(2p) and half-lives using BMA-1 method. 30Ar, 34Ca, 39Ti, 42Cr, 58Ge, 62Se, 66Kr, 70Sr, 74Zr, 78Mo, 82Ru, 86Pd, 90Cd, 103Te; predicted as most promising 2p emitters. 131,132Dy, 134,135Er, 144,145Hf; predicted as excellent candidates for the sequential emission of two protons. Bayesian Gaussian processes for separation-energy residuals and combined via Bayesian model averaging for mass predictions, with uncertainty quantification of theoretical predictions.
doi: 10.1103/PhysRevC.101.014319
Phys.Rev. C 103, 024316 (2021)
O.Klochko, N.A.Smirnova
Isobaric-multiplet mass equation in a macroscopic-microscopic approach
NUCLEAR STRUCTURE A=20-100; analyzed Isobaric-multiplet mass equation (IMME) for T=1/2, 1, 3/2, 2, and 5/2 multiplets using P. Moller's macroscopic-microscopic approach with finite-range liquid-drop model (FRLDM); deduced coefficients of the IMME, and mass excesses of Z>N nuclei up to A=100. 43,44,45,46,47,48,49Mn, 44,45,46,47,48,49,50,51Fe, 46,47,48,49,50,51,52,53Co, 48,49,50,51,52,53,54,55Ni, 50,51,52,53,54,55,56,57Cu, 52,53,54,55,56,57,58,59Zn, 54,55,56,57,58,59,60,61Ga, 56,57,58,59,60,61,62,63Ge, 58,59,60,61,62,63,64,65As, 60,61,62,63,64,65,66,67Se, 62,63,64,65,66,67,68,69Br, 64,65,66,67,68,69,70,71Kr, 66,67,68,69,70,71,72,73Rb, 68,69,70,71,72,73,74,75Sr, 70,71,72,73,74,75,76,77Y, 72,73,74,75,76,77,78,79Zr, 74,75,76,77,78,79,80,81Nb, 76,77,78,79,80,81,82,83Mo, 78,79,80,81,82,83,84,85Tc, 80,81,82,83,84,85,86,87Ru, 82,83,84,85,86,87,88,89Rh, 84,85,86,87,88,89,90,91Pd, 86,87,88,89,90,91,92,93Ag, 88,89,90,91,92,93,94,95Cd, 90,91,92,93,94,95,96,97In, 92,93,94,95,96,97,98,99Sn, 94,95,96,97,98,99,100Sb, 96,97,98,99,100,101Te; deduced S(p), S(2p), positions of proton-drip lines. Comparison with available experimental data.
doi: 10.1103/PhysRevC.103.024316
Chin.Phys.C 45, 030001 (2021)
F.G.Kondev, M.Wang, W.J.Huang, S.Naimi, G.Audi
The NUBASE2020 evaluation of nuclear physics properties
COMPILATION A=1-295; compiled, evaluated nuclear structure and decay data.
Phys.Rev. C 104, 064610 (2021)
A.Kubiela, H.Suzuki, O.B.Tarasov, M.Pfutzner, D.-S.Ahn, H.Baba, A.Bezbakh, A.A.Ciemny, W.Dominik, N.Fukuda, A.Giska, R.Grzywacz, Y.Ichikawa, Z.Janas, L.Janiak, G.Kaminski, K.Kawata, T.Kubo, M.Madurga, C.Mazzocchi, H.Nishibata, M.Pomorski, Y.Shimizu, N.Sokolowska, D.Suzuki, P.Szymkiewicz, A.Swiercz, M.Tajima, A.Takamine, H.Takeda, Y.Takeuchi, C.R.Thornsberry, H.Ueno, H.Yamazaki, R.Yokoyama, K.Yoshida
Production of the most neutron-deficient Zn isotopes by projectile fragmentation of 78Kr
NUCLEAR REACTIONS 9Be(78Kr, X)54Zn/55Zn/56Zn, E=345 MeV/nucleon; measured reaction products, production σ using BigRIPS separator at the RIBF-RIKEN facility. Comparison of measured σ for Zn isotopes in this work, and for germanium, selenium, and krypton isotopes in other studies with predictions of the EPAX3 parametrization, LISE++ abrasion-ablation model using the HFB22 mass model and the AME2020 mass tables. Relevance to production of nuclei decaying by 2p radioactivity such as 54Zn.
doi: 10.1103/PhysRevC.104.064610
Phys.Rev. C 104, 064613 (2021)
K.P.Santhosh
Theoretical studies on two-proton radioactivity
RADIOACTIVITY 6Be, 12O, 16Ne, 19Mg, 45Fe, 48Ni, 54Zn, 67Kr(2p); calculated T1/2 using Coulomb and proximity potential model for deformed nuclei (CPPMDN) with and without deformation effects, and compared with experimental values, and various other theoretical calculations: generalized liquid drop model (GLDM), effective liquid drop model (ELDM), Gamow-like model (GLM), screened electrostatic barrier (SEB), two-potential approach with Skyrme Hartree Fock (SHF), unified fission model (UFM), new Geiger-Nuttall law (GNL), and four-parameter empirical formula (EF). 16Ne, 19Mg, 22Si, 26S, 30Ar, 34Ca, 38,39Ti, 42Cr, 49Ni, 55Zn, 58,59,60Ge, 64Se(2p); calculated T1/2 with and without deformation effects, and compared with various other theoretical calculations as stated above.
doi: 10.1103/PhysRevC.104.064613
Chin.Phys.C 45, 030003 (2021)
M.Wang, W.J.Huang, F.G.Kondev, G.Audi, S.Naimi
The AME 2020 atomic mass evaluation (II). Tables, graphs and references
ATOMIC MASSES A=1-295; compiled, evaluated atomic masses, mass excess, β-, ββ and ββββ-decay, binding, neutron and proton separation energies, decay and reaction Q-value data.
Chin.Phys.C 45, 124105 (2021)
F.Xing, J.Cui, Y.Wang, J.Gu
Two-proton radioactivity of ground and excited states within a unified fission model
RADIOACTIVITY 6Be, 12O, 16Ne, 19Mg, 45Fe, 48Ni, 54Zn, 67Kr(2p); 5Be, 6,7B, 8C, 10N, 11O, 13,14F, 15Ne, 17Na, 22Si, 24P, 26S, 28,29Cl, 29,30Ar, 31,32K, 33,34Ca, 45Sc, 35,37Sc, 37,38,39Ti, 39,40V, 41,42Cr, 43,44Mn, 47Co, 49Ni, 52Cu, 55Zn, 56,57,58Ga, 58,59Ge, 60,61,62As, 63,64Se, 65,66Br, 68Kr, 81Mo, 85Ru, 108Xe(2p); analyzed available data; calculated T1/2. Comparison with the AME2020 table, available data.