References quoted in the ENSDF dataset: 32NE ADOPTED LEVELS, GAMMAS

45 references found.

Clicking on a keynumber will list datasets that reference the given article.


1987BL18

Nucl.Phys. A471, 453 (1987)

R.Blumel, K.Dietrich

Excited States of Light N = Z Nuclei with a Specific Spin-Isospin Order

NUCLEAR STRUCTURE 4,6,8,10He, 8,10,12,14Be, 8,10,12,14,16,18,20,22,24C, 10,12,14,16,18,20,22,24,26O, 20,22,24,26,28,30,32Ne, 24,26,28,30,32,34,36,38Mg, 32S; calculated levels, quadrupole moments. Hartree-Fock method, specific spin-isospin latice, energy effective interactions.

doi: 10.1016/0375-9474(87)90093-5


1990GU02

Phys.Rev. C41, 937 (1990)

D.Guillemaud-Mueller, J.C.Jacmart, E.Kashy, A.Latimier, A.C.Mueller, F.Pougheon, A.Richard, Yu.E.Penionzhkevich, A.G.Artukh, A.V.Belozyorov, S.M.Lukyanov, R.Anne, P.Bricault, C.Detraz, M.Lewitowicz, Y.Zhang, Yu.S.Lyutostansky, M.V.Zverev, D.Bazin, W.D.Schmidt-Ott

Particle Stability of the Isotopes 26O and 32Ne in the Reaction 44 MeV/Nucleon 48Ca + Ta

NUCLEAR REACTIONS Ta(48Ca, X), E=2112 MeV; measured fragment total energy, fragment production rate vs mass, Z, tof; deduced evidence for 32Ne. 31Ne, 26O deduced particle decay instability.

NUCLEAR STRUCTURE 18,20,22,24O, 31,32,33,34Ne; calculated one-, two-neutron separation energies. Quasiparticle Lagrange method.

doi: 10.1103/PhysRevC.41.937


1991MU19

Nucl.Instrum.Methods Phys.Res. B56/57, 559 (1991)

A.C.Mueller, R.Anne

Production of and Studies with Secondary Radioactive Ion Beams at LISE

NUCLEAR REACTIONS Ta(48Ca, X), E=44 MeV/nucleon; measured fragment mass, charge distributions; deduced evidence for 19B, 22,20C, 23N, 24O, 29F, 32Ne. Other data discussed.

NUCLEAR STRUCTURE 6,7,8,9,10,11Li, 7,9,10,11,12Be; analyzed reaction data; deduced reduced strong absorption radii. Other data on 9,11Li discussed.

doi: 10.1016/0168-583X(91)96095-3


1991PA19

Phys.Lett. 273B, 13 (1991)

S.K.Patra, C.R.Praharaj

Relativistic Mean Field Study of ' Island of Inversion ' in Neutron-Rich Ne, Na, Mg Nuclei

NUCLEAR STRUCTURE N=18-24; Z=10-20; calculated binding energies. Compared with data, other models. 26,27,28,29,30,31,32,33,34,35Ne, 29,30,31,32,33,34,35Na, 30,31,32,34,35,36Mg; calculated binding energy. Relativistic mean field model.

doi: 10.1016/0370-2693(91)90545-2


1994PO05

Nucl.Phys. A571, 221 (1994)

A.Poves, J.Retamosa

Theoretical Study of the Very Neutron-Rich Nuclei Around N = 20

NUCLEAR STRUCTURE 28O, 34Si, 30Ne, 32Mg; calculated intruder levels, B(λ), quadrupole moments. 27,28,29,30O, 28,29,30,31F, 29,30,31,32Ne, 30,31,32,33Na, 31,32,33,34Mg, 32,33,34,35Al, 33,34,35,36Si; calculated levels, binding energies. Shell model.

doi: 10.1016/0375-9474(94)90058-2


1995RE13

Phys.Lett. 351B, 11 (1995)

Z.Ren, G.Xu, B.Chen, Z.Ma, W.Mittig

Structure of Halo Nuclei 14Be and 32Ne

NUCLEAR STRUCTURE 12,14Be, 30,32Ne; calculated proton, neutron, matter density distribution, rms radii, binding energy, single particle levels energy; deduced halo neutron occupation related features. Density-dependent relativistic mean-field theory.

doi: 10.1016/0370-2693(95)00364-Q


1997SA14

Nucl.Phys. A616, 311c (1997)

H.Sakurai, N.Aoi, D.Beaumel, N.Fukuda, M.Hirai, E.Ideguchi, M.Ishihara, H.Iwasaki, T.Kishida, T.Kubo, H.Kumagai, S.M.Lukyanov, T.Nakamura, M.Notani, Yu.Ts.Oganessian, Yu.E.Penionzhkevich, T.Teranishi, Y.Watanabe, Y.Watanabe, K.Yoneda, A.Yoshida

Search for New Neutron-Rich Nuclei with a 70A MeV 48Ca Beam

NUCLEAR REACTIONS 181Ta(48Ca, X), E=70 MeV/nucleon; measured fragment total kinetic energy, tof, energy loss; deduced evidence for 38Mg, 40,41Al, 30,31,32Ne. 33Ne deduced possible evidence for particle instability. Fragment separator RIPS.

doi: 10.1016/S0375-9474(97)00102-4


1998NOZW

Proc.Conf on Exotic Nuclei and Atomic Masses, Bellaire, Michigan, June 23-27, 1998, p.359 (1998); AIP Conf.Proc. 455 (1998)

M.Notani, N.Aoi, N.Fukuda, H.Iwasaki, K.Yoneda, H.Ogawa, T.Teranishi, S.M.Lukyanov, Yu.E.Penionzhkevich, T.Nakamura, H.Sakurai, E.Ideguchi, A.Yoshida, Y.Watanabe, T.Kubo, M.Ishihara

Half-Life Measurements of 31, 32Ne

RADIOACTIVITY 27,29F, 29,30,31,32Ne, 31,32,33Na(β-) [from 40Ar fragmentation]; measured T1/2. Projectile fragment separator.


1999DE32

Nucl.Phys. A655, 440 (1999)

P.Descouvemont

Microscopic Cluster Study of the 31Ne and 32Ne Nuclei

NUCLEAR STRUCTURE 31,32Ne; calculated radii, quadrupole moments, B(E2). Microscopic cluster description, generator coordinate method.

doi: 10.1016/S0375-9474(99)00305-X


2001CA49

Nucl.Phys. A693, 374 (2001)

E.Caurier, F.Nowacki, A.Poves

Shell Model Studies of Neutron-Rich Nuclei

NUCLEAR STRUCTURE 30Mg, 32Mg, 34Mg, 28Ne, 30Ne, 32Ne, 31Na, 34Si; calculated levels, J, π, B(E2), quadrupole moments. Comparison with data.

doi: 10.1016/S0375-9474(00)00579-0


2001OT03

Prog.Part.Nucl.Phys. 46, 155 (2001)

T.Otsuka, Y.Utsuno, M.Honma, T.Mizusaki

Structure of Unstable Nuclei

NUCLEAR STRUCTURE 48Cr, 56Ni, 26,28,30,32,34Ne, 28,30,32,34,36,38Mg; calculated levels, J, π. Monte Carlo shell model, comparison with data.

doi: 10.1016/S0146-6410(01)00119-3


2002LUZT

JINR-E7-2002-237 (2002)

S.M.Lukyanov, Yu.E.Penionzhkevich

Peculiarities of O-Mg Isotopes at the Neutron Drip Line

NUCLEAR REACTIONS Ta(48Ca, X)19B/20C/22C/21N/23N/24O/27F/29F/31F/30Ne/32Ne/34Ne/33Na/35Na/37Na/38Mg, E=59.8 MeV; measured yields. Mass and level energy systematics in neighboring nuclides discussed.


2002ST30

Phys.Lett. 545B, 291 (2002)

P.D.Stevenson, J.Rikovska Stone, M.R.Strayer

Mean field calculation of Ne, Mg and Si nuclei at N = 20 with the separable monopole interaction

NUCLEAR STRUCTURE 28,30,32Ne, 30,32,34Mg, 32,34,36Si; calculated radii, quadrupole deformation parameters, single-particle levels; deduced shell-closure effects. 30,32,34Mg; calculated transitions B(E2). Mean-field approach, comparison with data.

doi: 10.1016/S0370-2693(02)02634-5


2003RO06

Eur.Phys.J. A 17, 37 (2003)

R.R.Rodriguez-Guzman, J.L.Egido, L.M.Robledo

Quadrupole collectivity of neutron-rich neon isotopes

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34Ne; calculated deformation, transitions B(E2), quadrupole collectivity. Angular momentum projected generator coordinate method.

doi: 10.1140/epja/i2002-10141-6


2004GE02

Nucl.Phys. A730, 80 (2004)

L.S.Geng, H.Toki, A.Ozawa, J.Meng

Proton and neutron skins of light nuclei within the relativistic mean field theory

NUCLEAR STRUCTURE 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34Ne, 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37Na, 28,29,30,31,32,33,34,35,36,37,38,39,40,41Cl, 29,30,31,32,33,34,35,36,37,38,39,40,41Ar; calculated binding energies, radii, deformation parameters, neutron and proton separation energies. Deformed relativistic mean field.

doi: 10.1016/j.nuclphysa.2003.10.014


2004KH16

Eur.Phys.J. A 22, 17 (2004)

S.Khaled, M.Ramdhane, F.Benrachi

Application of the weak-coupling model for calculating the binding energies of neutron-rich A ∼ 32 nuclei

NUCLEAR STRUCTURE 28,29,30,31,32Ne, 29,30,31,32,33,34Na, 30,31,32,33,34,35Mg, 31,32,33,34,35,36Al, 32,33,34,35,36,37Si, 33,34,35,36,37,38P, 34,35,36,37,38,39S, 35,36,37,38,39,40Cl, 36,37,38,39,40,41Ar; calculated binding energies. Weak-coupling model, comparison with data.

doi: 10.1140/epja/i2004-10021-1


2004LA24

Eur.Phys.J. A 22, 37 (2004)

G.A.Lalazissis, D.Vretenar, P.Ring

Relativistic Hartree-Bogoliubov description of deformed light nuclei

NUCLEAR STRUCTURE 11,12,13,14Be, 14,15,16,17,18,19B, 14,15,16,17,18,19,20,21,22C, 14,15,16,17,18,19,20,21,22,23N, 18,19,20,21,22,23,24,25,26,27F, 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32Ne, 20,21,22,23,24,25,26,27,28,29,30,31,32Na; calculated radii, quadrupole moments, neutron separation energies. Relativistic Hartree-Bogoliubov approach, comparisons with data.

doi: 10.1140/epja/i2003-10227-7


2006SA29

Phys.Atomic Nuclei 69, 1119 (2006)

P.Saviankou, F.Grummer, E.Epelbaum, S.Krewald, U.-G.Meissner

Effective Field Theory Approach to Nuclear Matter

NUCLEAR STRUCTURE 8,10,12,14,16,18,20,22C, 12,14,16,18,20,22,24,26O, 16,18,20,22,24,26,28,30,32Ne, 20,22,24,26,28,30,32,34,36Mg; calculated binding energies, radii. Effective field theory approach.

doi: 10.1134/S1063778806070040


2006ZH05

J.Phys.(London) G32, 375 (2006)

Q.Zhi, Z.Ren

A macroscopic-microscopic study of Ne and Mg nuclei around N = 20

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34Ne, 22,24,26,28,30,32,34,36,38,40Mg; calculated binding energies, deformation parameters. 26,28,30,32,34Ne, 28,30,32,34,36Mg; calculated transitions B(E2). Macroscopic-microscopic model, comparison with data.

doi: 10.1088/0954-3899/32/3/011


2011EB02

Phys.Rev. C 83, 064323 (2011)

J.-P.Ebran, E.Khan, D.Pena Arteaga, D.Vretenar

Relativistic Hartree-Fock-Bogoliubov model for deformed nuclei

NUCLEAR STRUCTURE 18,22,26,30Ne; calculated proton and neutron density contours. 22,24,26,28,30,32,34,36,38,40Mg; calculated two-neutron separation energies. 18,20,22,24,26,28,30,32Ne;calculated binding energies, charge radii, deformation parameter. 10,12,14,16,18,20,22C; calculated deformation parameter. 26Ne, 28Mg; calculated single proton and neutron levels. Relativistic Hartree-Fock-Bogoliubov model for axially deformed nuclei (RHFBz) using effective Lagrangian with density-dependent meson-nucleon couplings in the particle-hole channel and the central part of the Gogny force in the particle-particle channel. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.064323


2011KI12

Int.J.Mod.Phys. E20, 893 (2011)

M.Kimura

Systematic study of the many-particle and many-hole states in and around the island of inversion

NUCLEAR STRUCTURE 33,35Al, 32,34Mg, 30,32Ne, 33Mg; calculated single-particle energies and quadrupole deformation, 33Mg low-lying state energies, J, π. AMD calculations, comparison with experimental data.

doi: 10.1142/S0218301311018915


2012MI01

Phys.Rev.Lett. 108, 052503 (2012)

K.Minomo, T.Sumi, M.Kimura, K.Ogata, Y.R.Shimizu, M.Yahiro

Determination of the Structure of 31Ne by a Fully Microscopic Framework

NUCLEAR REACTIONS 12C(28Ne, 28Ne'), (29Ne, 29Ne'), (30Ne, 30Ne'), (31Ne, 31Ne'), (32Ne, 32Ne'), E=240 MeV/nucleon; analyzed reaction σ. 28,29,30,31,32Ne; calculated deformed projectile density. Comparison with experimental data.

NUCLEAR STRUCTURE 28,29,30,31,32Ne; calculated J, π, deformation, neutron separation energy, ground state properties and halo structures. Comparison with experimental data.

doi: 10.1103/PhysRevLett.108.052503


2012PO15

Phys.Scr. T150, 014030 (2012)

A.Poves, E.Caurier, F.Nowacki, K.Sieja

The nuclear shell model toward the drip lines

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34,36,38,40,42,44Mg, 18,20,22,24,26,28,30,32,34,36Ne, 22,24,26,28,30,32,34,36,38,40,42,44,46Si; calculated B(E2), energy of the first 2+ state. Shell model, comparison with experimental data.

doi: 10.1088/0031-8949/2012/T150/014030


2012SU09

Phys.Rev. C 85, 064613 (2012)

T.Sumi, K.Minomo, S.Tagami, M.Kimura, T.Matsumoto, K.Ogata, Y.R.Shimizu, M.Yahiro

Deformation of Ne isotopes in the region of the island of inversion

NUCLEAR REACTIONS 12C(28Ne, 28Ne), (29Ne, 29Ne), (30Ne, 30Ne), (31Ne, 31Ne), (32Ne, 32Ne), E=240 MeV/nucleon; calculated σ. 12C(12C, 12C), E=74.25, 135 MeV/nucleon; calculated σ(E, θ). Double folding model with Melbourne g-matrix interaction and the nuclear densities calculated by antisymmetrized molecular dynamics (AMD). Effects of pairing correlation. Comparison with experimental data.

NUCLEAR STRUCTURE 20,21,22,23,24,25,26,27,28,29,30,31,32Ne; calculated ground state J, π, deformation parameters β2, β4 and γ, S(n), total binding energy, matter rms radii, neutron and proton rms radii and density profiles, pairing effects on total binding energy. AMD, spherical Gogny-HF and -HFB calculations. 31Ne; halo nucleus.

doi: 10.1103/PhysRevC.85.064613


2013HA27

Nucl.Phys. A914, 151c (2013)

K.Hagino, J.M.Yao, F.Minato, Z.P.Li, M.T.Win

Collective excitations of Λ hypernuclei

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34,36,38Ne, 22,24,26,28,30,32,34,36,38,40,42Si; calculated deformation, deformation of (A+Λ) hypernuclei, binding energy, Q vs deformation using relativistic mean field. 24Mg, 25Mg; calculated 25ΛMg hypernucleus deformation, low-spin levels, J, π, rotational bands, B(E2) using relativistic mean field. 16O, 18O; calculated 18ΛΛO hypernucleus dipole strength distribution vs energy, B(E2), B(E3) using RPA. Compared with data.

doi: 10.1016/j.nuclphysa.2012.12.077


2014CA21

Phys.Rev. C 90, 014302 (2014)

E.Caurier, F.Nowacki, A.Poves

Merging of the islands of inversion at N = 20 and N = 28

NUCLEAR STRUCTURE 28O, 29F, 30Ne, 31Na, 32Mg, 33Al, 34Si, 35P, 36S, 37Cl, 38Ar; calculated correlation energies and gaps of the 0p-0h and 2p-2h configurations. 24,26,28,30,32,34,36,38,40,42,44Mg, 18,20,22,24,26,28,30,32,34,36,38,40,42Ne, 28,30,32,34,36,38,40,42,44,46Si; calculated energies and B(E2) of first 2+ states. 29,31F, 30,31,32Ne, 31,33Na, 30,31,32,33Mg, 35,35Al, 34Si; calculated low-lying levels, J, π, magnetic dipole moments. Nuclei near islands of inversion at N=20 and N=28, and their merging in Magnesium chain of nuclei. Large-scale shell-model calculations with the effective interaction SDPF-U-MIX. Comparison with experimental results.

doi: 10.1103/PhysRevC.90.014302


2014VA13

Phys.Rev. C 90, 034312 (2014)

E.N.E.van Dalen, H.Muther

Triaxial deformation in nuclei with realistic NN interactions

NUCLEAR STRUCTURE 18,20,22,24,26,28,30,32,34Ne; calculated binding energies, neutron and proton single-particle energies, Fermi energies and rms radii, energy gaps, deformations, S(2n). Transition to pasta phase. 24,42Ne; calculated neutron and proton density distribution contours. Realistic NN interaction and Hartree-Fock approach. Comparison with experimental results.

doi: 10.1103/PhysRevC.90.034312


2015ME06

J.Phys.(London) G42, 093101 (2015)

J.Meng, S.G.Zhou

Halos in medium-heavy and heavy nuclei with covariant density functional theory in continuum

NUCLEAR STRUCTURE 9,11Li, 66Ca, 198Ce, 110,140,170Sn, 32Ne, 32,38,40,42Mg, 19O; calculated single-particle levels, J, π, quadrupole deformation parameters, halo. Covariant density functional theory.

doi: 10.1088/0954-3899/42/9/093101


2015NA22

Int.J.Mod.Phys. E24, 1550091 (2015)

R.C.Nayak, S.Pattnaik

Identification of highly deformed even-even nuclei in the neutron- and proton-rich regions of the nuclear chart from the B(E2) ↑ and E2 predictions in the generalized differential equation model

NUCLEAR STRUCTURE 30,32Ne, 34Mg, 60Ti, 42,62,64Cr, 50,68Fe, 52,72Ni, 70,72,96Kr, 74,76Sr, 78,80,106,108Zr, 82,84,110,112Mo, 140Te, 144Xe, 148Ba, 122Ce, 128,156Nd, 130,132,158,160Sm, 138,162,164,166Gd; calculated B(E2) values, deformation parameters. Comparison with available data.

doi: 10.1142/S0218301315500913


2015PU01

Eur.Phys.J. A 51, 14 (2015)

G.Puddu

Description of nuclei around N = 20 starting from the Argonne V18 interaction

NUCLEAR STRUCTURE 28,30,32Ne, 30,32,34Mg, 32,34,36Si; calculated low-lying 0+ and 2+ state energy, B(E2), their convergence vs number of Slater determinants. 33Mg; calculated low-lying levels, J, π, their convergence vs number of Slater determinants. Argonne V18 interaction.

doi: 10.1140/epja/i2015-15014-3


2016KI19

Eur.Phys.J. A 52, 373 (2016)

M.Kimura, T.Suhara, Y.Kanada-Enyo

Antisymmetrized molecular dynamics studies for exotic clustering phenomena in neutron-rich nuclei

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34Ne, 24,26,28,30,32,34,36,38,40Mg; calculated 2+1 state energy, B(E2) 20,26,32Ne; calculated proton density distribution, charge radius. 10,11,12Be; calculated levels, J, π. AMD (Antisymmetrized Molecular Dynamics). Compared with data.

doi: 10.1140/epja/i2016-16373-9


2017TS01

Phys.Rev. C 95, 021304 (2017)

N.Tsunoda, T.Otsuka, N.Shimizu, M.Hjorth-Jensen, K.Takayanagi, T.Suzuki

Exotic neutron-rich medium-mass nuclei with realistic nuclear forces

NUCLEAR STRUCTURE 20,22,24,26,28,30,32Ne, 24,26,28,30,32,34Mg, 28,30,32,34,36Si; calculated energies of the first 2+ and 4+ states, B(E2), expectation values of the number of the particle-hole excitations in the ground states of Mg isotopes. 31,32Mg; calculated levels, J, π. 28O, 30Ne, 32Mg, 34Si, 36S, 38Ar, 40Ca; calculated effective neutron single-particle energies (ESPEs) of N=20 isotones. Extended Kuo-Krenciglowa (EKK) theory of effective nucleon-nucleon interaction for exotic nuclei. Comparison with experimental data.

doi: 10.1103/PhysRevC.95.021304


2018JI07

Phys.Rev. C 98, 044320 (2018)

W.G.Jiang, B.S.Hu, Z.H.Sun, F.R.Xu

Gogny-force-derived effective shell-model Hamiltonian

NUCLEAR STRUCTURE 10,11B, 18N, 7Li, 10Be, 16,17,18,19,20,21,22,23,24,25,26,27,28O, 18,19,20,21,22,23,24,25,26,27,28,29F, 18,20,21,22,23,24,25,26,27,28,30,32,34Ne; calculated levels, J, π, g.s. energies and binding energies of O, F, Ne isotopes, and first 2+ state energies and B(E2) values in even-even Ne isotopes. Shell model with density-dependent finite-range Gogny force.Comparison with experimental values, and with other theoretical predictions.

doi: 10.1103/PhysRevC.98.044320


2018MA13

Phys.Rev. C 97, 024334 (2018)

P.Marevic, J.-P.Ebran, E.Khan, T.Niksic, D.Vretenar

Quadrupole and octupole collectivity and cluster structures in neon isotopes

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34Ne; calculated mean-field potential energy surfaces (PES) in (β2, β3) plane, angular momentum- and parity-projected PES in (β2, β3) plane, S(2n), collective wave functions, and average deformation parameters for the ground state, level energies of the first 2+ and 4+ states, B(E2) to the ground state, spectroscopic quadrupole moments. 20,22,24,32,34Ne; calculated levels, J, π, collective spectrum, B(E2), B(E3), collective wave functions of excited states, intrinsic nucleon and valence neutrons densities. Self-consistent relativistic mean-field framework with restoration of symmetries and configuration mixing. Discussed role of valence neutrons in the formation of molecular-type bonds between clusters. Description of cluster structures. Comparison with experimental data.

doi: 10.1103/PhysRevC.97.024334


2019MO01

At.Data Nucl.Data Tables 125, 1 (2019)

P.Moller, M.R.Mumpower, T.Kawano, W.D.Myers

Nuclear properties for astrophysical and radioactive-ion-beam applications (II)

NUCLEAR STRUCTURE Z=8-136; calculated the ground-state odd-proton and odd-neutron spins and parities, proton and neutron pairing gaps, one- and two-neutron separation energies, quantities related to β-delayed one- and two-neutron emission probabilities, average energy and average number of emitted neutrons, β-decay energy release and T1/2 with respect to Gamow-Teller decay with a phenomenological treatment of first-forbidden decays, one- and two-proton separation energies, and α-decay energy release and half-life.

doi: 10.1016/j.adt.2018.03.003


2019MU03

Phys.Rev. C 99, 011302 (2019)

I.Murray, M.MacCormick, D.Bazin, P.Doornenbal, N.Aoi, H.Baba, H.Crawford, P.Fallon, K.Li, J.Lee, M.Matsushita, T.Motobayashi, T.Otsuka, H.Sakurai, H.Scheit, D.Steppenbeck, S.Takeuchi, J.A.Tostevin, N.Tsunoda, Y.Utsuno, H.Wang, K.Yoneda

Spectroscopy of strongly deformed 32Ne by proton knockout reactions

NUCLEAR REACTIONS 9Be(33Na, 32Ne), (34Mg, 32Ne), E=235, 221 MeV/nucleon; measured reaction products, Eγ, Iγ, γγ-coin, time of flight and energy loss, σ for one- and two-proton knockout reactions populating levels in 32Ne using the ZeroDegree spectrometer for particle identification and the DALI2 array for γ detection at the RIKEN-RIBF facility. 32Ne; deduced first 2+ and 4+ levels, configuration, E(first 4+)/E(first 2+) ratio. Systematics of energies of the first 2+ and 4+ levels in 26,28,30,32,34,36Ne, 28,30,32,34,36,38Mg, 30,32,34,36,38,40Si. Systematics of cross sections of two-proton knockout reactions for residues of 26,28,30,32Ne. Comparison of experimental inclusive and exclusive reaction cross sections with shell-model and eikonal reaction dynamical calculations.

doi: 10.1103/PhysRevC.99.011302


2020MI15

Phys.Rev. C 102, 034320 (2020)

T.Miyagi, S.R.Stroberg, J.D.Holt, N.Shimizu

Ab initio multishell valence-space Hamiltonians and the island of inversion

NUCLEAR STRUCTURE 16O; calculated levels, J, π, single-particle energies with 4He core and psd valence space, ground-state energies and expectation values of the Hamiltonian with the 4He and p, pd5/2, pd5/2s1/2, and psd valence spaces. 26,28,30,32,34Ne, 28,30,32,34,36Mg, 30,32,34,36,38Si; calculated excitation energies of the first excited 0+ states, and the number of exciting neutrons from sd to pf orbits. 20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37Ne, 22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39Mg, 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42Si; calculated ground-state energies, S(2n), energies of the first 2+ states and corresponding B(E2) values for even-even nuclei. 26,30Ne, 32Mg, 34Si; calculated energies and B(E2) of the 0+ and 2+ excited states from sd and sdf7/2p3/2 orbitals. 14,15,16,17,18,19,20,21,22O; calculated ground-state energies and charge radii. 40,41,42,43,44,45,46,47,48Ca; calculated changes in charge radii. Valence-space in-medium similarity renormalization group (VS-IMSRG) approach to derive the first multishell valence-space Hamiltonians from ab initio theory for calculation of properties of nuclei in the island-of-inversion region above oxygen. Comparison with experimental data.

doi: 10.1103/PhysRevC.102.034320


2020TS03

Nature(London) 587, 66 (2020)

N.Tsunoda, T.Otsuka, K.Takayanagi, N.Shimizu, T.Suzuki, Y.Utsuno, S.Yoshida, H.Ueno

The impact of nuclear shape on the emergence of the neutron dripline

NUCLEAR STRUCTURE 22,24,26,28,30,32,34,36Ne, 24,26,28,30,32,34,36,38,40,42Mg, 23,25,27,29,31,33,35,37Na, 19,21,23,25,27,29F; analyzed available data; calculated 2+ and 4+ energies using configuration interaction, ground-state energies, dripline, magic numbers, J, π and energy levels using nucleon-nucleon interactions, nuclear shapes. Comparison with ENSDF library, available data; deduced mechanism for the formation of the neutron dripline.

doi: 10.1038/s41586-020-2848-x


2021IN02

Int.J.Mod.Phys. E30, 2150009 (2021)

E.J.In, P.Papakonstantinou, Y.Kim, S.-W.Hong

Neutron drip line in the deformed relativistic Hartree-Bogoliubov theory in continuum: Oxygen to Calcium

NUCLEAR STRUCTURE 22,23,24,25,26,27,28,29,30,31,32,33,34Ne, 26,27,28,29,30,31,32,33,34,35,36,37,38Mg, 30,31,32,33,34,35,36,37,38,39,40Si, 34,35,36,37,38,39,40,41,42S, 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54Ar; calculated deformation parameters.

doi: 10.1142/S0218301321500099


2021MI17

Phys.Rev. C 104, 044321 (2021)

F.Minato, T.Marketin, N.Paar

β-delayed neutron-emission and fission calculations within relativistic quasiparticle random-phase approximation and a statistical model

RADIOACTIVITY Z=8-110, N=11-209, A=19-318(β-), (β-n); calculated T1/2, β--delayed neutron emission (BDNE) branching ratios (P0n, P1n, P2n, P3n, P4n, P5n, P6n, P7n, P8n, P9n, P10n), mean number of delayed neutrons per beta-decay, and average delayed neutron kinetic energy, total beta-delayed fission and α emission branching ratios for four fission barrier height models (ETFSI, FRDM, SBM, HFB-14). Z=93-110, N=184-200, A=224-318; calculated T1/2, β--delayed fission (BDF) branching ratios (P0f, P1f, P2f, P3f, P4f, P5f, P6f, P7f, P8f, P9f, P10f), total beta-delayed fission and beta-delayed neutron emission branching ratios for four fission barrier height models 140,162Sn; calculated β strength functions, β--delayed neutron branching ratios from P0n to P10n by pn-RQRPA+HFM and pn-RQRPA methods. 137,138,139,140,156,157,158,159,160,161,162Sb; calculated isotope production ratios as a function of excitation energy. 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156Pd, 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159Ag, 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250Os, 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255Ir; calculated β-delayed one neutron branching ratio P1n by pn-RQRPA+HFM, pn-RQRPA, and FRDM+QRPA+HFM methods, and compared with available experimental data. 89Br, 138I; calculated β-delayed neutron spectrum by pn-RQRPA+HFM method, and compared with experimental spectra. 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330Fm; calculated fission barrier heights for HFB-14, FRDM, ETFSI and SBM models, mean numbers and mean energies of emitted β-delayed neutrons by pn-RQRPA+HFM and pn-RQRPA methods. 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99Ni, 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,161,162,163,164,165,166,167,168,169,170Sn; calculated mean numbers and mean energies of emitted β-delayed neutrons by pn-RQRPA+HFM and pn-RQRPA methods. Z=70-110, N=120-190; calculated β--delayed α branching ratios Pα (%) for FRDM fission barrier data. Fully self-consistent covariant density-functional theory (CDFT), with the ground states of all the nuclei calculated with the relativistic Hartree-Bogoliubov (RHB) model with the D3C* interaction, and relativistic proton-neutron quasiparticle random-phase approximation (pn-RQRPA) for β strength functions, with particle evaporations and fission from highly excited nuclear states estimated by Hauser-Feshbach statistical model (pn-RQRPA+HFM) for four fission barrier height models (ETFSI, FRDM, SBM, HFB-14). Detailed tables of numerical data for β-delayed neutron emission (BDNE), β-delayed fission (BDF) and β-delayed α-particle emission branching ratios are given in the Supplemental Material of the paper.

doi: 10.1103/PhysRevC.104.044321


2021WA16

Chin.Phys.C 45, 030003 (2021)

M.Wang, W.J.Huang, F.G.Kondev, G.Audi, S.Naimi

The AME 2020 atomic mass evaluation (II). Tables, graphs and references

ATOMIC MASSES A=1-295; compiled, evaluated atomic masses, mass excess, β-, ββ and ββββ-decay, binding, neutron and proton separation energies, decay and reaction Q-value data.

doi: 10.1088/1674-1137/abddaf


2022CR03

Phys.Rev.Lett. 129, 212501 (2022)

H.L.Crawford, V.Tripathi, J.M.Allmond, B.P.Crider, R.Grzywacz, S.N.Liddick, A.Andalib, E.Argo, C.Benetti, S.Bhattacharya, C.M.Campbell, M.P.Carpenter, J.Chan, A.Chester, J.Christie, B.R.Clark, I.Cox, A.A.Doetsch, J.Dopfer, J.G.Duarte, P.Fallon, A.Frotscher, T.Gaballah, T.J.Gray, J.T.Harke, J.Heideman, H.Heugen, R.Jain, T.T.King, N.Kitamura, K.Kolos, F.G.Kondev, A.Laminack, B.Longfellow, R.S.Lubna, S.Luitel, M.Madurga, R.Mahajan, M.J.Mogannam, C.Morse, S.Neupane, A.Nowicki, T.H.Ogunbeku, W.-J.Ong, C.Porzio, C.J.Prokop, B.C.Rasco, E.K.Ronning, E.Rubino, T.J.Ruland, K.P.Rykaczewski, L.Schaedig, D.Seweryniak, K.Siegl, M.Singh, S.L.Tabor, T.L.Tang, T.Wheeler, J.A.Winger, Z.Xu

Crossing N = 28 Toward the Neutron Drip Line: First Measurement of Half-Lives at FRIB

RADIOACTIVITY 44,45P, 42,43Si, 39,40,41Al, 36,37,38Mg, 35Na, 32Ne, 29F(β-), (β-n), (β-2n) [from 9Be(48Ca, X), E=172.3 MeV/nucleon]; measured decay products, Eβ, Iβ, En, In; deduced T1/2. Comparison with the latest quasiparticle random phase approximation and shell-model calculations and available data. The Facility for Rare Isotope Beams (FRIB) with the FRIB decay station initiator.

doi: 10.1103/PhysRevLett.129.212501


2022GU11

Chin.Phys.C 46, 064106 (2022)

J.Guo, D.H.Chen, X.-R.Zhou, Q.B.Chen, H.-J.Schulze

Effects of a kaonic meson on the ground-state properties of nuclei

NUCLEAR STRUCTURE 5,6,7,8,9,10,11,12,13,14,15,16,17,18Be, 11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28O, 15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34Ne; calculated energies of the highest-occupied nucleon s.p. levels, partial neutron and proton s.p. levels within an axially-deformed Skyrme-Hartree-Fock approach combined with a Skyrme-type kaon-nucleon interaction.

doi: 10.1088/1674-1137/ac5601


2022SU17

Chin.Phys.C 46, 074106 (2022)

Q.-K.Sun, T.-T.Sun, W.Zhang, S.-S.Zhang, C.Chen

Possible shape coexistence in odd-A Ne isotopes and the impurity effects of Λ hyperons

NUCLEAR STRUCTURE 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34Ne; calculated binding energy per nucleon, quadrupole deformation, potential energy curves (PECs) as a function of the deformation parameter in the framework of the multidimensionally constrained relativistic-mean-field (MDC-RMF) model.

doi: 10.1088/1674-1137/ac6153


2022YU07

Phys.Rev. C 106, 054309 (2022)

E.Yuksel, F.Mercier, J.-P.Ebran, E.Khan

Clustering in nuclei at finite temperature

NUCLEAR STRUCTURE 20,32Ne; calculated deformation parameter, pairing gap, entropy, total intrinsic density and excitation energy as a function of temperature, proton, neutron and α localization densities, proton and nuetron isoscalar and isovector densities. Finite temperature relativistic Hartree-Bogoliubov (FT-RHB) method with the relativistic density-dependent meson-nucleon coupling functional DD-ME2.

doi: 10.1103/PhysRevC.106.054309