References quoted in the ENSDF dataset: 167TM ADOPTED LEVELS, GAMMAS
68 references found.
Clicking on a keynumber will list datasets that reference the given article.
Phys.Rev. 74, 1733 (1948)
G.Wilkinson, H.G.Hicks
Some New Radioactive Isotopes of Tb, Ho, Tm, Lu, Ta, W, and Re
RADIOACTIVITY 152,153,154,155Tb(EC), 160,161,162,163Ho(EC), 164Ho(β-), 166,167,168Tm(EC), 170,171,172Lu(EC), 176,177,178Ta(EC), 179,178W(EC), 182,183,184Re(EC); measured decay products; deduced T1/2, decay energies. The 60-inch Crocker Laboratory cyclotron.
Phys.Rev. 75, 1370 (1949)
G.Wilkinson, H.G.Hicks
Radioactive Isotopes of the Rare Earths. I. Experimental Techniques and Thulium Isotopes
Phys.Rev. 94, 968 (1954)
T.H.Handley, E.L.Olson
Ytterbium-167
Phys.Rev. 93, 1422 (1954); see keynumber 1954MI16
M.C.Michel, D.H.Templeton
Mass Assignments by Isotope Separation
NUCLEAR REACTIONS Au(α, xn), E=40 MeV; measured 198Tl, 166,169Yb, 161,160Er, 166,165,167Tm isotope masses. Tof isotope separator.
RADIOACTIVITY 198m,198Tl(EC), (β+) [from Au(α, xn), E=40 MeV]; 169,166Yb, 160Er, 167Tm(EC); 165,166Tm, 161Er(EC), (β+); measured T1/2. Tof isotope separator mass assignment.
Phys.Rev. 97, 1092 (1955)
W.E.Nervik, G.T.Seaborg
Tantalum Spallation and Fission Induced by 340-MeV Protons
RADIOACTIVITY 107mRh; 160Er(EC), 160Ho, 167Yb(EC), (β+) [from Ta(p, X), (p, F), E=340 MeV]; measured T1/2. Activation technique.
NUCLEAR REACTIONS Ta(p, X), (p, F), E=340 MeV; measured spallation, fission fragment yield vs mass; deduced most probable fragment, fissionable nucleus masses, spallation reaction mechanism.
J.Inorg.Nuclear Chem. 15, 205 (1960)
F.D.S.Butement, P.Glentworth
New Radioactive Isotopes of the Rare Earth Elements
NUCLEAR STRUCTURE 172Lu, 167Tm, 166Tm, 167Yb, 167Lu, 165Er, 163Tm, 163Er, 164Yb, 158Tb, 161Er, 161Tm; measured not abstracted; deduced nuclear properties.
doi: 10.1016/0022-1902(60)80042-5
Nuclear Phys. 21, 340 (1960)
H.Narasimhaiah, M.L.Pool
Radioactive Decay of Tm167
NUCLEAR STRUCTURE 167Tm; measured not abstracted; deduced nuclear properties.
doi: 10.1016/0029-5582(60)90058-4
J.Inorg.Nuclear Chem. 21, 193 (1961)
S.Bjornholm, H.L.Nielsen, O.B.Nielsen, G.Sidenius, O.Skilbreid, A.Svanheden
Some Neutron-Deficient Isotopes of Thulium and Erbium. A Survey of Half-Lives and Gamma-Ray Spectra with the Use of Mass-Separated Samples
NUCLEAR STRUCTURE 159Dy, 162Tm, 161Ho, 160Er, 167Tm, 166Tm, 163Er, 163Ho, 163Tm, 165Er, 164Tm, 168Tm, 169Er, 165Tm; measured not abstracted; deduced nuclear properties.
doi: 10.1016/0022-1902(61)80292-3
Phys.Rev. 121, 224 (1961)
J.C.Walker, D.L.Harris
Nuclear Spins of Thulium-166 and 167
NUCLEAR STRUCTURE 166Tm, 167Tm; measured not abstracted; deduced nuclear properties.
Phys.Rev. 127, 217 (1962)
N.A.Bonner, W.Goishi, W.H.Hutchin, G.M.Iddings, H.A.Tewes
Half-Lives of Tm167, Tm168, Tm170, Lu171, Lu172, Lu173, Lu174, Lu174m, Au195, Au196, and Au196m
NUCLEAR STRUCTURE 170,167,168Tm, 174m,174,173,172,171Lu, 195Au, 196m,196Au; measured not abstracted; deduced nuclear properties.
Can.J.Chem. 41, 2544 (1963)
G.V.S.Rayudu, L.Yaffe
Reactions Produced on Erbium by Protons of Energies between 6 and 87 MeV
NUCLEAR STRUCTURE 166Tm, 167Tm, 163Tm, 165Tm, 165Er, 164Tm, 169Er, 168Tm, 170Tm, 160Ho, 160Er, 157Dy, 161Tm, 161Ho, 162Tm, 161Er, 159Dy; measured not abstracted; deduced nuclear properties.
doi: 10.1139/v63-374
Phys.Letters 12, 33 (1964)
K.E.G.Lobner
Half-Life Measurements of Excited States in Ta179 and Tm167
doi: 10.1016/0031-9163(64)91165-5
Nucl.Phys. 62, 305(1965)
T.Tamura
Decay of 167Yb
RADIOACTIVITY 167Yb[from 168Yb(γ, n)]; measured T1/2, Eβ, Eγ, Iβ, Iγ, βγ-, γγ-, Xγ-coin, γγ-, Xγ-, XX-delay. 167Tm deduced levels, J, π, T1/2, log ft. Natural target.
doi: 10.1016/0029-5582(65)90872-2
Izv.Akad.Nauk SSSR, Ser.Fiz. 30, 501 (1966); Bull.Acad.Sci.USSR, Phys.Ser. 30, 510 (1967)
V.Feifrlik
On the Decoupling Parameter in Thulium Isotopes
NUCLEAR STRUCTURE 171Tm, 169Tm, 167Tm; measured not abstracted; deduced nuclear properties.
J.Inorg.Nucl.Chem. 30, 15 (1968)
D.R.Nethaway, M.C.Missimer
The Half-Lives of 166Ho, 167Tm, 168Tm and the 165Ho(n, γ)166mHo Cross Section
NUCLEAR STRUCTURE 166Ho, 168Tm, 167Tm; measured not abstracted; deduced nuclear properties.
doi: 10.1016/0022-1902(68)80056-9
Nucl.Phys. A115, 193 (1968)
T.Tamura
Decay of 165Yb
RADIOACTIVITY 165Yb[from 169Tm(p, 5n)]; measured T1/2, Eβ, Eγ, Iβ, Iγ, I(ce), Xγ-, γce-delay. 165Tm deduced levels, T1/2, J, π, log ft.
doi: 10.1016/0375-9474(68)90652-0
Izv.Akad.Nauk SSSR, Ser.Fiz. 33, 1384 (1969); Bull.Acad.Sci.USSR, Phys.Ser. 33, 1278 (1970)
A.S.Chernyshev, L.P.Rapoport
On the Effect of Spin Interaction on Decoupling Parameters
NUCLEAR STRUCTURE 159Tb, 167,169,171Tm, 173,177Lu, 165Dy, 163,165,167,169Er, 169,171,177Yb, 173,175,179,181Hf, 181,183W; calculated quasiparticle spin-spin interaction effect on decoupling parameter.
Izv.Akad.Nauk SSSR, Ser.Fiz. 34, 2092 (1970);Bull.Acad.Sci. USSR, Phys.Ser. 34, 1867 (1971)
R.Foucher, J.Letessier
Magnetic Quadrupole Transition in Nuclei
NUCLEAR STRUCTURE 167,171Tm, 170Lu, 187,189Ir, 183W, 180Hf, 190Os, 179Hf, 175Ta, 13C, 39K, 209Pb, 201Tl, 205,208Pb; A=13-250; calculated M2 transition probabilities, hindrance factors.
Phys.Lett. 31B, 201 (1970)
S.A.Hjorth, H.Ryde
Non-Adiabatic Corrections to the Decoupling Parameter for the 1/2- [541] Rotational Band
NUCLEAR STRUCTURE 167Tm, 169,171Lu, 175,177Ta, 181,183Re; calculated deformation, decoupling, rotational parameters. Non-adiabatic coupling.
doi: 10.1016/0370-2693(70)90103-6
J.Inorg.Nucl.Chem. 32, 2817 (1970)
P.J.Karol
Half-Life Determinations for 169,170,171Lu, 166Yb, 165,166,167Tm, and 160Er
RADIOACTIVITY 169,170,171Lu, 166Yb, 165,166,167Tm, 160Er; measured T1/2.
doi: 10.1016/0022-1902(70)80343-8
Nucl.Phys. A142, 72 (1970)
W.I.Van Rij, C.T.Hess
The Deformed Spin-Orbit Potential in Nilsson-Model Calculations
NUCLEAR STRUCTURE 152Eu, 157,159Tb, 165,167,169,171Tm, 167,169Er, 171,173Yb, 177,179,181Hf, 183W, 175,177Lu, 183,185Re, 191Ir, 185,187,189Os; calculated levels, decoupling parameters, μ. Nilsson model, deformed spin-orbit potential.
doi: 10.1016/0375-9474(70)90475-6
Phys.Lett. 40B, 305 (1972)
D.A.Arseniev, S.I.Fedotov, V.V.Pashkevich, V.G.Soloviev
The Effect of Changes in Equilibrium Deformations of the Excited States of Odd-A Deformed Nuclei on their Energy and Structure
NUCLEAR STRUCTURE 153,155Sm, 157,159,161Gd, 159,161Dy, 165,167,171Tm, 169,173,175Lu, 177Ta; calculated levels, wave functions for 1-phonon states. A=153-177; calculated equilibrium deformations. Quasiparticle-phonon interaction.
doi: 10.1016/0370-2693(72)90805-2
Izv.Akad.Nauk SSSR, Ser.Fiz. 36, 706 (1972); Bull.Acad.Sci.USSR, Phys.Ser. 36, 637 (1973)
V.G.Solovev, S.I.Fedotov
Nonrotational States in Odd-Z Deformed Nuclei with 153 < A < 177
NUCLEAR STRUCTURE 153Eu, 155,157,159,161Tb, 159,161,163Ho, 165,167,171Tm, 169,173,175Lu, 177Ta; calculated levels, J, K, π, B(E2).
Priv.Comm. (September 1973)
G.Andersson, A.Rosen
Phys.Scr. 7, 31 (1973)
C.Ekstrom, I.L.Lamm
Ground State Properties of Deformed Rare-Earth Nuclei
NUCLEAR STRUCTURE Dy, Ho, Er, Tm calculated levels, J, π, μ, quadrupole moment.
Fiz.Elem.Chastits At.Yadra 4, 357 (1973); Sov.J.Particles Nucl. 4, 148 (1974)
F.A.Gareev, S.P.Ivanova, V.G.Solovev, S.I.Fedotov
Single-Particle Energies and Wave Functions of the Woods-Saxon Potential and Nonrotational States of Odd Nuclei in the Range 150 < A < 190
NUCLEAR STRUCTURE A=151-189; 153,155Sm, 155,157,159,161Gd, 157,159,161,163,165Dy, 163,165,167,169Er, 159,161,163,165Ho, 165,167,169Tm; calculated levels, J, π.
Nucl.Phys. A199, 1 (1973)
G.Winter, L.Funke, P.Kemnitz, H.Sodan
E1 Interband Transitions between Rotational Bands in Odd-Proton Nuclei
NUCLEAR STRUCTURE 161,163Ho, 167Tm, 171,173Lu rotational states analyzed E1/E2 branching; deduced B(E1).
doi: 10.1016/0375-9474(73)90329-1
Can.J.Phys. 52, 2108 (1974)
H.C.Cheung, D.G.Burke, G.Lovhoiden
Odd Proton States in 165Tm, 167Tm, 169Tm, and 171Tm
NUCLEAR REACTIONS 164,166,168,170Er(3He, d), E=24 MeV; 164,166,168,170Er(α, t), E=27 MeV; measured σ(Ed, θ), σ(Et, θ). 165,167,169,171Tm levels deduced J, π.
Yad.Fiz. 20, 873 (1974); Sov.J.Nucl.Phys. 20, 465 (1975)
F.-R.May, L.Munchow, S.Frauendorf
Phenomenological Description of Rotational Bands in Odd Nuclei by the Angular Momentum Projection Method
NUCLEAR STRUCTURE 155,157,159Tb, 155Gd, 157,159,161,163,165Ho, 161Er, 167,169Tm, 169Yb, 171,173Lu, 171,173,175Hf, 177,179Ta, 181,183Re, 185Os; calculated projection model parameters for rotational bands.
Nucl.Phys. A245, 376 (1975)
B.S.Nielsen, M.E.Bunker
Equilibrium Deformations and Excitation Energies for Non-Collective States in Odd-Z Rare-Earth Nuclei
NUCLEAR STRUCTURE 153,155Eu, 155,157,159,161Tb, 159,161,163,165Ho, 165,167,169,171Tm, 169,171,173,175,177Lu, 177,179,181,183Ta, 181,183,185,187Re; calculated levels, equilibrium deformation parameters.
doi: 10.1016/0375-9474(75)90616-8
Phys.Lett. 60B, 241 (1976)
W.Andrejtscheff, K.D.Schilling, G.Winter
The Effect of Hexadecapole Deformations on E1 Transition Strengths
NUCLEAR STRUCTURE 161,163,165Ho, 165,167,169,171Tm; analyzed B(E1); deduced effect of hexadecapole deformations.
doi: 10.1016/0370-2693(76)90290-2
Nucl.Instrum.Methods 133, 99 (1976)
J.Lindskog, L.-G.Svensson
An Electron-Electron Coincidence Spectrometer Adapted for in-Beam Measurement of Short Nuclear Lifetimes
NUCLEAR REACTIONS 167Er(p, n), E=10 MeV; measured Xce(t). 167Tm level deduced T1/2.
Phys.Scr. 13, 193 (1976)
L.-G.Svensson, H.Solhed, N.-G.Jonsson, S.M.Darwish, J.Lindskog
Level Structure and Transition Probabilities in 165Tm and 167Tm
NUCLEAR REACTIONS 166Er(p, nγ), (p, 2nγ), E=8-12 MeV; measured σ(E, Eγ), γγ-coin, I(ce), γγ(t). 167Tm deduced levels, J, π, ICC, quadrupole moment, g, T1/2, B(λ). 165Tm level deduced T1/2, λ.
J.Phys.(London) G3, 1255 (1977)
K.D.Schilling, W.Andrejtscheff, G.Winter
Hexadecapole Deformations and E1 Transitions in Odd-A Ho and Tm Nuclei
NUCLEAR STRUCTURE 161,163,165Ho, 163,165,167,169,171Tm; calculated B(E1).
doi: 10.1088/0305-4616/3/9/016
JINR-P6-80-364 (1980)
B.A.Alikov, Ya.Vavryshchuk, G.Lizurei, I.E.Marupov, K.M.Muminov, T.M.Muminov, U.S.Salikhbaev, R.R.Usmanov
Life Times of Low-Lying Excited States of 163,165,167Tm
RADIOACTIVITY 163,165,167Yb(EC), (β+); measured (ce)(ce)-, γ(ce)-coin. 163,165,167Tm deduced level T1/2, B(λ), δ, γ-multipolarity.
Izv.Akad.Nauk SSSR, Ser.Fiz. 48, 875 (1984)
B.A.Alikov, K.Zuber, V.V.Pashkevich, E.G.Tsoi
Equilibrium Deformations of Single-Particle States of Odd Nuclei in the Rare Earth Region
NUCLEAR STRUCTURE 147,149,151,153,155,157,159,161Eu, 153,155,157,159,161,163,165,167,169,171,173Ho, 155,157,159,161,163,165,167,169,171,173Tm, 149,151,153,155,157,159,161Sm, 151,153,155,157,159,161,163Gd, 155,157,159,161,163,165,167,169,171,173Er, 157,159,161,163,165,167,169,171,173Yb; calculated quadrupole, hexadecapole moments, ground state energies. 151Pm, 155,157,161,163,165Dy, 175,177Lu, 157Tb; calculated quadrupole moments. 165Er, 165Tm; calculated hexadecapole moment level dependence.
Acta Phys.Pol. B16, 1079 (1985)
A.Superson, K.Pomorski
Rotational Properties of One-Quasiparticle Excited States of Odd-A Rare-Earth Nuclei
NUCLEAR STRUCTURE 153,155Eu, 155,157,159,161Tb, 161,163,165Ho, 167,169,171Tm, 171,173,175,177Lu, 177,179,181,183Ta, 181,183,185,187Re; calculated moment of inertia, Coriolis decoupling parameters. Cranking model, adiabatic approximation, deformed Nilsson potential, BCS approximation, pairing forces.
Izv.Akad.Nauk SSSR, Ser.Fiz. 50, 2366 (1986); Bull.Acad.Sci.USSR, Phys.Ser. 50, No.12, 73 (1986)
G.D.Alkhazov, A.E.Barzakh, N.B.Buyanov, V.P.Denisov, A.G.Dernyatin, V.S.Ivanov, V.S.Letokhov, V.I.Mishin, S.K.Sekatsky, V.N.Fedoseev, I.Ya.Chubukov
Hyperfine Structure and the Electromagnetic Moments of Thulium Isotopes
NUCLEAR MOMENTS 169Tm; measured hfs; deduced hyperfine constants. 169Tm deduced μ, rms charge radius.
RADIOACTIVITY 157,158,159,160,161,162,163,164,165,166,167,168,170Tm; measured hfs; deduced hyperfine constants. 157,158,159,160,161,162,163,164,165,166,167,168,170Tm deduced μ, rms charge radii.
Izv.Akad.Nauk SSSR, Ser.Fiz. 51, 15 (1987); Bull.Acad.Sci.USSR, Phys.Ser. 51, No.1, 13 (1987)
I.Adam, B.A.Alikov, Kh.N.Badalov, M.Gonusek, G.I.Lizurei, T.M.Muminov, I.A.Sharonov
Electromagnetic Transition Probabilities of Odd Tm Nuclei
NUCLEAR STRUCTURE 163,165,167,169,171Tm; analyzed B(λ) data. 163,165,167,169,171Tm deduced B(E1) systematics.
Yad.Fiz. 45, 45 (1987)
A.E.Barzakh, V.E.Starodubsky
Hartree-Fock Description of Deformed Thulium Isotopes
NUCLEAR STRUCTURE 157,158,159,160,161,162,163,164,165,166,167,168,169Tm; calculated ground state quadrupole, magnetic moments, charge radii, binding energies. Hartree-Fock theory.
Zh.Eksp.Teor.Fiz. 93, 410 (1987)
V.I.Mishin, S.K.Sekatsky, V.N.Fedoseyev, N.B.Buyanov, V.S.Letokhov, G.D.Alkhazov, A.E.Barzakh, V.P.Denisov, V.S.Ivanov, I.Ya.Chubukov
Ultrasensitive Laser Resonance Photoionization Spectroscopy of Chain of 157-172Tm Radioactive Isotopes with a Proton Accelerator
NUCLEAR MOMENTS 169Tm; measured hfs, isotopic shift; deduced magnetic dipole, electric quadrupole moments. Laser resonant photoionization.
RADIOACTIVITY 157,158,159,160,161,162,163,164,165,166,167,168,170,171,172Tm; measured hfs, isotopic shifts; deduced magnetic dipole, electric quadrupole moments, rms charge radii. Laser resonant photoionization.
Nucl.Phys. A477, 37 (1988)
G.D.Alkhazov, A.E.Barzakh, I.Ya.Chubukov, V.P.Denisov, V.S.Ivanov, V.N.Panteleev, V.E.Starodubsky, N.B.Buyanov, M.N.Fedoseyev, V.S.Letokhov, V.I.Mishin, S.K.Sekatskii
Nuclear Electromagnetic Moments and Charge Radii of Deformed Thulium Isotopes with the Mass Numbers A = 157-172
NUCLEAR MOMENTS 169Tm; measured hfs, isotope shifts; deduced hyperfine constants. 169Tm deduced μ, quadrupole moments, rms charge radius. Resonance ionization spectroscopy.
RADIOACTIVITY 157,158,159,160,161,162,163,164,165,166,167,168,170,171,172Tm; measured hfs, isotopes shifts; deduced hyperfine constants. 157,158,159,160,161,162,163,164,165,166,167,168,170,171,172Tm deduced μ, quadrupole moments, rms charge radii. Resonance ionization spectroscopy.
doi: 10.1016/0375-9474(88)90359-4
Pramana 32, 209 (1989)
K.Jain, A.K.Jain, R.K.Sheline
Effective Decoupling in Some Odd-A Odd-Z Rotational Bands
NUCLEAR STRUCTURE 161,163Ho, 163,165,167,169Tm, 165,167,169,171,173,175,177Lu, 179,181,175,177Ta, 181,183,179Re, 185Ir; calculated levels, band structure, B(λ). Quasiparticle-plus-rotor band mixing calculations.
Nucl.Phys. A512, 61 (1990)
W.Nazarewicz, M.A.Riley, J.D.Garrett
Equilibrium Deformations and Excitation Energies of Single-Quasiproton Band Heads of Rare-Earth Nuclei
NUCLEAR STRUCTURE 148,150,152,154,156,158,160Sm, 150,152,154,156,158,160,162,164,166Gd, 152,154,156,158,160,162,164,166,168Dy, 154,156,158,160,162,164,166,168,170Er, 154,156,158,160,162,164,166,168,170,172,174,176,178,180Yb, 158,160,162,164,166,168,170,172,174,176,178,180,182Hf, 164,166,168,170,172,174,176,178,180,182,184,186,188W, 170,172,174,176,178,180,182,184,186,188,190,192,194Os, 151,153,155,157,159,161Eu, 153,155,157,159,161,163,165Tb, 153,155,157,159,161,163,165,167,169,171Ho, 157,159,161,163,165,167,169,171,173Tm, 161,163,165,167,169,171,173,175,177Lu, 167,169,171,173,175,177,179,181,183,185Ta, 173,175,177,179,181,183,185,187,189Re; calculated equilibrium deformations. Shell correction method, average Woods-Saxon potential, monopole pairing residual interaction.
doi: 10.1016/0375-9474(90)90004-6
Izv.Akad.Nauk SSSR, Ser.Fiz. 55, 34 (1991); Bull.Acad.Sci.USSR, Phys.Ser. 55, No.1, 31 (1991)
A.A.Abdurazakov, Yu.Sh.Adib, A.K.Karakhodzhaev
Rotational-Band Electromagnetic S Constants
NUCLEAR STRUCTURE 153,155,157Gd, 155,157,159,161Dy, 161,163,165,167Er, 167,169,171,165,173Yb, 153Eu, 153,155,157,159Tb, 167Tm; calculated rotational bands electromagnetic constants, δ, transition γ-multipolarity.
Phys.Rev.Lett. 69, 1500 (1992)
C.Baktash, J.D.Garrett, D.F.Winchell, A.Smith
Low-Spin Identical Bands in Neighboring Odd-A and Even-Even Nuclei: A possible challenge to mean-field theories
NUCLEAR STRUCTURE 157,161,163Ho, 159,161,163,167,169Tm, 163,165,167,169,171,173,175,177Lu, 171,173,175,177,179,181Ta, 177,181,183,185Re, 175,177,185Ir; analyzed band structure; deduced identical bands at deformations between normal, superdeformed values.
doi: 10.1103/PhysRevLett.69.1500
Chin.J.Nucl.Phys. 14, No 2, 183 (1992)
C.Zhou, T.Liu
Parameterization of Rotational Spectra
NUCLEAR STRUCTURE 170Yb, 167Tm, 170,167Er; analyzed rotational spectra; deduced parametrization.
Phys.Rev.Lett. 69, 3448 (1992)
J.-Y.Zhang, L.L.Riedinger
Identical Bands at Normal Deformation: Criteria and challenges
NUCLEAR STRUCTURE 167,161,169Tm, 165,167,173,171,175Lu, 173,177Ta, 185,183Re; analyzed band structure; deduced pairing, deformation decreases cancellations.
doi: 10.1103/PhysRevLett.69.3448
Phys.Rev. C47, 2008 (1993)
G.B.Hagemann, I.Hamamoto, W.Satula
Electric-Dipole Transitions and Octupole Softness in Odd-A Rare-Earth Nuclei
NUCLEAR STRUCTURE 157Ho, 165,167Tm, 169,171,173Lu, 163Er, 163,165,167Yb, 177Hf; calculated levels, B(λ), Eγ; deduced octupole softness role. One quasiparticle coupled to axially symmetric rotor.
Chin.J.Nucl.Phys. 15, No 3, 229 (1993)
Q.Luo, G.Dai
Fission Macroscopic Model of Rotating Nuclei
NUCLEAR STRUCTURE 252Cf, 159Tb; calculated fission barrier height, saddle point energy. 167Tm; calculated saddle point energy in fission. Rotating nuclei, different liquid drop models.
Phys.Lett. 324B, 273 (1994)
I.Hamamoto, S.Mizutori
Dynamical Moments of Inertia at Normal Deformation in Neighbouring Odd and Even-Even Nuclei
NUCLEAR STRUCTURE 157,159,161,163Ho, 159,161,163,165,167,169Tm, 163,165,167,169,171,173,175Lu, 171,173,175,177,179,181Ta, 177,179,181,183,185Re; calculated dynamical moments of inertia fractional changes. Cranking HFB calculations.
doi: 10.1016/0370-2693(94)90193-7
Phys.Rev. C50, 746 (1994)
J.Y.Zeng, Y.A.Lei, T.H.Jin, Z.J.Zhao
Blocking Effect and Odd-Even Differences in the Moments of Inertia of Rare-Earth Nuclei
NUCLEAR STRUCTURE 155,157,159Eu, 157,159,161,163Tb, 159,161,163,165,167Ho, 163,165,167,169,171,173Tm, 169,171,173,175Lu; analyzed moments of inertia odd-even differences. 160,161,162Dy, 164,165,166Er, 171Lu, 170Yb, 172Hf; calculated bandhead moments of inertia; deduced blocked levels associated features. Particle-number conserving treatment.
Fiz.Elem.Chastits At.Yadra 26, 384 (1995); Sov.J.Part.Nucl 26, 158 (1995)
B.S.Dzhelepov, N.N.Zhukovsky, S.A.Shestopalova
Mixing of Wave Functions with Different Quantum Numbers K in Rotational States of Deformed Nuclei with Intermediate Atomic Numbers (A = 151 to 187). Part I
NUCLEAR STRUCTURE 151Sm, 153,155Eu, 153,155,159Gd, 155,157Tb, 155,157,159,161,163Dy, 161Ho, 159,161,163,165,167,169Er, 161,163,165,167Tm, 163,165,167,169,171,173Yb, 169,177Lu, 177,179Hf, 175Ta, 179,181,183,185,187W, 177Re; compiled, reviewed rotational bands, wave functions mixing.
Phys.Rev. C51, 1819 (1995)
C.S.Wu
Decoupling and Anomalous Bandcrossings in Odd-Proton Nuclei
NUCLEAR STRUCTURE 161,163,165,167,169,171Tm, 165,167,169,171,173,175,177Lu, 167,169,171,173,175,177,179Ta, 171,173,175,177,179,181,183Re, 173,175,177,179,181,183,185Ir; analyzed rotational spectra; deduced decoupling parameter role in band crossing frequency shift.
Acta Phys.Pol. B28, 169 (1997)
H.J.Jensen, W.F.Mueller, W.Nazarewicz, W.Reviol, L.L.Riedinger, J.-Y.Zhang
Systematics of Energy Signature Splitting for πh9/2[541 (1/2)-] Roltational Bands in Odd-Z Rare-Earth Nuclei
NUCLEAR STRUCTURE 165,167Tm, 167,169,171,173Lu, 173Ta, 175,177,179Re, 179,181,185Ir, 181,183,185,187Au; analyzed πh(9/2) rotational bands signature splitting. Cranked shell-model calculations.
Z.Phys. A359, 127 (1997)
H.J.Jensen, R.A.Bark, R.Bengtsson, G.B.Hagemann, P.O.Tjom, S.Y.Araddad, C.W.Beausang, R.Chapman, J.Copnell, A.Fitzpatrick, S.J.Freeman, S.Leoni, J.C.Lisle, J.Simpson, A.G.Smith, D.M.Thompson, S.J.Warburton, J.Wrzesinski
Loss of Alignment Gain in the πh9/2[541 (1/2)-)] (x) (νi13/2)2 Band in 167Tm and Neighbouring Odd-Z N = 98 Nuclei
NUCLEAR REACTIONS 124Sn(48Ca, 4np), E=210 MeV; measured Eγ, Iγ, γγ-coin. 167Tm deduced high-spin levels, J, π, band structure. Cranked shell model calculations, data from other nuclei compared.
Chin.Phys.Lett. 14, 255 (1997)
Y.-J.Ma, Y.-Z.Liu
Low-Spin Identical Bands in Non-Adjacent Odd-A and Even-Even Nuclei
NUCLEAR STRUCTURE 161Ho, 161,167,171Tm, 163,165,171,175,177Lu, 173,175,177,179Ta, 175,177,179,181,183Re, 181,187Ir, 156,158Gd, 174,164,176,172,166,170Yb, 164,162Dy, 158,160,162,164,168Er, 176,166,170,178,180Hf, 178,180,172W, 180,182,188Os; analyzed band structure in normally deformed nuclei; deduced identical band features.
Nucl.Phys. A620, 296 (1997)
M.Matsuo, T.Dossing, E.Vigezzi, S.Aberg
Level Statistics of Near-Yrast States in Rapidly Rotating Nuclei
NUCLEAR STRUCTURE 160,161,162,163,164,165Dy, 162,163,164,165,166,167Er, 166,167,168,169,170,171,172,173Yb, 161,162,163,164,165,166Ho, 163,164,165,166,167,168Tm, 167,168,169,170,171,172,173,174Lu; analyzed high-spin level data; deduced nearest neighbor level spacing distribution related features. Cranked shell model.
doi: 10.1016/S0375-9474(97)00170-X
Bull.Rus.Acad.Sci.Phys. 65, 659 (2001)
S.V.Karyagin
Candidate Nuclei and Active Media for a Gamma-Laser
NUCLEAR STRUCTURE 43,44,45,46Sc, 58Co, 57Fe, 63Ni, 65,67Zn, 74Ga, 69,73,75,77Ge, 76As, 77,79Se, 77,79,83Kr, 83Rb, 90,92Nb, 99Mo, 105Ru, 100,105Rh, 107Pd, 103,107,109,110,111,116,118,120Ag, 116,119In, 109Cd, 115Sn, 118,120,122,126Sb, 120,122I, 125Xe, 134,140Cs, 137,138La, 140Nd, 141,152,154Eu, 153,157Gd, 157,169,171Er, 165,167Tm, 172,173,177Lu, 173,175Hf, 177,181,183Ta, 179,180Re, 181Os, 187Pt, 189Au, 207,209,210Po, 206Bi, 243Cm; compiled, analyzed isomeric states T1/2, Eγ. Application to γ-lasers discussed.
Ukr.J.Phys. 49, 754 (2004)
A.K.Karakhodzhaev
Study of the electromagnetic constant S of rotational bands 7/2+[404] and 5/2-[512]
NUCLEAR STRUCTURE 165,169Lu, 167Tm, 167Er, 173Yb; calculated rotational bands mixing ratios, electromagnetic constant.
At.Data Nucl.Data Tables 99, 69 (2013)
I.Angeli, K.P.Marinova
Table of experimental nuclear ground state charge radii: An update
COMPILATION Z=0-96; compiled nuclear radii, rms nuclear charge radii.
doi: 10.1016/j.adt.2011.12.006
Phys.Rev. C 95, 031304 (2017)
Md.A.Asgar, T.Roy, G.Mukherjee, A.Dhal, S.Bhattacharya, S.Bhattacharyya, C.Bhattacharya, S.Bhattacharya, A.Chaudhuri, K.Banerjee, S.Kundu, S.Manna, R.Pandey, J.K.Meena, R.Palit, S.Biswas, S.Saha, J.Sethi, P.Singh, D.Choudhury
Return of backbending in 169Tm and the effect of the N=98 deformed shell gap
NUCLEAR REACTIONS 169Tm(32S, 32S'), E=164 MeV; measured Eγ, Iγ, γγ-coin, γγ(θ)(DCO), γγ(linear polarization) using INGA array at 14-UD BARC-TIFR Pelletron facility. 169Tm; deduced high-spin levels, J, π, multipolarities, bands, configurations, alignments, band crossings, deformation parameters. Comparison with cranked shell model calculations. Systematics of alignment plots of rotational bands in 165,167,169Tm nuclei.
NUCLEAR STRUCTURE 165,167,169Tm; calculated total Routhian surface (TRS) contours, quasineutron energy levels, crossing frequencies and interaction strengths at the band crossings in 1/2[411] bands. Comparison with experimental band crossing frequencies. Cranked shell model calculations.
doi: 10.1103/PhysRevC.95.031304
Phys.Rev. C 98, 024301 (2018)
D.Bucurescu, N.V.Zamfir
Empirical signatures of shape phase transitions in nuclei with odd nucleon numbers
NUCLEAR STRUCTURE 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152Ba, 133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154La, 130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157Ce, 130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158Pr, 132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161Nd, 133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162Pm, 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164Sm, 135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,167Eu, 136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166Gd, 137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170Tb, 138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169Dy, 140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171Ho, 142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172Er, 146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173Tm, 149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174Yb, 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,98,100Kr, 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,98,100Rb, 76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104Sr, 80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106Y, 80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107Zr, 84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110Nb, 84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110Mo, 87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,112Tc, 88,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113Ru, 89,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115Rh; analyzed nuclear level density parameter a for back-shifted Fermi gas model formula (BSFG), S(2n), mean square charge radii, isotope shifts, correlation between the energy ratios and the relative energies for the favored band of the νi13/2 structures in the odd-mass nuclei for even Z=64-76. 152,154,156Tb; analyzed correlation between relative excitation energies of the favored sequence of the (πh11/2, νi13/2) structure. Discussed nuclear level density at low excitation energies as indicator of first order shape phase transition in nuclei.
doi: 10.1103/PhysRevC.98.024301
INDC(NDS)-0794 (2019)
N.J.Stone
Table of Recommended Nuclear Magnetic Dipole Moments: Part I - Long-lived States
COMPILATION Z=0-99; compiled experimental values of nuclear magnetic moments.
Nucl.Phys. A986, 150 (2019)
E.Tabar
Magnetic properties of K=1/2 states in deformed odd-mass nuclei
NUCLEAR STRUCTURE 169Er, 167,169Tm, 171Yb; calculated gs magnetic moment, effective spin gyromagnetic factors, rotational decoupling parameter of K=1/2 states in deformed nuclei using Quasiparticle Phonon Nuclear Model (QPNM); deduced significant effect of two different quenched spin gyromagnetic factors on the magnetic properties of K=1/2 odd-mass nuclei, very good agreement with observed magnetic moments and the phenomenological value of gZs(eff).
doi: 10.1016/j.nuclphysa.2019.02.010
Phys.Rev. C 101, 054303 (2020)
Z.-H.Zhang, M.Huang, A.V.Afanasjev
Rotational excitations in rare-earth nuclei: A comparative study within three cranking models with different mean fields and treatments of pairing correlations
NUCLEAR STRUCTURE 164,166,168,170Er, 165,167,169,171Tm, 166,168,170,172Yb; calculated high-spin levels, J, π, Nilsson configurations, kinematic moment of inertia versus angular frequency plots for the ground-state bands, β and γ deformation parameters, proton and neutron pairing energies, total- and neutron and proton single particle-Routhians, angular momentum alignments, and neutron occupation probabilities using the cranked relativistic Hartree-Bogoliubov (CRHB) with Lipkin-Nogami method, the cranking covariant density functional theory (CDFT) with pairing correlations treated by a shell-model-like approach (SLAP), and the cranked shell model based on the Nilsson potential with pairing correlations treated by the particle-number conserving (CSM-PNC) method. Comparison with experimental data.
doi: 10.1103/PhysRevC.101.054303
Phys.Rev. C 104, 064311 (2021)
I.K.Alnamlah, E.A.Coello Perez, D.R.Phillips
Effective field theory approach to rotational bands in odd-mass nuclei
NUCLEAR STRUCTURE 99Tc, 159Dy, 167,169Er, 167,169Tm, 183W, 235U, 239Pu; calculated rotational bandhead energies, J, π, energy scales, relative correction to energies in bands at each order, low-energy constants (LECs) at each order for K=1/2 bands, for K=3/2 bands in 167Er and 159Dy, for K=5/2, 7/2 bands in 167Er and 235U. 169Er, 167,169Tm, 239Pu, 159Dy, 99Tc, 183W; calculated energies and energy residuals for ground-state and excited-state rotational bands at LO, NLO, N2LO, N3LO, and N4LO orders as follows: 1/2- g.s. band up to 35/2- for 169Er, 1/2+ g.s. band up to 31/2+ for 167Tm, 1/2+ excited band up to 19/2+ for 169Tm, 1/2+ g.s. band up to 53/2+ for 239Pu, 3/2- g.s. band up to 29/2- for 159Dy; 1/2- excited band up to 31/2- in 99Tc, and 1/2- g.s. band up to 35/2 in 183W. 167Er, 235U; calculated energy residuals for 1/2-, 5/2-, and 7/2+ rotational bands in 167Er, and for the 1/2+, 5/2+, and 7/2- rotational bands in 235U at LO, NLO, N2LO, N3LO, and N4LO orders; extracted breakdown scale in different systems. Extension of effective field theory up to fourth order in the angular velocity to describe rotational bands in even-even nuclei to the odd-mass case, and possibility of application of this EFT to halo nuclei in which low-lying rotational states of the core play a prominent role, such as in 11Be and 31Ne nuclei. Comparison with experimental band structures, data taken from ENSDF database and publications in Nuclear Data Sheets.
doi: 10.1103/PhysRevC.104.064311
Chin.Phys.C 45, 030003 (2021)
M.Wang, W.J.Huang, F.G.Kondev, G.Audi, S.Naimi
The AME 2020 atomic mass evaluation (II). Tables, graphs and references
ATOMIC MASSES A=1-295; compiled, evaluated atomic masses, mass excess, β-, ββ and ββββ-decay, binding, neutron and proton separation energies, decay and reaction Q-value data.