References quoted in the ENSDF dataset: 149SM ADOPTED LEVELS, GAMMAS
140 references found.
Clicking on a keynumber will list datasets that reference the given article.
Proc.Phys.Soc.(London) 65A, 368 (1952)
G.S.Bogle, H.E.D.Scovil
Nuclear Spins of Samarium 147 and 149
Phys.Rev. 93, 1232 (1954)
K.Murakawa
Hyperfine Structure in the Spectra of Sb, Sm, Hg and Cl
Can.J.Phys. 33, 693 (1955)
J.A.Petruska, H.G.Thode, R.H.Tomlinson
The absolute fission yields of twenty-eight mass chains in the thermal neutron fission of U235
NUCLEAR REACTIONS 235U(n, F)85Rb/87Rb/86Sr/88Sr/90Sr/143Nd/144Nd/145Nd/146Nd/148Nd/150Nd/147Sm/149Sm/151Sm/152Sm/154Sm/140Ce/142Ce/144Ce/83Kr/84Kr/85Kr/86Kr/131Xe/132Xe/134Xe/136Xe/133Cs/135Cs/137Cs, E thermal; measured fission products; deduced absolute and relative fission yields.
doi: 10.1139/p55-085
Can.J.Chem. 34, 227 (1956)
D.M.Wiles, J.A.Petruska, R.H.Tomlinson
Some Cumulative Yields of Isotopes Formed in the Thermal Neutron Fission of Pu239
NUCLEAR REACTIONS 239Pu(n, F)133Cs/135Cs/137Cs/140Ce/142Ce/144Ce/143Nd/144Nd/145Nd/146Nd/148Nd/150Nd/147Sm/149Sm/150Sm/151Sm/152Sm/154Sm/131Xe/132Xe/133Xe/134Xe/136Xe, E thermal; measured fission products; deduced relative and absolute fission yields.
doi: 10.1139/v56-034
At.Energ. 3, 546 (1957), Soviet J.At.Energy 3, 1436 (1957)
R.N.Ivanov, V.K.Gorshkov, M.P.Anikina, G.M.Kukavadze, B.V.Ershler
Yields of certain heavy fragments in the fission of U233
NUCLEAR REACTIONS 233U(n, F)133Cs/135Cs/137Cs/140Ce/142Ce/144Ce/143Nd/144Nd/145Nd/146Nd/148Nd/150Nd/149Sm/150Sm/151Sm/152Sm/154Sm, E thermal; measured fission products; deduced absolute fission yields.
doi: 10.1007/BF01522511
At.Energ. 2, 334 (1957), Soviet J.At.Energy 2, 334 (1957)
L.M.Krizhansky, Ya.Maly, A.N.Murin, B.K.Preobrazhensky
Rare-earth isotope yields in the fission of Pu239 by pile neutrons
NUCLEAR REACTIONS 239Pu(n, F)140Ce/142Ce/144Ce/142Nd/143Nd/144Nd/145Nd/146Nd/148Nd/150Nd/147Sm/149Sm/151Sm/152Sm/154Sm/148Sm/137Cs/135Cs/133Cs, E thermal; measured reaction products with a mass-spectrographic analysis; deduced fission yields.
doi: 10.1007/bf01514616
Atomnaya Energ. 2, 276 (1957); J.Nuclear Energy 6A, 260 (1958)
L.M.Krizhanskii, Ya.Maly, A.N.Murin, B.K.Preobrazhenskii
The yields of rare-earth isotopes from the fission of 239Pu by pile neutrons
NUCLEAR REACTIONS 239Pu(n, F)140Ce/142Ce/144Ce/142Nd/143Nd/144Nd/145Nd/146Nd/148Nd/150Nd/147Sm/149Sm/151Sm/152Sm/154Sm/148Sm/137Cs/135Cs/133Cs, E thermal; measured reaction products with a mass-spectrographic analysis; deduced fission yields.
doi: 10.1016/0891-3919(58)90051-2
J.Chem.Phys. 29, 754 (1958)
C.A.Hutchison, Jr., E.Wong
Paramagnetic Resonance in Rare Earth Trichlorides
Can.J.Phys. 37, 926 (1959); see keynumber 1959FI37
H.R.Fickel, R.H.Tomlinson
The Cumulative Fission Yields, of 21 Heavy Mass Nuclides Produced in the Thermal Fission of Pu239
NUCLEAR REACTIONS 239Pu(n, F)133Cs/136Cs/137Cs/143Nd/144Nd/145Nd/146Nd/148Nd/150Nd/140Ce/142Ce/144Ce/147Sm/149Sm/150Sm/151Sm/152Sm/154Sm/138Ba, E thermal; measured fission products; deduced fission yields.
doi: 10.1139/p59-103
Can.J.Phys. 37, 926 (1959); see keynumber 1959FI34
H.R.Fickel, R.H.Tomlinson
The cumulative fission yields of 21 heavy mass nuclides produced in the thermal fission of Pu239
NUCLEAR REACTIONS 239Pu(n, F)133Cs/136Cs/137Cs/143Nd/144Nd/145Nd/146Nd/148Nd/150Nd/140Ce/142Ce/144Ce/147Sm/149Sm/150Sm/151Sm/152Sm/154Sm/138Ba, E thermal; measured reaction products; deduced cumulative fission yields.
doi: 10.1139/p59-103
Proc.Roy.Soc.(London) 259A, 377 (1960)
C.J.S.Chapman, M.A.Grace, J.M.Gregory, C.V.Sowter
The Nuclear Alinement of Promethium Isotopes and the Decay Scheme of 149Pm
NUCLEAR STRUCTURE 149Pm; measured not abstracted; deduced nuclear properties.
Ann.Acad.Sci.Fennicae, Ser. A VI, No.65 (1960)
M.Karras
On the Natural Radioactivity of Samarium
NUCLEAR STRUCTURE 147Sm, 148Sm, 146Sm, 149Sm; measured not abstracted; deduced nuclear properties.
Thesis, Univ.California (1960); UCRL-8740 (1960)
T.V.Marshall
I. Beta-Spectroscopic Studies in the Promethium Region II. The Coriolis Interaction in Deformed Nuclei
NUCLEAR STRUCTURE 142Pm, 142Sm, 149Pm; measured not abstracted; deduced nuclear properties.
Phys.Rev. 121, 1758 (1961)
R.D.Macfarlane, T.P.Kohman
Natural Alpha Radioactivity in Medium-Heavy Elements
NUCLEAR STRUCTURE 152Gd, 149Sm, 180W, 174Hf, 144Nd, 142Ce, 148Sm, 146Sm, 147Sm, 190Pt; measured not abstracted; deduced nuclear properties.
Zh.Eksperim.i. Teor.Fiz. 42, 1036 (1962); Soviet Phys.JETP 15, 718 (1962)
V.P.Alfimenkov, Y.M.Ostanevich, T.Ruskov, A.V.Strelkov, F.L.Shapiro, W.K.Yen
Observation of the Mossbauer Effect in Sm2149Os3
NUCLEAR STRUCTURE 149Sm; measured not abstracted; deduced nuclear properties.
Phys.Letters 2, 117 (1962)
S.Jha, R.Segnan, G.Lang
On the 22 keV State of Sm149
NUCLEAR STRUCTURE 149Sm; measured not abstracted; deduced nuclear properties.
doi: 10.1016/0031-9163(62)90204-4
Proc.Phys.Soc.(London) 79, 787 (1962)
I.J.Spalding, K.F.Smith
Some Rare Earth Spins, and the Hyperfine Structure of 176Lu
NUCLEAR STRUCTURE 149Sm, 176Lu, 161Dy, 163Dy, 167Er, 147mSm, 145Nd, 143Nd; measured not abstracted; deduced nuclear properties.
doi: 10.1088/0370-1328/79/4/315
Phys.Rev. 132, 1733 (1963)
O.C.Kistner, A.C.Li, S.Monaro
Lifetimes of the 22-keV First Excited States in Eu151 and Sm149
NUCLEAR STRUCTURE 151Gd, 149Eu; measured not abstracted; deduced nuclear properties.
Can.J.Phys. 42, 2063 (1964)
H.Farrar, W.B.Clarke, H.G.Thode, R.H.Tomlinson
Cumulative yields of the heavy fragments in the thermal-neutron fission of 241Pu
NUCLEAR REACTIONS 241Pu(n, F)131Xe/132Xe/133Xe/134Xe/135Xe/136Xe/138Xe/133Cs/135Cs/137Cs/136Ba/138Ba/140Ba/140Ce/141Ce/142Ce/144Ce/142Nd/143Nd/144Nd/145Nd/146Nd/148Nd/150Nd/147Sm/148Sm/149Sm/150Sm/151Sm/152Sm/154Sm/137Cs, E thermal; measured fission products with mass spectrometer; deduced fission yields. Comparison with available data.
doi: 10.1139/p64-191
Nucl.Phys. 61, 561 (1965)
W.M.Currie, P.W.Dougan
Levels and Lifetimes in Pm149 and Sm149
RADIOACTIVITY 149Nd[from Nd(n, γ)]; measured Eγ, Iγ, γγ-coin, γγ-delay. 149Pm[from 149Nd(β)]; measured βγ-delay. 149Pm deduced levels, T1/2. 149Sm, deduced T1/2. Natural target.
doi: 10.1016/0029-5582(65)90607-3
Trans.Amer.Nucl.Soc. 8, 10 (1965)
W.J.Maeck, R.M.Abernathy, J.E.Rein
Absolute U-235 Thermal-Fission Yields of Cs-137 and Stable Kr, Xe, Nd, and Sm Isotopes
NUCLEAR REACTIONS 235U(n, F), E thermal; measured reaction products. 83,84,85,86Kr, 131,132,134Xe, 137Cs, 143,144,145,146,148,150Nd, 147,149,151,152,154Sm; deduced absolute fission yields.
Izv.Akad.Nauk SSSR, Ser.Fiz. 30, 194 (1966); Bull.Acad.Sci.USSR, Phys.Ser. 30, 201 (1967)
E.E.Berlovich, V.V.Golovin, A.G.Polyakov, M.Khodzhaev, T.Khaidarov
Lifetime of the First Excited State of Sm149
NUCLEAR STRUCTURE 149Eu; measured not abstracted; deduced nuclear properties.
Yad.Fiz. 4, 686 (1966); Soviet J. of Nucl.Phys. 4, 486 (1967)
S.P.Kapchigashev, Yu.P.Popov
Determination of level densities and the parameter α from the average capture cross sections
NUCLEAR REACTIONS 51V(n, n), 51V(n, γ), Cu(n, n), Cu(n, γ), Ga(n, n), Ga(n, γ), 75As(n, n), 75As(n, γ), Br(n, n), Br(n, γ), Rb(n, n), Rb(n, γ), 89Y(n, n), 89Y(n, γ), 90Zr(n, n), 90Zr(n, γ), 91Zr(n, n), 91Zr(n, γ), 92Zr(n, n), 92Zr(n, γ), 94Zr(n, n), 94Zr(n, γ), 93Nb(n, n), 93Nb(n, γ), 95Mo(n, n), 95Mo(n, γ), 96Mo(n, n), 96Mo(n, γ), 97Mo(n, n), 97Mo(n, γ), 98Mo(n, n), 98Mo(n, γ), 100Mo(n, n), 100Mo(n, γ), 103Rh(n, n), 103Rh(n, γ), Ag(n, n), Ag(n, γ), 115In(n, n), 115In(n, γ), 112Sn(n, γ), 116Sn(n, n), 116Sn(n, γ), 117Sn(n, n), 117Sn(n, γ), 119Sn(n, n), 119Sn(n, γ), 122Sn(n, n), 124Sn(n, n), 124Sn(n, γ), Sb(n, n), Sb(n, γ), 127I(n, n), 127I(n, γ), 133Cs(n, n), 133Cs(n, γ), 139La(n, n), 139La(n, γ), 141Pr(n, n), 141Pr(n, γ), 147Sm(n, n), 147Sm(n, γ), 149Sm(n, n), 149Sm(n, γ), 151Eu(n, n), 151Eu(n, γ), 153Eu(n, n), 153Eu(n, γ), 159Tb(n, n), 159Tb(n, γ), 165Ho(n, n), 165Ho(n, γ), 175Lu(n, n), 175Lu(n, γ), 181Ta(n, n), 181Ta(n, γ), 183W(n, n), 183W(n, γ), 184W(n, n), 184W(n, γ), 186W(n, n), 186W(n, γ), Ir(n, n), Ir(n, γ), 197Au(n, n), 197Au(n, γ), 203Tl(n, n), 203Tl(n, γ), 205Tl(n, n), 205Tl(n, γ), E=0.0 eV-50 keV; measured products, Eγ, Iγ; deduced resonance parameters. Data were imported from EXFOR entry 40778.
Z.Naturforsch. 21a, 63 (1966)
J.D.Macdougall, W.McLatchie, S.Whineray, H.E.Duckworth
Precise Atomic Mass Differences Involving Isotopes of Nd, Sm, Cd, and Pb
NUCLEAR STRUCTURE 152Sm, 150Nd, 150Sm, 154Sm, 149Sm, 208Pb, 206Pb, 112Cd, 114Cd, 116Cd, 142Nd, 144Nd, 148Nd, 148Sm, 146Nd, 145Nd, 143Nd, 147Sm; measured not abstracted; deduced nuclear properties.
Proc.Roy.Soc.(London) 293A, 117 (1966)
G.K.Woodgate
Hyperfine Structure and Nuclear Moments of Samarium
NUCLEAR STRUCTURE 147Sm, 149Sm; measured not abstracted; deduced nuclear properties.
Astrophys.J. 149, 577 (1967)
R.L.Macklin, J.H.Gibbons
Quantitative test of s-process in stellar nucleosynthesis for solar system material
NUCLEAR REACTIONS 116,117,118,119,120Sn, 144,147,148,149,150,152,154Sm, 86,87,88Sr, 90,91,92,94,96Zr, 122,123,124,125,126,128,130Te(n, γ), E=30 keV; measured reaction products, Eγ, Iγ; deduced σ, Maxwellian-averaged σ and their uncertainties.
Nucl.Phys. A93, 689 (1967)
S.Ofer, I.Nowik
Magnetic and Quadrupole Moments of the 22 keV State of 149Sm
NUCLEAR MOMENTS 149Sm levels measured a, B; deduced μ, quadrupole moment. Mossbauer absorption, enriched 149Sm absorber.
doi: 10.1016/0375-9474(67)90315-6
Izv.Akad.Nauk SSSR, Ser.Fiz. 32, 808 (1968); Bull.Acad.Sci.USSR, Phys.Ser. 32, 744 (1969)
F.A.Akilov, E.E.Berlovich, V.V.Lukashevich, V.M.Romanov
Lifetimes of Low-Lying States of 133Cs and 149Sm
RADIOACTIVITY 133Ba [from 132Ba(n, γ)]; measured γγ-delay. 149Pm [from 148Nd(n, γ)149Nd(β)]; measured βγ-delay. 133Cs, 149Sm levels deduced T1/2.
Yadern.Fiz. 8, 255 (1968); Soviet J.Nucl.Phys. 8, 147 (1969)
R.A.Demirkhanov, V.V.Dorokhov, M.I.Dzkuya
Isotope Masses and Nuclear Binding Energies in the Region from Cs to Eu
ATOMIC MASSES 130,132,134,135,136,137,138Ba, 133Cs, 136,138,140,142Ce, 141Pr, 138,139La, 142,143,144,145,146,148,150Nd, 151,153Eu, 144,147,148,149,150,152,154Sm; measured masses.
Yadern.Fiz. 8, 227 (1968); Soviet J.Nucl.Phys. 8, 131 (1969)
V.A.Korolev, G.D.Alkhazov, A.A.Vorobev, A.I.Egorov, L.M.Vasileva
Investigation of α-Radioactivity of Sm Isotopes
RADIOACTIVITY 147,148,149Sm; measured Eα. 149,148Sm deduced T1/2.
Phys.Rev. 172, 1160 (1968)
J.A.McHugh, M.C.Michel
Fission-Fragment Mass and Charge Distribution for the Moderately Excited U236 Compound Nucleus
NUCLEAR REACTIONS 232Th, 235U(α, F)142Ce/144Ce/143Nd/144Nd/145Nd/146Nd/148Nd/150Nd/147Sm/149Sm/151Sm/152Sm/154Sm/83Kr/84Kr/85Kr/86Kr/88Sr/90Sr/131Xe/132Xe/134Xe/136Xe/133Cs/135Cs/137Cs/136Ba/138Ba/135Cs/135I/135Xe/80Br/82Br/126I/128I/129Xe/81Kr/86Rb132Cs/134Cs/136Cs/150Pm/130I, E=20-57 MeV; measured fission products. 236U; deduced relative cumulative yields, fractional chain yields, charge distributions, neutron yields. Comparison with available data.
Can.J.Phys. 46, 2499 (1968)
R.G.H.Robertson, J.C.Waddington, R.G.Summers-Gill
Hyperfine Interactions in the J = 5 States of 147Sm and 149Sm
NUCLEAR STRUCTURE 147Sm, 149Sm; measured not abstracted; deduced nuclear properties.
Yadern.Fiz. 10, 460 (1969); Soviet J.Nucl.Phys. 10, 263 (1970)
O.V.Vasilev, G.N.Zalesnyi, S.F.Semenko, V.A.Semenov
Giant Resonance in the Region of Transition from Spherical Nuclei to Deformed Ones
NUCLEAR REACTIONS 148,150Nd, 150,152,154Sm(γ, n), E < 23 MeV; measured σ(E).
Phys.Letters 30B, 97 (1969)
O.V.Vasilijev, G.N.Zalesny, S.F.Semenko, V.A.Semenov
The Giant Dipole Resonance in the Transition Region from Spherical to Deformed Nuclear Shapes
NUCLEAR REACTIONS 148,150Nd, 150,152,154Sm(γ, n), (γ, X), E < 23 MeV; measured σ(E), σ(E;En); deduced giant resonance shapes, α-width.
doi: 10.1016/0370-2693(69)90407-9
Z.Phys. 237, 285 (1970)
S.Antman, H.Pettersson, Z.Zehlev, I.Adam
High Resolution L- and M-Subshell Internal Conversion Studies of Low Energy Transitions in 149Sm and 151Eu
RADIOACTIVITY 149Eu, 151Gd; measured I(ce), L-, M-subshell ratios. 149Sm, 151Eu transitions deduced γ-multipolarity, partial T1/2, hindrance factors.
Proc.Int.Conf.Hyperfine Interactions in Excited Nuclei, Rehovot and Jerusalem, Israel (1970), G.Goldring, R.Kalish, Eds., Gordon and Breach, London, Vol.2, p.720 (1971)
M.Eibschutz, R.L.Cohen, J.H.Wernick
Solid State and Nuclear Results in 149Sm Mossbauer Measurements
NUCLEAR MOMENTS 149Sm levels measured quadrupole, other moments.
J.Inorg.Nucl.Chem. 32, 3425 (1970)
M.C.Gupta, R.D.MacFarlane
The Natural Alpha Radioactivity of Samarium
RADIOACTIVITY 147,148Sm; measured Eα, T1/2; deduced Q. 146,149Sm; observed no α-activity.
doi: 10.1016/0022-1902(70)80149-X
Acta Phys.Pol. B1, 173 (1970)
J.Kownacki, J.Ludziejewski, M.Moszynski, K.Stryczniewicz
Electromagnetic Transition Probabilities in 151Eu, 149Sm and 147Sm Isotopes
RADIOACTIVITY 151Gd; measured Xce-, cece-delay. 151Eu level deduced T1/2. 151Gd; measured Xγ-delay. 151Eu levels deduced T1/2. 149Eu; measured Xce-delay. 149Sm level deduced T1/2. 147Eu; measured ceγ-delay. 147Sm level deduced T1/2.
Nucl.Phys. A145, 223 (1970)
J.D.Macdougall, W.McLatchie, S.Whineray, H.E.Duckworth
Precise Atomic Mass Differences and Mass Systematics in the Region of 90 Neutrons
ATOMIC MASSES 141Pr, 142,143,144,145,146,148,150Nd, 147,148,149,150,152,154Sm, 151,153Eu, 154,155,156,157,158,160Gd; measured mass differences; deduced nucleon pairing, separation energies.
doi: 10.1016/0375-9474(70)90316-7
Int.J.Mass Spectrom.Ion Phys. 6, 435 (1971)
R.Dobrozemsky, F.Pichlmayer, F.P.Viehbock
Massenspektrometrische Bestimmung der Neutronen-Einfangsquerschnitte von Isotopen der Seltenen Erden
NUCLEAR REACTIONS 147,148Sm, 154,158Gd, 160,161,162,163Dy, 166Er, 170,171,172,173Yb(n, γ), E=pile, thermal; measured σ; deduced effective resonance integral.
JINR-P3-5655 (1971)
E.N.Karzhavina, A.B.Popov
Neutron Resonances of the Samarium Isotopes
NUCLEAR REACTIONS Sm(n, X), (n, γ), E < 500 eV; measured σ(E;Eγ), transmission. 147,149Sm deduced resonance parameters.
Phys.Lett. 35B, 33 (1971)
P.L.Lee, F.Boehm
X-Ray Isotope Shifts and Nuclear Radii in Sm
NUCLEAR MOMENTS 147,148,149,150,152,154Sm; measured Kα1 shifts; deduced nuclear radius shifts.
doi: 10.1016/0370-2693(71)90432-1
Can.J.Phys. 50, 34 (1972)
R.C.Barber, R.L.Bishop, J.O.Meredith, F.C.G.Southon, P.Williams, H.E.Duckworth, P.Van Rookhuyzen
Precise Atomic-Mass Differences in the Region 59 < Z < 69
ATOMIC MASSES 142,144,146,148,150Nd, 150Sm, 144,148,150,152,154Sm, 154Gd, 152,154,156,158,160Gd, 160Dy, 156,158,160,162,164Dy, 162,164,166,168,170Er, 141Pr, 143,145,147Nd, 147,149Sm, 151,153Eu, 155,157Gd, 159Tb, 161,163Dy, 165Ho, 167Er, 169Tm, 167Er; measured mass differences.
Phys.Rev. B5, 3387 (1972)
I.Y.Chan, C.A.Hutchison, Jr.
Electron-Nuclear Double Resonance of Samarium 147 and Samarium 149 Tripositive Ions in Lanthanum Trichloride Single Crystals
NUCLEAR MOMENTS 147,149Sm; measured μ, quadrupole moment ratios. ENDOR.
Phys.Rev. A6, 2011 (1972)
W.J.Childs, L.S.Goodman
Reanalysis of the Hyperfine Structure of the 4f66s2 7F Multiplet in 147,149Sm, Including Measurements for the 7F6 State
NUCLEAR MOMENTS 147,149Sm; measured a, b, g; deduced μ(147Sm)/μ(149Sm), quadrupole moment ratio. Atomic beam magnetic resonance.
Phys.Rev. B6, 18 (1972)
M.Eibschutz, R.L.Cohen, E.Buehler, J.H.Wernick
Mossbauer Isomer Shifts in Sm149 Compounds
NUCLEAR REACTIONS 149Sm(γ, γ), E=22.5 keV; measured Mossbauer effect in compounds; deduced isomer shift. 149Sm deduced rms charge radius variation with excitation energy.
Phys.Rev. C8, 819 (1973)
P.L.Lee, F.Boehm
X-Ray Isotope Shifts and Variations of Nuclear Charge-Radii in Isotopes of Nd, Sm, Dy, Yb and Pb
NUCLEAR REACTIONS 142,143,144,145,146,148,150Nd, 147,148,149,150,152,154Sm, 161,162,163,164Dy, 170,171,172,173,174,176Yb, 204,206,207,208Pb(γ, X-ray); measured isotope shift. 142,143,144,145,146,148,150Nd, 147,148,149,150,152,154Sm, 161,162,163,164Dy, 170,171,172,173,174,176Yb, 204,206,207,208Pb deduced nuclear charge radii.
Nucl.Phys. A225, 171 (1974)
P.Carlos, H.Beil, R.Bergere, A.Lepretre, A.De Miniac, A.Veyssiere
The Giant Dipole Resonance in the Transition Region of the Samarium Isotopes
NUCLEAR REACTIONS 144,148,150,152,154Sm(γ, n), (γ, 2n), E=7-30 MeV; measured σ(E). 144,148,150,152,154Sm resonances deduced thresholds, integrated σ, Lorentz line parameters, intrinsic quadrupole moments. Enriched targets.
doi: 10.1016/0375-9474(74)90373-X
Izv.Akad.Nauk SSSR, Ser.Fiz. 38, 2119 (1974); Bull.Acad.Sci.USSR, Phys.Ser. 38, No.10, 90 (1974)
L.K.Peker, V.M.Sigalov
The Alaga Model and the Structure of the Spherical States of Odd-Neutron Nuclei with A of 145-153
NUCLEAR STRUCTURE 143,145,147,149Nd, 145,147,149,151Sm levels calculated μ.
Nucl.Phys. A224, 411 (1974)
V.G.Soloviev, C.Stoyanov, A.I.Vdovin
Semi-Microscopic Calculation of the Level Density in Spherical Nuclei
NUCLEAR STRUCTURE 50,51Ti, 53,54,55Cr, 55,57,58Fe, 59,61,62,63,65Ni, 65,67,68,69Zn, 71,73,74,75,77Ge, 75,77,78,79,81,83Se, 85,87,88,89Sr, 91,92,93,95,97Zr, 96,97,98,99,101Mo, 100,102Ru, 106Pd, 112,113,114Cd, 113,115,116,117,118,119,120,121,123,125Sn, 123,124,126,129,131Te, 132,136Xe, 131,135,136,137,138,139Ba, 137,139,141,143Ce, 143,144,145,146,147,149Nd, 145,148,149Sm, 195,196,197,199Pt, 199,200,201,202,203Hg, 205,207Pb; calculated density of states.
doi: 10.1016/0375-9474(74)90696-4
Yad.Fiz. 19, 516 (1974); Sov.J.Nucl.Phys. 19, 260 (1974)
A.I.Vdovin, V.V.Voronov, L.A.Malov, V.G.Solovev, C.Stoyanov
Mass Number Dependence of the Density of 1/2+ States in the Vicinity of the Neutron Binding Energy
NUCLEAR STRUCTURE 139Ba, 141,143Ce, 143,145,147,149Nd, 145,149,153Sm, 157,159Gd, 163,165Dy, 167,169Er, 173,175,177Yb, 179Hf, 185W, 199,201,203Hg, 205Pb calculated level density.
Phys.Rev. C12, 1054 (1975)
D.C.Kayser, W.H.Johnson, Jr.
New Mass Measurements of Samarium and Gadolinium and a Mass Table for the Light Rare Earths
ATOMIC MASSES 152,154Sm; measured atomic mass. 141,142,143,144Pr, 142,143,144,145,146,147,148,149,150Nd, 144,145,147,148,149,150,151,152,153,154,155Sm, 145,147,149Pm, 151,152,153,154,155Eu, 151,152,153,154,155,156,157,158,160Gd deduced mass excesses.
Phys.Rev. B12, 4653 (1975)
R.L.Streever
Hyperfine Interactions of Sm in SmCo5
NUCLEAR MOMENTS 147,149Sm; measured hyperfine field in SmCo5. NMR.
Bull.Amer.Phys.Soc. 21, No.4, 658, JF4 (1976)
D.L.Clark, M.E.Cage, G.W.Greenlees
Optical Isotope Shifts and Differences in Nuclear Charge Radii for Nd, Sm, Dy, Er, and Yb
NUCLEAR MOMENTS 142,143,144,145,146,148,150Nd, 144,147,148,149,150,152,154Sm, 156,158,160,161,162,163,164Dy, 162,164,166,167,168Er, 168,170,171,172,173,174,176Yb; measured optical isotope shift, differences in nuclear charge radii. No data.
J.Inorg.Nucl.Chem. 38, 1139 (1976)
J.M.D.Coey
149Sm3+ Isomer Shifts
NUCLEAR REACTIONS 149Sm(γ, γ); measured Mossbauer effect. 149Sm deduced isomer shift.
doi: 10.1016/0022-1902(76)80236-9
Nucl.Phys. A283, 189 (1977)
P.Kleinheinz, A.M.Stefanini, M.R.Maier, R.K.Sheline, R.M.Diamond, F.S.Stephens
Different Structure Collective Bands in the N = 87 Nuclei 149Sm, 151Gd And 153Dy
NUCLEAR REACTIONS 148Nd, 150Sm, 152Gd(α, 3nγ), E=35-45 MeV; measured σ(E, Eγ, θ), γ linear polarization, γγ-coin. 149Sm, 151Gd, 153Dy deduced levels, J, π. Enriched targets.
doi: 10.1016/0375-9474(77)90428-6
Yad.Fiz. 27, 10 (1978); Sov.J.Nucl.Phys. 27, 5 (1978)
V.N.Kononov, B.D.Yurlov, E.D.Poletaev, V.M.Timokhov
Fast-Neutron Capture Cross Sections for Even-Even Isotopes of Neodymium, Samarium, Gadolinium, and Erbium
NUCLEAR REACTIONS 142,144,146,148,150Nd, 144,148,150,152,154Sm, 156,158,160Gd, 166,168,170Er(n, γ), E=5-350 keV; measured σ(E).
Nucl.Phys. A321, 71 (1979)
E.Hammaren, E.Liukkonen, M.Piiparinen, J.Kownacki, Z.Sujkowski, T.Lindblad, H.Ryde
Structural Connections between 148Sm and 149Sm Nuclei
NUCLEAR REACTIONS 146Nd(α, 2n), 148Nd(α, 3n), E=20-37 MeV; 148Nd(3He, 3n), 150Nd(3He, 4n), E=19-27 MeV; measured Eγ, Iγ(E), Iγ(θ), γγ-coin, αγ(t), Iγ(t), I(ce), I(ce)(t). 148,149Sm deduced levels, J, π, T1/2, ICC. Enriched targets. Ge(Li), Ge intrinsic detectors, solenoidal, double focussing electron spectrometers, Si(Li) detectors.
doi: 10.1016/0375-9474(79)90686-9
Nucl.Phys. A316, 295 (1979)
R.J.Powers, P.Barreau, B.Bihoreau, J.Miller, J.Morgenstern, J.Picard, L.Roussel
A Muonic X-Ray Study of the Charge Distribution of 144,148,150,152,154Sm
ATOMIC PHYSICS, Mesic-Atoms 144,148,150,152,154Sm(μ-, X-ray); measured E(X-ray), I(X-ray); deduced nuclear charge distribution parameters.
NUCLEAR MOMENTS 144,148,150,152,154Sm; measured muonic X-rays; deduced nuclear charge distribution parameters. 152,154Sm levels deduced quadrupole moment, isomer shift, B(E2).
doi: 10.1016/0375-9474(79)90039-3
Z.Phys. A296, 281 (1980)
H.Brand, B.Seibert, A.Steudel
Laser-Atomic-Beam Spectroscopy in Sm: Isotope Shifts and Changes in Mean-Square Nuclear Charge Radii
NUCLEAR MOMENTS 144,147,148,149,150,152,154Sm; measured optical isotope shift, hfs; deduced rms charge radii. Laser atomic beam spectroscopy.
Nucl.Phys. A364, 446 (1981)
P.Barreau, L.Roussel, R.J.Powers
A Muonic X-Ray Study of the Charge Distribution of 147Sm and 149Sm
ATOMIC PHYSICS, Mesic-Atoms 147,149Sm; measured E(X-ray), I(X-ray); deduced charge parameters, rms radius. Model independent analysis.
NUCLEAR MOMENTS 147,149Sm; measured muonic X-rays, hfs. 147,149Sm deduced spectroscopic quadrupole moments, B(E2), isotope shifts, charge parameters, rms radius. Model independent analysis.
doi: 10.1016/0375-9474(81)90581-9
Izv.Akad.Nauk SSSR, Ser.Fiz. 46, 63 (1982)
I.F.Barchuk, V.I.Golyshkin, E.N.Gorban
γ-Quanta from the Reactions 148,152,154Sm(n, γ)149,153,155Sm using Thermal Neutrons
NUCLEAR REACTIONS 148,152,154Sm(n, γ), E=thermal; measured Eγ, Iγ. 149,153,155Sm deduced levels.
Nucl.Phys. A377, 217 (1982)
C.A.Fields, F.W.N.De Boer, R.A.Ristinen, P.A.Smith, E.Sugarbaker
A Systematic Investigation of the (α, 2nγ) Reaction on Medium-Heavy Nuclei
NUCLEAR REACTIONS 85Rb, 89Y, 90Zr, 104,106,108,110Pd, 139La, 165Ho, 148Nd, 197Au, 112,118,120,124Sn, 208Pb(α, 2n), E=35 MeV; 110Pd, 148Nd(α, 2n), E=28, 32 MeV; 110Pd, 118,120,124Sn, 148Nd, 197Au(α, 3n), E=35 MeV; 108Pd(α, 2n), 148Nd(α, 3n), E=32 MeV; measured nγ-coin, Iγ, σ(θn), σ(En); deduced neutron decay mechanism, spectrum parameters, entry state spins. Ge(Li), hyperpure Ge and NE224 detectors.
doi: 10.1016/0375-9474(82)90330-X
J.Phys.(London) G8, 1413 (1982)
R.A.Meyer, J.W.T.Meadows, E.S.Macias
Opposing Properties of Particle-Hole and Intruder-Hole Bands in N = 87 Nuclei and 149Sm Levels Populated by 149Pm(β-) and 149Eu(EC)
RADIOACTIVITY 149Eu(EC) [from Sm(p, xn), 149Sm(α, 4n)149Gd(EC-decay)]; 149Pm(β-) [from 148Nd(n, γ)149Nd(β-decay)]; measured Eγ, Iγ, γγ-coin, I(ce). 149Sm deduced levels, ICC, γ-multipolarity, band structure, configuration. Compton suppression, Ge(Li), Si detectors.
doi: 10.1088/0305-4616/8/10/012
Nucl.Phys. A398, 19 (1983)
S.Gales, G.M.Crawley, D.Weber, B.Zwieglinski
Neutron-Hole Strength Distributions in Heavy Nuclei (II). The 144,148,152Sm(3He, α)143,147,151Sm and the 144,148,150,152,154Sm(p, d)143,147,149,151,153Sm Reactions
NUCLEAR REACTIONS 144,148,152Sm(3He, α), E=70 MeV; measured σ(Eα, θ); 144,148,150,152,154Sm(p, d), E=42 MeV; measured σ(Ed, θ). 143,147,149,151,153Sm deduced levels, L, J, π, C2S. Enriched target, magnetic spectrometer. Zero-range, finite-range DWBA calculations, inner-shells analysis. Comparison with the quasiparticle phonon, Nilsson models.
doi: 10.1016/0375-9474(83)90646-2
Nucl.Phys. A411, 125 (1983)
K.Maki-Kuutti, E.Hammaren
A Quasiparticle-Rotor Model with Variable Moments of Inertia: Application to 149,151,153Sm and 109Pd
NUCLEAR STRUCTURE 149,151,153Sm, 109Pd; calculated levels, rotational level characteristics. Quasiparticle-rotor model, variable moments of inertia.
doi: 10.1016/0375-9474(83)90511-0
Hyperfine Interactions 13, 221 (1983)
J.G.Stevens
Isomer Shift Reference Scales
COMPILATION 57Fe, 99Ru, 121Sb, 127,129I, 149Sm, 151,153Eu, 155Gd, 161Dy, 170Yb, 181Ta, 193Ir, 197Au, 237Np, 119Sn, 125Te; compiled, evaluated relative isomer shift values from Mossbauer spectra.
Izv.Akad.Nauk SSSR, Ser.Fiz. 48, 875 (1984)
B.A.Alikov, K.Zuber, V.V.Pashkevich, E.G.Tsoi
Equilibrium Deformations of Single-Particle States of Odd Nuclei in the Rare Earth Region
NUCLEAR STRUCTURE 147,149,151,153,155,157,159,161Eu, 153,155,157,159,161,163,165,167,169,171,173Ho, 155,157,159,161,163,165,167,169,171,173Tm, 149,151,153,155,157,159,161Sm, 151,153,155,157,159,161,163Gd, 155,157,159,161,163,165,167,169,171,173Er, 157,159,161,163,165,167,169,171,173Yb; calculated quadrupole, hexadecapole moments, ground state energies. 151Pm, 155,157,161,163,165Dy, 175,177Lu, 157Tb; calculated quadrupole moments. 165Er, 165Tm; calculated hexadecapole moment level dependence.
Pisma Zh.Eksp.Teor.Fiz. 40, 483 (1984); JETP Lett.(USSR) 40, 1317 (1984)
G.D.Alkhazov, E.E.Berlovich, H.Wagner, K.Dorschel, V.N.Panteleev, E.W.Peau, A.G.Polyakov, V.I.Tikhonov, W.Heddrich, H.Huhnermann
Static and Dynamic Deformation of the Nuclei of Europium and Samarium Isotopes in the Transition Region
NUCLEAR MOMENTS 151,153Eu; 147,149Sm; measured hfs, isotope shifts. 151,153Eu, 147,149Sm deduced rms charge radii isotope dependence, static, dynamic deformation differences.
RADIOACTIVITY 145,147,149,155Eu; 145,151,153,155Sm; measured hfs, isotope shifts. 145,147,149,155Eu, 145,151,153,155Sm deduced rms charge radii isotope dependence, static, dynamic deformation differences.
J.Phys.(London) G10, L271 (1984)
D.A.Eastham, J.G.England, D.E.Evans, M.J.Fawcett, I.S.Grant, J.A.R.Griffith, G.W.A.Newton, P.M.Walker
Optical Isotope Shift and Hyperfine Structure of 153Sm
RADIOACTIVITY 153Sm(β-) [from 152Sm neutron irradiation]; measured optical isotope shift, hfs. 146,147,148,149,150,151,152,153,154Sm deduced rms charge radii relative to 144Sm.
doi: 10.1088/0305-4616/10/12/002
Yad.Fiz. 39, 341 (1984)
V.S.Masterov, N.S.Rabotnov
Influence of the Quantum Number K on Statistical Distribution of Reduced Neutron Widths
NUCLEAR STRUCTURE 147,149Sm, 151,153Eu, 155,157Gd, 159Tb, 161,163Dy, 165Ho, 167Er, 169Tm, 171,173Yb, 177,179Hf, 181Ta, 183W, 185,187Re, 233,235U, 237Np, 239,241Pu; analyzed reduced neutron width distribution data; deduced K quantum number role.
Izv.Akad.Nauk SSSR, Ser.Fiz. 49, 24 (1985); Bull.Acad.Sci.USSR, Phys.Ser. 49, No.1, 25 (1985)
G.D.Alkhazov, A.A.Akhmonen, E.E.Berlovich, Yu.S.Blinnikov, W.Wagner, V.P.Denisov, K.Dorschel, V.N.Panteleev, E.V.Peau, A.G.Polyakov, Yu.Ya.Sergeev, V.I.Tikhonov, M.M.Trukhin, W.Heddrich, H.Huhnermann
Laser-Spectroscopic Investigation of Nuclear Charge Radii and Electromagnetic Moments of the Transition Region Europium and Samarium Isotopes
NUCLEAR MOMENTS 144,146,147,148,149,150,151,152,154Sm, 147,149,151,152,153,154,155,156Eu; measured isotope shifts; deduced μ, quadrupole moments, rms charge radii. Laser spectroscopy.
Yad.Fiz. 44, 1134 (1986); Sov.J.Nucl.Phys 44, No.5, 734 (1986)
G.D.Alkhasov, E.E.Berlovich, H.Wagner, K.Dorschel, V.N.Panteleev, E.V.Peau, A.G.Polyakov, V.I.Tikhonov, W.Heddrich, H.Huhnermann
Shape of Nuclei of Eu and Sm Isotopes in the Transition Region with N = 84-92
RADIOACTIVITY 147,149,152,152m,154,155,156Eu, 151Sm; measured hfs, isotope shifts; deduced charge radii, quadrupole, magnetic moments, deformation parameters. Laser spectroscopy.
NUCLEAR MOMENTS 151,153Eu, 146Sm; measured hfs, isotope shifts; deduced charge radii, quadrupole, magnetic moments, deformation parameters. Laser spectroscopy.
Phys.Lett. 177B, 260 (1986)
E.E.Berlovich, F.F.Karpeshin
On the Nature of the Phase Transition in Nuclei with Neutron Number N = 88-90
NUCLEAR STRUCTURE 147,149,151,153,155Eu, 147,149,151,153,155Sm; calculated intrinsic quadrupole moments. Mottelson-Nilsson method without pairing mode.
doi: 10.1016/0370-2693(86)90749-5
Astrophys.J. 300, 41 (1986)
R.R.Winters, F.Kappeler, K.Wisshak, A.Mengoni, G.Reffo
148,150Sm: A test for s-process nucleosynthesis
NUCLEAR REACTIONS 148,149,150Sm(n, γ), E=4-250 keV; measured σ(E); deduced Maxwellian < σ >, parameters, s-process neutron density. 148,150Sm deduced s-process current ratio.
doi: 10.1086/163781
Zh.Eksp.Teor.Fiz. 93, 1545 (1987)
S.K.Borisov, Yu.P.Gangrsky, C.Hradecny, S.G.Zemlyanoi, B.B.Krynetsky, K.P.Marinova, B.N.Markov, V.A.Mishin, Yu.Ts.Oganesian, O.M.Stelmakh, Hoang Thi Kim Hue, Tran Cong Tam
Measurement of Mean-Square Nuclear Radii of Nd, Sm and Gd by Laser Excited Fluorescence
NUCLEAR MOMENTS 149,146,147,152,154,150,144,148Sm, 142,144,146,150,148Nd, 152,154,156,158,160,155,157Gd; measured optical isotope shifts; deduced rms radii differences. Laser excited fluorescence.
Phys.Lett. 194B, 334 (1987)
A.M.Van den Berg, K.E.Rehm, D.G.Kovar, W.Kutschera, G.S.F.Stephans
Systematics of Quasi-Elastic Neutron Transfer Cross Sections for Heavy-Ion Induced Reactions
NUCLEAR REACTIONS 144,149,154Sm(58Ni, 58Ni), (58Ni, 58Ni'), (58Ni, 57Ni), (58Ni, 59Ni), (58Ni, 60Ni), E=245 MeV; measured σ, σ(θ); deduced target mass dependence, quasielastic transfer systematics. Enriched targets. DWBA calculations.
doi: 10.1016/0370-2693(87)91060-4
Phys.Rev. A36, 2148 (1987)
L.Young, W.J.Childs, H.G.Berry, C.Kurtz, T.Dinneen
Hyperfine Structure of 147,149Sm II by Collinear Laser-Ion-Beam Spectroscopy
NUCLEAR MOMENTS 147,149Sm; measured hfs; deduced hyperfine constants. Collinear laser-ion beam spectroscopy.
Phys.Rev. C37, 1667 (1988)
B.Al-Bataina, J.Janecke
Reduced Alpha Widths for Nuclei with N ≥ 84, Z ≤ 84
NUCLEAR STRUCTURE Z=60-84; analyzed α-decay width data. 142Ce, 149Sm, 156Dy, 162,164Er, 168Yb, 176,174Hf, 180W, 184,186,188Os, 192Pt, 196Hg, 204Pb; calculated α-decay T1/2.
J.Phys.(London) G16, 105 (1990)
J.G.England, I.S.Grant, J.A.R.Griffith, D.E.Evans, D.A.Eastham, G.W.A.Newton, P.M.Walker
Isotope Shifts and Hyperfine Splittings in 144-154Sm I
RADIOACTIVITY 145,151,153,146Sm; measured isotope shifts, hfs; deduced hfs constants, rms radii differences, μ, Q. Other data input.
NUCLEAR MOMENTS 144,147,148,149,150,152,154Sm; measured isotope shifts, hfs; deduced hfs constants, rms radii differences, μ, Q. Other data input.
NUCLEAR STRUCTURE 145,147,149,151,153Sm; calculated μ, quadrupole moment.
doi: 10.1088/0954-3899/16/1/014
At.Data Nucl.Data Tables 44, 191 (1990)
J.E.Lynn, P.A.Seeger
Resonance Effects in Neutron Scattering Lengths of Rare-Earth Nuclides
NUCLEAR REACTIONS Sm, Eu, Gd, Er, Yb, 149Sm, 151Eu, 155,157Gd, 164Dy, 167Er, 168,174Yb, 176Lu(n, n), E=0.01-0.5 eV; analyzed data; deduced coherent scattering lengths. Generalized single-level formalism.
doi: 10.1016/0092-640X(90)90013-A
KVI 1989 Ann.Rept., p.30 (1990)
W.Urban, J.C.Bacelar, W.Gast, G.Hebbinghaus, A.Kramer-Flecken, R.M.Lieder, T.Rzaca-Urban, M.Thoms
High-Spin Parity Doublets in the 149Sm Nucleus
NUCLEAR STRUCTURE 149Sm; analyzed data; deduced levels, J, π, configuration.
JUL-Spez-562, p.60 (1990)
W.Urban, W.Gast, G.Hebbinghaus, A.Kramer-Flecken, R.M.Lieder, T.Rzaca-Urban, M.Thoms
High-Spin Parity Doublets in 149Sm
NUCLEAR STRUCTURE 149Sm; analyzed data; deduced levels, J, π.
J.Phys.Soc.Jpn. 59, 2700 (1990)
M.Wakasugi, T.Horiguchi, W.G.Jin, H.Sakata, Y.Yoshizawa
Changes of the Nuclear Charge Distribution of Nd, Sm, Gd and Dy from Optical Isotope Shifts
NUCLEAR MOMENTS 142,144,146,148,150,143,145Nd, 144,148,150,152,154,147,149Sm, 152,154,156,158,160,155,157Gd, 156,158,160,162,164,161,163Dy; measured isotope shifts, hfs; deduced rms charge radii changes, nuclear parameter. Atomic beam laser spectroscopy.
Nucl.Phys. A533, 223 (1991)
P.Navratil, J.Dobes
Similarity-Transformed Dyson Mapping and SDG-Interacting Boson Hamiltonian
NUCLEAR STRUCTURE 144,145,146,148,149,150,151,152,153,154Sm, 150Nd, 196Pt; calculated levels, B(λ). sdg-interacting boson hamiltonian.
doi: 10.1016/0375-9474(91)90488-R
J.Phys.(London) G18, 1177 (1992)
V.S.Letokhov, V.I.Mishin, S.K.Sekatsky, V.N.Fedoseyev, G.D.Alkhazov, A.E.Barzakh, V.P.Denisov, V.E.Starodubsky
Laser Spectroscopic Studies of Nuclei with Neutron Number N < 82 (Eu, Sm and Nd Isotopes)
RADIOACTIVITY 135,137,139,141Nd, 139,141,141m,143,145Sm; measured hfs; deduced parameters a, b, quadrupole moments. 132,134,135,136,137,138,139,140,141Nd, 138,139,140,141,141m,142,143,145Sm, 138,139,140,141,142,143,144,145Eu; measured isotope shifts; deduced mean square charge radii. Resonance ionization spectroscopy.
NUCLEAR MOMENTS 142Nd, 144Sm; measured isotope shifts; deduced mean square charge radii. Resonance ionization spectroscopy.
doi: 10.1088/0954-3899/18/7/008
Nucl.Phys. A565, 643 (1993)
G.Georgiev, Yu.S.Zamyatnin, L.B.Pikelner, G.V.Muradian, Yu.V.Grigorev, T.Madjarski, N.Janeva
Determination of 147Sm and 148Sm Resonance Parameters
NUCLEAR REACTIONS 147,148Sm(n, γ), E=15-4000 eV; measured σ(n, γ), σ(n, n'), for capture, neutron scattering. 148,149Sm deduced resonances, Γγ, Γ(n), J. Multisectional scintillation detector, IBR-30 pulse booster.
doi: 10.1016/0375-9474(93)90050-8
Phys.Rev. C48, 1401 (1993)
K.Wisshak, K.Guber, F.Voss, F.Kappeler, G.Reffo
Neutron Capture in 148,150Sm: A sensitive probe of the s-process neutron density
NUCLEAR REACTIONS 147,148,149,150,152Sm(n, γ), E=3-225 keV; measured σ(E); deduced stellar cross sections at kT=10-100 keV, s-process neutron density.
Phys.Rev. C49, 650 (1994)
S.Basu, J.M.Chatterjee, D.Banik, R.K.Chattopadhyay, R.P.Sharma, S.K.Pardhasaradhi
Octupole Deformation in 149,151Sm Nuclei
NUCLEAR REACTIONS 148,150Nd(α, 3nγ), E=35, 37 MeV; measured Eγ, Iγ, γγ-coin. 149,151Sm deduced levels, J, π, B(E1)/B(E2) ratios, shape features, average electric dipole moment, band structure. Cranked shell model.
Phys.Rev. A49, 4398 (1994)
W.G.Jin, T.Horiguchi, W.Yang, I.Endo
J Dependences of the Isotope Shift and Hyperfine Structure in the Sm I 4f65d6s 9H Term
NUCLEAR MOMENTS 144,148,150,152,154,147,149Sm; measured isotope shifts, hfs; deduced hyperfine parameters for 147,149Sm.
Phys.Rev. C51, 1540 (1995)
K.A.Toukan, K.Debus, F.Kappeler, G.Reffo
Stellar Neutron Capture Cross Sections of Nd, Pm, and Sm Isotopes
NUCLEAR REACTIONS 146,148,150Nd(n, γ), E=25, 30 keV; measured Eγ, Iγ; deduced stellar capture σ(E), s-, r-, p-process abundances from 142Nd-150Sm. 147Nd, 147,148,149Pm, 147,148,149,150,151Sm(n, γ), E=1-600 keV; 146,147,148Nd, 147,148,149Pm, 151Sm(n, γ), E=12-52 keV; calculated σ(E). 148Nd, 147,148,149,150Pm, 147,148,149,150,151,152,153Sm deduced level density parameters, Γγ.
Z.Phys. D39, 209 (1997)
T.Kobayashi, I.Endo, A.Fukumi, T.Horiguchi, Y.Ishida, T.Kondo, T.Kuwamoto, N.Minamoto, T.Nakamura, T.Takahashi
Measurement of Hyperfine Structure Constants, g Values and Tensor Polarizability of Excited States of Sm I
NUCLEAR MOMENTS 144,147,148,149,150,152,154Sm; measured hfs, Zeeman spectra; deduced hfs constants.
J.Nucl.Sci.Technol.(Tokyo) 36, 865 (1999)
B.Duamet, M.Igashira, M.Mizumachi, S.Mizuno, J.-I.Hori, K.Masuda, T.Ohsaki
Measurement of keV-Neutron Capture Cross Sections and Capture Gamma-Ray Spectra of 147, 148, 149, 150, 152, 154Sm
NUCLEAR REACTIONS 147,148,149,150,152,154Sm(n, γ), E=10-90, 550 keV; measured Eγ, Iγ, capture σ. Comparison with previous results.
J.Phys.Soc.Jpn. 68, 1877 (1999)
T.Kuwamoto, I.Endo, A.Fukumi, T.Horiguchi, M.Iinuma, Y.Ishida, T.Kondo, H.Matsuzaki, T.Takahashi
Hyperfine Constants and Tensor Polarizabilities of 4f66s6p9G0-6 States in Sm I
NUCLEAR MOMENTS 147,149Sm; measured hfs, isotope shifts. Atomic-beam laser spectroscopy.
J.Phys.Soc.Jpn. 69, 683 (2000)
S.Kitao, T.Mitsui, M.Seto
Nuclear Resonant Scattering of Synchrotron Radiation by 121Sb and 149Sm
NUCLEAR REACTIONS 121Sb(γ, γ'), E=22.5 keV; 149Sm(γ, γ'), E=37.1 keV; measured X-ray spectra following internal conversion. 121Sb, 149Sm levels deduced T1/2. Nuclear resonant scattering, synchrotron radiation.
Pisma Zh.Eksp.Teor.Fiz. 72, 337 (2000); JETP Lett. 72, 229 (2000)
P.I.Romasheva
Retarded Decays of Low-Lying (∼ 30 keV) Mossbauer Levels as a Result of Their Combined Structure
NUCLEAR STRUCTURE 57Fe, 69Ga, 73Ge, 83Kr, 93Nb, 97Ru, 107,109Ag, 112In, 119Sn, 129I, 133Ba, 149Sm, 151Eu, 161Dy, 169Tm, 191Ir, 225Fr, 243Am; calculated Mossbauer levels configurations, T1/2, ICC.
doi: 10.1134/1.1324016
Phys.Rev. C 68, 034311 (2003)
M.Guttormsen, R.Chankova, M.Hjorth-Jensen, J.Rekstad, S.Siem, A.Schiller, D.J.Dean
Free energy and criticality in the nucleon pair breaking process
NUCLEAR STRUCTURE 171,172Yb, 166,167Er, 161,162Dy, 148,149Sm; analyzed level densities; deduced Helmholtz free energy, other thermodynamic quantities, continuous nucleon pair breaking.
doi: 10.1103/PhysRevC.68.034311
Yad.Fiz. 66, 837 (2003); Phys.Atomic Nuclei 66, 804 (2003)
M.Kaczmarczyk
The Analysis of the Densities of s-Wave Neutron Resonances Separated with Respect to Spin
NUCLEAR STRUCTURE 45Sc, 51V, 55Mn, 59Co, 63,65Cu, 67Zn, 89Y, 147,149Sm, 155,157Gd, 159Tb, 163Dy, 165Ho, 167Er, 177,179Hf, 197Au, 235U, 237Np, 239Pu; analyzed neutron resonance level densities vs spin. Gilbert-Cameron formula.
doi: 10.1134/1.1576453
J.Korean Phys.Soc. 43, 336 (2003)
H.Park, M.Lee, Y.Rhee
Hyperfine Structure of 147, 149Sm Measured Using Saturated Absorption Spectroscopy in Combination with Resonance-Ionization Mass Spectroscopy
NUCLEAR MOMENTS 147,149Sm; measured hfs; deduced hyperfine constants. Saturated absorption spectroscopy.
Astrophys.J. 582, 1251 (2003)
R.Reifarth, C.Arlandini, M.Heil, F.Kappeler, P.V.Sedyshev, A.Mengoni, M.Herman, T.Rauscher, R.Gallino, C.Travaglio
Stellar Neutron Capture on Promethium: Implications for the s-Process Neutron Density
NUCLEAR REACTIONS 147Pm(n, γ), E=25 keV; measured reaction products, Eγ, Iγ; deduced Maxwellian-averaged σ and its uncertainties.
NUCLEAR REACTIONS 147,148,149Pm(n, γ), E=5-100 keV; calculated Maxwellian-averaged σ.
COMPILATION 146,147,148Nd, 147,148,149Pm, 147,148,149,150Sm(n, γ), E=10, 25, 30 keV; compiled Maxwellian-averaged σ and its uncertainties.
doi: 10.1086/344718
Phys.Rev. C 69, 024614 (2004)
C.Xu, Z.Ren
α decay of nuclei in extreme cases
RADIOACTIVITY 145Nd, 149Sm, 156Dy, 162Er, 178Yb, 176,178Hf, 180,182W, 161,162,162mRe, 188Os, 166,167,192Pt, 172Au, 174,196Hg, 177,177m,180Tl, 180Pb, 185Bi, 188,189,190Po, 261,263,265,266Sg, 264,266,267Bh, 264,265,266,267,269Hs, 268Mt, 269,270,271,273,281Ds, 272Rg, 277,284,285Cn, 287,288,289Fl, 290,292Lv, 294Og(α); calculated α-decay T1/2. Cluster model, comparisons with data.
doi: 10.1103/PhysRevC.69.024614
Phys.Rev. C 71, 064320 (2005)
R.Capote, A.Ventura, F.Cannata, J.M.Quesada
Level densities of transitional Sm nuclei
NUCLEAR STRUCTURE 148,149,150,152Sm; calculated level densities, resonance spacing. Interacting boson model, comparison with data.
doi: 10.1103/PhysRevC.71.064320
Nucl.Instrum.Methods Phys.Res. B268, 114 (2010)
D.Dashdorj, G.E.Mitchell, T.Kawano, M.Devlin, N.Fotiades, R.O.Nelson, J.A.Becker, C.Y.Wu, P.E.Garrett, S.Kuneida
(n, 2n) and (n, 3n) cross-sections of neutron-induced reactions on 150Sm for En=1-35 MeV
NUCLEAR REACTIONS 150Sm(n, 2n), (n, 3n), (n, 2nγ), (n, 3nγ), E<35 MeV; measured TOF, Eγ, Iγ; deduced σ. Comparison with FKK GNASH calculations.
doi: 10.1016/j.nimb.2009.10.189
Eur.Phys.J. A 47, 64 (2011)
A.Kh.Inoyatov, D.V.Filosofov, V.M.Gorozhankin, A.Kovahik, I.Adam, L.L.Perevoshchikov, M.Rysavy
Improved characteristics of the 22.5 keV (M1 + E2) nuclear transition in 149Sm
RADIOACTIVITY 145,146,147,148,149Eu(EC)[from Eu+p at E=500 MeV]; measured E(CE), I(CE), Eγ, Iγ; deduced intensity ratios, transition strengths, γ-multipolarity.
doi: 10.1140/epja/i2011-11064-9
Phys.Rev. C 84, 064307 (2011)
Y.Qian, Z.Ren
Systematic study of new data for extreme α decays
RADIOACTIVITY 109I, 112,113Cs, 142Ce, 146,147,148,149Sm, 151Eu, 152Gd, 156Dy, 162,164Er, 168Yb, 174,176Hf, 180W, 159Re, 161,184,188Os, 167,169Ir, 172,190,192Pt, 172,175,177Au, 176,196Hg, 179,181Tl, 179,180,181,204Pb, 187Bi, 187Po, 238U, 244Pu, 233,236Cm, 237Cf, 249Md, 253Lr, 257Db, 260,265,267,282Sg, 261,262,274Bh, 263,265Hs, 278Mt, 281Ds, 285Cn, 285,286Nh, 288,289Fl, 289,290Mc, 293,294Ts(α); calculated half-lives using Modified two-potential approach (MTPA) for deformed nuclei associated with the density-dependent cluster model. Comparison with experimental data.
doi: 10.1103/PhysRevC.84.064307
Phys.Rev. C 86, 024313 (2012)
X.Guan, K.D.Launey, M.-x.Xie, L.Bao, F.Pan, J.P.Draayer
Heine-Stieltjes correspondence and the polynomial approach to the standard pairing problem
NUCLEAR STRUCTURE 42,43,44,45,46,47,48,49Ca, 58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77Ni, 146,147,148,149,150,151,152,153Sm; calculated pairing gaps. 110Sn; calculated relevant polynomials and the corresponding eigen-energies. Solution of the Bethe ansatz (Gaudin-Richardson) equations based on Heine-Stieltjes polynomials. Comparison with BCS (pairing) calculations and experimental data.
doi: 10.1103/PhysRevC.86.024313
Phys.Rev. C 86, 064317 (2012)
S.Hilaire, M.Girod, S.Goriely, A.J.Koning
Temperature-dependent combinatorial level densities with the D1M Gogny force
NUCLEAR STRUCTURE 54Cr, 100Ru, 130Xe, 180Hf, 208Pb, 238U; calculated excitation energies, quadrupole deformations, moments of inertia as function of nuclear temperature. A=20-250; deduced ratio of HFB plus combinatorial densities to experimental s-wave neutron resonance spacings as function of temperature. 40Ca, 42K, 50,51V, 56,57Fe, 58Ni, 60Co, 68Zn, 90Zr, 90,94Nb, 93,94,95,96,97,98Mo, 107Cd, 127Te, 132Xe, 148,149Sm, 155Eu, 160,161,162Dy, 166,167,168Er, 171,172Yb, 178Hf, 194Ir, 208Pb, 210Bi, 237U, 238U, 238Np, 239Pu, 242Am; calculated combinatorial nuclear level densities (NLD) using temperature-dependent D1M Gogny interaction. Comparison with experimental data. Z=50, N=50-120; deduced ratio of Maxwellian-averaged (n, γ) rates for T9=1 obtained with current NLDs and those in previous calculations.
doi: 10.1103/PhysRevC.86.064317
Phys.Rev. C 85, 024623 (2012); Erratum Phys.Rev. C 85, 039901
H.Naik, T.N.Nathaniel, A.Goswami, G.N.Kim, M.W.Lee, S.V.Suryanarayana, S.Ganesan, E.A.Kim, M.-H.Cho, K.L.Ramakumar
Mass distribution in the 50-, 60-, and 70-MeV bremsstrahlung-induced fission of 232Th
NUCLEAR REACTIONS 232Th(γ, F)77Ge/78Ge/84Br/85mKr/87Kr/88Kr/89Rb/91Sr/92Sr/93Y/94Y/95Zr/97Zr/99Mo/101Mo/107Mo/103Ru/105Ru/104Tc/105Rh/112Ag/113Ag/115Cd/117Cd/117mCd/127Sb/129Sb/128Sn/131I/133I/134I/135I/132Te/134Te/138Cs/139Ba/140Ba/141Ce/143Ce/144Ce/142La/146Pr/147Nd/149Nd/149Pm/149Sm/153Sm, E=50, 60, 70 MeV; measured Eγ, Iγ, fission product mass and cumulative yields, and yields of fission products for A=133-134, 138-139, and 143-144 by activation method, average neutron number. 232Th(n, F), E*=7.61, 12.61, 19.41 MeV; 238U(n, F), E*=7.35, 12.45, 19.15 MeV; 232Th(γ, F), E*=7.35, 13.22, 21.25 MeV; 232Th, 238U(γ, F), E=10, 40, 70 MeV; analyzed and compared yields of fission products as function of mass, yields of symmetric and asymmetric fission products, peak to valley ratios, average neutron number, average values of light mass and heavy mass as function of excitation energy.
doi: 10.1103/PhysRevC.85.024623
Iader.Fiz.Enerh. 13, 340 (2012); Nuc.phys.atom.energ. 13, 340 (2012)
V.A.Plujko, O.M.Gorbachenko, E.P.Rovenskykh, V.O.Zheltonoshskii
E1 gamma-transitions in hot atomic nuclei
NUCLEAR STRUCTURE A=40-230; calculated energy and width of giant dipole resonance. 90Zr, 100Mo, 124Te, 149,150Sm, 171Yb; calculated gamma-decay strength distribution. Comparison to experimentak data.
NUCLEAR REACTIONS Fe(n, γ), E<20 MeV; 183W(n, γ), E<2 MeV; calculated σ. Comparison to experimental data.
doi: 10.15407/jnpae
Phys.Rev. C 85, 057601 (2012)
B.Sahu
Extremely long α-decay lifetimes and predictions based on an analytical expression
RADIOACTIVITY 144Nd, 146,147,148,149Sm, 151Eu, 152Gd, 156Dy, 162,164Er, 168Yb, 174,176Hf, 180,183W, 184,186,188Os, 196Hg, 204Pb, 166,168,170,172,174,176,182,184,186,188,190,192Pt(α); calculated Q(α), T1/2. Analytical expression, exactly solvable global potential in potential scattering theory. Comparison with experimental data, and with calculations using modified two-potential approximation (MTPA) method.
doi: 10.1103/PhysRevC.85.057601
At.Data Nucl.Data Tables 99, 69 (2013)
I.Angeli, K.P.Marinova
Table of experimental nuclear ground state charge radii: An update
COMPILATION Z=0-96; compiled nuclear radii, rms nuclear charge radii.
doi: 10.1016/j.adt.2011.12.006
Nucl.Phys. A913, 127 (2013)
H.Uhrenholt, S.Aberg, A.Dobrowolski, Th.Dossing, T.Ichikawa, P.Moller
Combinatorial nuclear level-density model
NUCLEAR STRUCTURE 60Co, 68Zn, 76,78,80,82,84,86Sr, 94Nb, 97,98Mo, 107,109,111,112,113,114,115,117Cd, 127Te, 148Pm, 148,149Sm, 155Eu, 161,162Dy, 166,167Er, 169,170,171,172,173,174,175,177Yb, 194Ir, 237U, 239Pu; calculated level density, angular momentum distribution, parity ratio, pairing gap. 90Zr, 90Nb; calculated J, π level density. A=20-255; calculated level density at neutron separation energy, vibrational enhancement. Combinatorial (microcanonical) model with folded Yukawa, pairing, rotational and vibrational states. Compared with available data.
doi: 10.1016/j.nuclphysa.2013.06.002
Phys.Rev. C 88, 014304 (2013)
Y.Zhang, F.Pan, Y.-X.Liu, Y.-A.Luo, J.P.Draayer
Shape phase transition and phase coexistence in odd Sm nuclei
NUCLEAR STRUCTURE 146,147,148,149,150,151,152,153,154,155,156,157Sm; calculated energies of ground-state band members using several collective rotor and vibrator models; deduced shape phase transition in odd-A Sm nuclei from experimental S(2n) values and experimental energies of ground-band members in even and odd-A Sm nuclei. 150,152Sm; analyzed ground-state and β band members. 151,153Sm; analyzed four collective bands in each nucleus; deduced phase coexistence of rotational and vibrational excitations in 151Sm.
doi: 10.1103/PhysRevC.88.014304
Nucl.Data Sheets 118, 233 (2014)
Y.Alhassid, C.Ozen, H.Nakada
Calculating Level Densities of Heavy Nuclei by the Shell Model Monte Carlo Method
NUCLEAR STRUCTURE 148,150,152,154Sm; calculated average total nuclear spin. 143,144,145,146,147,148,149,150,152Nd, 148,149,150,151,152,153,154,155Sm; calculated state density vs excitation energy, even-mass nuclei collective enhancement factor using Monte Carlo microscopic approach. Compared with available data.
doi: 10.1016/j.nds.2014.04.045
Phys.Rev. C 90, 064616 (2014)
D.M.Filipescu, I.Gheorghe, H.Utsunomiya, S.Goriely, T.Renstrom, H.-T.Nyhus, O.Tesileanu, T.Glodariu, T.Shima, K.Takahisa, S.Miyamoto, Y.-W.Lui, S.Hilaire, S.Peru, M.Martini, A.J.Koning
Photoneutron cross sections for samarium isotopes: Toward a unified understanding of (γ, n) and (n, γ) reactions in the rare earth region
NUCLEAR REACTIONS 144,147,148,149,150,152,154Sm(γ, n), E=6-17 MeV; measured E(n), I(n), monochromatic and nonmonochromatic σ(E). Comparison with previous experimental results, and predictions from Skyrme HFB+QRPA using BSk7 interaction, and axially deformed Gogny HFB+QRPA models using D1M interaction. 147,148,149,150,151,152Sm(n, γ), E=0.001-1 MeV; analyzed measured σ(E) with a TALYS calculation using D1M+QRPA calculation for the E1 strength function. 153Sm(n, γ), E=0.001-1 MeV; predicted σ(E) from TALYS calculations using γ-strength function (γSF) approach. Comparison with evaluated libraries JENDL-4.0, ENDF/B-VII.1, ROSFOND-2010.
doi: 10.1103/PhysRevC.90.064616
Phys.Rev. C 91, 024617 (2015)
D.Banerjee, A.Saha, T.Bhattacharjee, R.Guin, S.K.Das, P.Das, D.Pandit, A.Mukherjee, A.Chowdhury, S.Bhattacharya, S.Das Gupta, S.Bhattacharyya, P.Mukhopadhyay, S.R.Banerjee
Role of p-induced population of medium-mass (A∼150) neutron-rich nuclei
NUCLEAR REACTIONS 150Nd(p, n), (p, 2n), (p, p'n), (p, d), E=7-15 MeV; measured Eγ, Iγ, σ(E), half-lives by activation method using K=130 AVF cyclotron at VECC facility. Comparison with previous experimental results, and with model calculations using CASCADE, ALICE, and EMPIRE3.1 computer codes.
RADIOACTIVITY 149Nd, 149,150Pm(β-); measured Eγ, Iγ, ground state half-lives of 149Nd, 149,150Pm.
doi: 10.1103/PhysRevC.91.024617
Phys.Rev. C 91, 064615 (2015)
J.S.Barrett, W.Loveland, R.Yanez, S.Zhu, A.D.Ayangeakaa, M.P.Carpenter, J.P.Greene, R.V.F.Janssens, T.Lauritsen, E.A.McCutchan, A.A.Sonzogni, C.J.Chiara, J.L.Harker, W.B.Walters
136Xe+208Pb reaction: A test of models of multinucleon transfer reactions
NUCLEAR REACTIONS 208Pb(136Xe, X), E=85 MeV; measured Eγ, Iγ, γγ-coin using Gammasphere at ATLAS-ANL facility, σ for projectile-like fragments (PLFs) and target-like fragments (TLFs) by off-line γ-ray spectroscopy for radioactive decay measurements (RD), prompt γ decays recorded during the beam burst (IB), and delayed γ decays recorded between the beam bursts (OB). 116,118Cd, 119,121In, 118,120,122,123,124,126Sn, 119,121,123,125,126,127,128,130Sb, 124,126,128,130,131,132,134Te, 127,128,129,130,131,132,133,135,136I, 128,130,132Xe, 133,134,135,136,137,138Xe, 131,132,133,134,136,137,139,141Cs, 130Ba, 132,134,136,138,139,140,141,142,143Ba, 132,135,136,137,139,140,143La, 136,138,139,140,141,142,143,144,145,146Ce, 139,141,142Pr, 140,142,143,144,145,146,147,148,149Nd, 142,143,145,147,149Pm, 145,146,147,148,149,150,151,152,154Sm, 147,149,151Eu, 152,154,156Gd, 156,158,160,162,164Dy, 160,161Er, 176Yb, 176,178,180,181,182Hf, 179,181Ta, 176,180,182,184,186,187W, 179,185,187Re, 186,188,190,191,192,194,197Os, 188,190,192Ir, 190,191,192,194,196,197,198,200,201,202Pt, 191,192,193,194,196,198,199Au, 194,196,198,200,202,203,204,205,206,208Hg, 196,197,198,199,201,202,203,204,205,206,207Tl, 198,201,202,203,204,206,207,208,209,210,211Pb, 199,201,202,203,204,205,206,207,209,211Bi, 202,204,205,206,207,208,209,210,212,213,214Po, 207,208,209,210,211,213At, 210,211,212,213,214,215,216,218Rn, 211,212,213,215,216Fr, 214Ra; deduced projectile-like fragment cumulative and independent production yields. Comparison with predictions of GRAZING model, and those of Zagrebaev and Greiner model using a quantitative metric. Discussed correlations between TLF and PLF yields.
doi: 10.1103/PhysRevC.91.064615
Phys.Rev. C 92, 014319 (2015)
E.D.Davis, L.Hamdan
Reappraisal of the limit on the variation in α implied by the Oklo natural fission reactors
NUCLEAR REACTIONS 149Sm, 155,157Gd(n, γ), E=natural (Oklo) reactor neutrons; analyzed sensitivity of neutron resonance energies to changes in fine structure constant α; deduced αOklo-αnow. Comparison of change in α with results from atomic clock experiments. Relevance to astrophysical measurements of redshift dependence on parameters such as α.
NUCLEAR STRUCTURE 149,150Sm, 156,158Gd; calculated proton and charge density parameters for ground states of 149,150Sm, excitation, Coulomb, and deformation corrections using deformed Fermi density distributions fitted to the output of Hartree-Fock (HF)+BCS calculations with SLy4 and SkM* Skyrme functionals.
doi: 10.1103/PhysRevC.92.014319
Int.J.Mod.Phys. E24, 1550073 (2015)
Y.El Bassem, M.Oulne
Ground state properties of even-even and odd Nd, Ce and Sm isotopes in Hartree-Fock-Bogoliubov method
NUCLEAR STRUCTURE 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161Nd, 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158Ce, 132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166Sm; calculated ground state energies, two-neutron separation energies. HFB method with SLy5 Skyrme and 1SGogny forces, comparison with experimental data.
doi: 10.1142/S0218301315500731
Phys.Rev. C 91, 034329 (2015)
C.Ozen, Y.Alhassid, H.Nakada
Nuclear state densities of odd-mass heavy nuclei in the shell model Monte Carlo approach
NUCLEAR STRUCTURE 143,145,147,149Nd, 149,150,151,153,155Sm; calculated thermal excitation energy and partition function as function of temperature, level densities versus excitation energy. Shell model Monte Carlo (SMMC) calculations. Comparison with experimental data.
doi: 10.1103/PhysRevC.91.034329
Chin.Phys.C 39, 104103 (2015)
Y.Zhang, X.Guan, Y.Wang, Y.Zuo, L.N.Bao, F.Pan
Shape phase transition in the odd Sm nuclei: effective order parameter and odd-even effect
NUCLEAR STRUCTURE 145,146,147,148,149,150,151,152,153,154,155,156,157,158Sm; calculated two-neutron separation energies, odd-even mass difference, evolution of the pairing strength, first pairing-excitation energy. BCS theory, CBCS scheme.
doi: 10.1088/1674-1137/39/10/104103
Phys.Rev. C 93, 024602 (2016)
S.Dutta, D.Chakraborty, G.Gangopadhyay, A.Bhattacharyya
Neutron capture reactions near the N=82 shell-closure
NUCLEAR REACTIONS 140Ce(n, n), E=1.5, 2.0, 2.5, 3.0 MeV; 141Pr(n, n), E=0.878, 1.2 MeV; 142Nd(n, n), E=2.5 MeV; 148Sm(n, n), E=2.7; calculated σ(θ) and compared to experimental data. 133Cs, 139La, 140Ce, 141Pr, 135,136,137,138Ba, 142,143,144,145,146Nd, 144,147,148,149Sm(n, γ), E=0.001-1 MeV; calculated σ(E), Maxwellian-averaged cross sections (MACS) at kT=30 keV, and compared to experimental data. Semimicroscopic optical model with the DDM3Y nucleon-nucleon interaction. Relevance to astrophysical s- and p-processes for nuclei near N=82 neutron shell-closure.
NUCLEAR STRUCTURE 133,134,135,136,137Cs, 130,132,134,135,136,137,138Ba, 138,139La, 136,138,140,141,142Ce, 141,142,143Pr, 142,143,144,145,146,147Nd, 147,148Pm, 144,147,148,149Sm; calculated charge densities, and root-mean-square (rms) charge radii using relativistic mean-field approach. Comparison with experimental values.
doi: 10.1103/PhysRevC.93.024602
Phys.Rev. C 94, 024309 (2016)
X.Guan, H.Xu, Y.Zhang, F.Pan, J.P.Draayer
Ground state phase transition in the Nilsson mean-field plus standard pairing model
NUCLEAR STRUCTURE 144,145,146,147,148,149,150,151,152,153,154,155Nd, 146,147,148,149,150,151,152,153,154,155,156,157Sm, 148,149,150,151,152,153,154,155,156,157,158,159Gd; calculated Pairing interaction strength G, odd-even mass differences, odd-even differences of S(2n) values, odd-even differences of α-, and β--decay energies. Nilsson mean-field plus standard pairing model for the ground state phase transitions. Comparison with experimental values taken from NNDC databases.
doi: 10.1103/PhysRevC.94.024309
Phys.Rev. C 94, 064310 (2016)
K.Nomura, T.Niksic, D.Vretenar
Signatures of shape phase transitions in odd-mass nuclei
NUCLEAR STRUCTURE 148,150,152,154Sm; calculated self-consistent RHB triaxial quadrupole binding energy contours in (β, γ) plane, equilibrium deformation parameter for Kπ=0+ bandheads, B(E2) for the two lowest 0+ states. 147,149,151,153,155Sm, 147,149,151,153,155Eu; calculated levels, J, π, excitation energies of low-lying positive- and negative-parity yrast states as functions of neutron number, equilibrium deformation parameter for bandheads for the lowest three positive- and negative-parity bands, B(E2) between the bandheads and the lowest five states, S(p) and S(n). Microscopic framework based on nuclear energy density functional theory and the particle-plus-boson-core coupling scheme. Comparison with experimental data taken from the NNDC-BNL databases.
doi: 10.1103/PhysRevC.94.064310
Phys.Rev. C 93, 044301 (2016)
B.Sahu, S.Bhoi
Viola-Seaborg relation for α-decay half-lives: Update and microscopic determination of parameters
RADIOACTIVITY 106,108Te, 112Xe, 114Ba, 144Nd, 146,148Sm, 148,150,152Gd, 150,152,154Dy, 152,154Er, 154,156,158Yb, 156,158,160,162,174Hf, 160,162,164,166,180W, 162,166,168,170,172,174,186Os, 168,170,174,176,178,180,188,190Pt, 174,176,180,182,184,186,188Hg, 178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210Pb, 190,192,194,196,198,200,202,204,206,210,212,214,216,218Po, 198,204,206,208,210,212,214,216,218,220,222Rn, 210,212,214,216,218,220,222,224,226Ra, 216,218,220,222,224,226,228,230,232Th, 226,228,230,232,234,236,238U, 232,234,236,238,240,242,244Pu, 238,240,242,244,246,248Cm, 240,246,248,250,252,254Cf, 246,248,250,252,254,256Fm, 252,254,256No, 260,266Sg(α); calculated ground-state to ground-state (l=0) half-lives and compared with experimental values; deduced analytic closed formula, as possible replacement of empirical Viola-Seaborg rule.
RADIOACTIVITY 144,145Nd, 145,146,147,148Pm, 146,147,148,149,150Sm, 130,131,132,133,134,135,136,137,138,139,140,141,148,151Eu, 135,136,137,138,139,140,141,142,143,148,149,150,151,152,153Gd, 136,137,138,139,140,141,142,144,145,149,150,151,152,154Tb, 138,139,140,141,142,143,144,145,146,147,149,150,151,152,153,154,155,156Dy, 140,141,142,143,144,145,147,148,149,150,151,152,153,154,155,156,157Ho, 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,164Er, 153,154,155,156,157,158,159,160,161,162,163,164,165Tm, 154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,170Yb, 155,156,157,158,159,160,161,162,163,164,165,167,168,169,170,171,172,173,174Lu, 156,157,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178Hf, 157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,179Ta, 158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181W, 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,183,184,185,186Re, 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189Os, 164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191Ir, 166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193Pt(α); calculated α-decay half-lives using analytical formula and parameters deduced in the present work. Comparison with available experimental results.
doi: 10.1103/PhysRevC.93.044301
Nucl.Phys. A957, 123 (2017)
A.Badola, S.K.Singhal, M.Bhatnagar, H.M.Agrawal
J-dependence of s-wave neutron strength function and presence of intermediate structure in medium and heavy mass nuclides
NUCLEAR STRUCTURE 35Cl, 43Ca, 45Sc, 47,49Ti, 51V, 53Cr, 55Mn, 57Fe, 59Co, 61Ni, 63,65Cu, 67Zn, 69,71Ga, 73Ge, 75As, 77Se, 79,81Br, 85,87Rb, 89Y, 91,93Zr, 93Nb, 95,97Mo, 99Tc, 101Ru, 103Rh, 109Pd, 107,109Ag, 111Cd, 115In, 121Sb, 123,125Te, 127I, 129,131Xe, 133Cs, 135,137Ba, 141Pr, 143,145Nd, 149Sm, 155,157Gd, 159Tb, 161,163Dy, 165Ho, 167Er, 169Tm, 171,173Yb, 177,179Hf, 181Ta, 183W, 185Re, 189Os, 195Pt, 199,201Hg, 203,205Tl, 207Pb, 209Bi, 233,235U, 237Np, 239,241Pu; calculated s-wave neutron strength function, presence of intermediate structure for different spin vs spin of target nuclei; deduced spin dependence of the strength function. Recommend to include this in the optical model.
doi: 10.1016/j.nuclphysa.2016.08.004
Phys.Rev. C 96, 014308 (2017)
H.Mei, K.Hagino, J.M.Yao, T.Motoba
Transition from vibrational to rotational character in low-lying states of hypernuclei
NUCLEAR STRUCTURE 144,146,148,150,152,154Sm; calculated total energy in the mean-field approximation as a function of quadrupole deformation, yrast levels, E(first 4+)/E(first 2+) using multireference covariant density functional theory (MR-CDFT), and compared with experimental data. 145,147,149,151,153,155Sm; calculated levels, J, π, B(E2) of hypernuclei, probability of the dominant components of configurations using microscopic particle-core coupling scheme based on the covariant density functional theory.
doi: 10.1103/PhysRevC.96.014308
Phys.Rev. C 96, 014314 (2017)
K.Nomura, R.Rodriguez-Guzman, L.M.Robledo
Description of odd-mass nuclei within the interacting boson-fermion model based on the Gogny energy density functional
NUCLEAR STRUCTURE 149,151,153,155Eu, 149,151,153,155Sm, 195Pt, 195Au; calculated spherical single-particle energies, occupation probabilities of the single-particle orbitals, parameters of the boson-fermion Hamiltonian, coupling constants of the boson-fermion interaction, levels, J, π, B(E2), B(M1), electric quadrupole and magnetic dipole moments, bands and wavefunction amplitudes for levels in 195Pt and 195Au. 148,150,152,154Sm, 194Pt; calculated parameters of the boson Hamiltonian, potential energy surface contours in (β, γ) plane, low-lying levels, J, π, B(E2) for 194Pt. Interacting boson fermion model (IBFM) with parameters based on the Hartree-Fock-Bogoliubov (HFB) approximation, and with the Gogny-D1M energy density functional (EDF) at the mean-field level. Comparison with experimental data.
doi: 10.1103/PhysRevC.96.014314
Phys.Rev. C 96, 054328 (2017)
W.M.Seif, N.V.Antonenko, G.G.Adamian, H.Anwer
Correlation between observed α decays and changes in neutron or proton skins from parent to daughter nuclei
RADIOACTIVITY 105,106,107,108,109,110Te, 107,108,109,110,111,112,113I, 109,110,111,112,113,115Xe, 124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,143,144,145,146,147,148,149Nd, 133,134,135,136,137,138,139,143,145,146,147,148,149,150,151,152Sm, 133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155Gd, 148,149,150,151,152Yb, 147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166Ho, 153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177Yb, 186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,211,222,223,224Po, 212,213,214,215,216,217,218,219,220,211,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241Pa, 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260Fm(α); calculated difference between the proton or neutron skin thicknesses, Q(α), partial α-decay half-lives for 140-155Gd, 232-241Pa and 258-260Fm. Comparison with available experimental half-lives. Hartree-Fock-Bogoliubov (HFB) method based on the Skyrme-like effective interactions.
doi: 10.1103/PhysRevC.96.054328
Phys.Rev. C 95, 034618 (2017)
H.Wilsenach, K.Zuber, D.Degering, R.Heller, V.Neu
High precision half-life measurement of 147Sm α decay from thin-film sources
RADIOACTIVITY 147Sm(α); measured Eα, Iα, isotopic abundance of 147Sm, half-life of 147Sm decay using natural Sm samples and ultra-low-background twin Frisch-grid ionization chamber (TF-GIC). GEANT4 simulation to determine the geometrical efficiency for each sample. Comparison with previous half-life measurements.
ATOMIC MASSES 144,147,148,149,150,152,154Sm; measured isotopic abundances of natural Sm samples using inductively coupled plasma mass spectrometry (ICP-MS). Comparison with literature data.
doi: 10.1103/PhysRevC.95.034618
Phys.Rev. C 98, 014327 (2018)
S.Goriely, S.Hilaire, S.Peru, K.Sieja
Gogny-HFB+QRPA dipole strength function and its application to radiative nucleon capture cross section
NUCLEAR STRUCTURE 72,74,76Ge, 75As, 76,80,82Se, 90,92,94Zr, 103Rh, 107,109Ag, 115In, 112,114,117,118,119,120,122,124Sn, 127I, 133Cs, 136,138Ba, 141Pr, 142,143,144,145,146,148,150Nd, 144,148,149,150,152,153,154Sm, 153Eu, 156,160Gd, 159Tb, 165Ho, 168Er, 171,174Yb, 175,176Lu, 178,180Hf, 182,184,186W, 186,188,189,190,192Os, 191,193Ir, 194,195,196,198Pt, 44Sc, 44Ti, 134Xe, 50V, 56Fe, 89Y, 92,94,96,98Mo, 106,108Pd, 106,112Cd, 139La, 162,164Dy, 167Er, 180,182Ta, 206,208Pb, 232Th, 232Pa, 237,238,239U, 238Np; calculated E1 and M1 deexcitation strength functions, and compared with experimental GDR and Oslo strengths. A=40-250, Z=20-83; calculated total average radiative widths, and compared with experimental data, ratios of theoretical to experimental MACS at kT=30 keV. Z=8-94, N=10-190; calculated ratio of (n, γ) and (p, γ) MACS at T=109 K obtained using D1M+QRPA+0lim+ and the ones obtained using the generalized Lorentzian (GLO) model for nuclei between the neutron and proton driplines. Axially symmetric deformed quasiparticle random-phase approximation with finite-range D1M Gogny force (Gogny-HFB+QRPA).
NUCLEAR REACTIONS 135Ba(n, γ), E=1 keV-1 MeV; 100Mo(n, γ), E=1 keV-20 MeV; calculated σ(E) with D1M+QRPA E1 and M1 strengths, and compared with experimental data. Cl(p, γ), E=172.5 MeV; calculated ratio of (n, γ) MACS at T=109 K obtained using D1M+QRPA+0lim+ and the ones obtained using the generalized Lorentzian (GLO) model.
doi: 10.1103/PhysRevC.98.014327
J.Radioanal.Nucl.Chem. 320, 153 (2019)
E.K.Fenske, B.D.Roach, D.C.Glasgow, R.H.Ilgner, J.M.Giaquinto
Rapid measurements of 235U fission product isotope ratios using an online, high-pressure ion chromatography inductively coupled plasma mass spectrometry protocol with comparison to isotopic depletion models
NUCLEAR REACTIONS 235U(n, F), E thermal; measured reaction products. 135,137Cs, 89,90Sr, 101,102Ru, 141,144Ce, 147Nd, 147Pm, 149,151Sm; deduced isotopic ratios. Comparison with ORIGEN calculations.
doi: 10.1007/s10967-019-06438-4
INDC(NDS)-0794 (2019)
N.J.Stone
Table of Recommended Nuclear Magnetic Dipole Moments: Part I - Long-lived States
COMPILATION Z=0-99; compiled experimental values of nuclear magnetic moments.
Phys.Rev. C 100, 034318 (2019)
A.V.Viatkina, D.Antypas, M.G.Kozlov, D.Budker, V.V.Flambaum
Dependence of atomic parity-violation effects on neutron skins and new physics
ATOMIC PHYSICS 85,87Rb, 131,134,135,136,137Cs, 130,132,133,134,135,136,137,138Ba, 144,145,146,147,148,149,150,151,152,153,154Sm, 156,158,161,162,163,164Dy, 168,170,171,172,173,174,176Yb, 203,204,205Tl, 202,204,205,206,207,208Pb, 207,208,209,210,211,212,213,220,221,222,223,224,225,226,227,228Fr, 208,209,210,211,212,213,214,220,221,222,223,224,225,226,227,228,229,230,232Ra; calculated mean values of the coefficients as functions of the radius parameter for different elements, assuming Fermi distribution of nuclear density; evaluated relevant coefficients from for the nuclear factor of the Parity-nonconserving (PNC) amplitude in low energy atomic experiments. Relevance to Yb experiment in Mainz and the Fr experiment at TRIUMF.
doi: 10.1103/PhysRevC.100.034318
INDC(NDS)-0816 (2020)
N.Stone
Table of Recommended Nuclear Magnetic Dipole Moments: Part II, Short-Lived States
COMPILATION Z=5-95; compiled experimental values of nuclear magnetic moments.
Phys.Rev. C 103, 064310 (2021)
P.Fanto, Y.Alhassid
State densities of heavy nuclei in the static-path plus random-phase approximation
NUCLEAR STRUCTURE 148,149,150,151,152,153,154,155Sm; calculated ground-state energies, canonical entropies as function of inverse temperature, state densities as function of excitation energy using the static-path plus random-phase approximation (SPA+RPA) in the configuration-interaction (CI) shell-model framework against exact shell-model Monte Carlo (SMMC) state densities. Comparison with mean-field state densities calculated with the finite-temperature Hartree-Fock-Bogoliubov (HFB) approximation. Comparison with experimental data.
doi: 10.1103/PhysRevC.103.064310
INDC(NDS)-0833 (2021)
N.J.Stone
Table of Nuclear Electric Quadrupole Moments
COMPILATION Z=1-102; compiled experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table.
Chin.Phys.C 45, 030003 (2021)
M.Wang, W.J.Huang, F.G.Kondev, G.Audi, S.Naimi
The AME 2020 atomic mass evaluation (II). Tables, graphs and references
ATOMIC MASSES A=1-295; compiled, evaluated atomic masses, mass excess, β-, ββ and ββββ-decay, binding, neutron and proton separation energies, decay and reaction Q-value data.
Phys.Rev. C 105, 014325 (2022)
R.An, X.Jiang, L.-G.Cao, F.-S.Zhang
Odd-even staggering and shell effects of charge radii for nuclei with even Z from 36 to 38 and from 52 to 62
NUCLEAR STRUCTURE 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102Kr, 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104Sr, 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150Te, 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156Xe, 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162Ba, 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158Ce, 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160Nd, 130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165Sm; calculated charge radii and odd-even staggering (OES) effects by the relativistic mean field (RMF-BCS) and the modified RMF(BCS)* approaches; deduced no significant influence of neutron-proton short-range correlations (np-SRCs) for some nuclei due to the strong coupling between different levels around Fermi surface. Comparison with available experimental data.
doi: 10.1103/PhysRevC.105.014325
Chin.Phys.C 46, 054105 (2022)
J.Fan, C.Xu
Exploring the half-lives of extremely long-lived α emitters
RADIOACTIVITY 142Ce, 145,146Nd, 149Sm, 156Dy, 162,164Er, 168Yb, 182,183,184W, 186W, 187,188,189,190Os, 192Pt, 195Pt, 204,206Pb(α); calculated T1/2. 187Os, 149Sm; deduced recommendation for experiments.