References quoted in the ENSDF dataset: 32S 32S(P,P'),(POL P,P')
20 references found.
Clicking on a keynumber will list datasets that reference the given article.
Phys.Rev. 87, 237 YA3 (1952)
J.S.Arthur, A.J.Allen, R.S.Bender, H.J.Hausman, C.J.McDole, L.M.Diana, K.B.Rhodes, R.A.Barjon
Energy Levels Resulting from 8-Mev Protons on Be9, C12, N14, S32
NUCLEAR REACTIONS 9Be, 12C, 14N, 32S(p, p'), (p, p), E=8 MeV; measured reaction products, Ep, Ip, Eα, Iα; deduced excited states, energy levels.
J.Phys.Soc.Japan 15, 760 (1960)
Y.Oda, M.Takeda, N.Takano, T.Yamazaki, C.Hu, K.Kikuchi, S.Kobayashi, K.Matsuda, Y.Nagahara
Elastic and Inelastic Scattering of Protons from N, Ne, Mg, Si, S and A in the Energy Range from 7.6 MeV to 14.2 MeV
NUCLEAR STRUCTURE 24Mg, 32S, 28Si, 40Ar, 20Ne, 14N; measured not abstracted; deduced nuclear properties.
Nucl.Phys. 75, 481(1966)
M.Liu, J.C.Jacmart, R.A.Ricci, M.Riou, C.Ruhla
Etude des Noyaux de Masse Moyenne par Diffusion Inelastique de Protons de 155 MeV (I). Diffusion Inelastique sur 23Na, 27Al, 28Si, 31P, 32S, 39K et 40Ca
NUCLEAR REACTIONS 23Na, 27Al, 28Si, 31P, 32S, 39K, 40Ca(p, p'), Ep=155 MeV; measured σ(Ep', θ). 23Na, 27Al, 28Si, 31P, 32S, 39K, 40Ca deduced levels, J, π, B(EL).
doi: 10.1016/0029-5582(66)90972-2
Nucl.Phys. 78, 319(1966)
A.R.Poletti, M.A.Grace
A Study of Some Low-Lying Excited States in 32S
NUCLEAR REACTIONS 32S(p, p'γ), E=7.5-10.7 MeV; measured σ(E;Ep', Eγ), p'γ(θ). 32S deduced levels, J, γ-mixing. Natural target.
doi: 10.1016/0029-5582(66)90610-9
Phys.Rev. 160, 981 (1967)
G.M.Crawley, G.T.Garvey
Inelastic Scattering in the 2s-1d Shell. I. Even-A Nuclei
NUCLEAR STRUCTURE 28Si, 32S, 16O, 24Mg, 26Mg; measured not abstracted; deduced nuclear properties.
Nucl.Phys. A112, 417(1968)
A.Willis, B.Geoffrion, N.Marty, M.Morlet, C.Rolland, B.Tatischeff
Diffusion Elastique et Inelastique des Protons de 155 MeV sur 24Mg, 28Si, 32S et 40Ca
NUCLEAR REACTIONS 24Mg, 28Si, 32S, 40Ca(p, p)(p, p'), E=155 MeV; measured σ(θ), polarization P(θ). Optical-model, distorted-wave impulse approximation calculations. 27Al, 28Si(p, d), E=155 MeV; 27Al, 28Si(d, p)(d, t)(d, 3He), E=82 MeV; measured σ(θ). Natural targets.
doi: 10.1016/0375-9474(68)90211-X
Phys.Scr. 4, 243 (1971)
J.Kallne, O.Sundberg
Excited States of 31P and 32S Studied in the (p, p') Reaction at 185 Mev
NUCLEAR REACTIONS P, S(p, p'), E=185 MeV; measured σ(Ep', θ). 31P, 32S deduced levels, J, π.
Phys.Rev. C4, 1103 (1971)
M.A.D.Wilson, L.Schecter
Spin-Flip Probability for Inelastic Proton Scattering from Carbon and Sulfur
NUCLEAR REACTIONS 12C, 32S(p, p'), E=15.9, 17.5 MeV; measured σ(Ep', Eγ), spin-flip probability, P(θ).
Izv.Akad.Nauk SSSR, Ser.Fiz. 36, 625 (1972); Bull.Acad.Sci.USSR, Phys.Ser. 36, 566 (1973)
A.V.Plavko, H.Kamitsubo, J.Gosset, R.M.Lombard, B.Mayer, J.Thirion, J.L.Escudie
Elastic and Inelastic Scattering of 24.5 MeV Polarized Protons by 32S and 34S
NUCLEAR REACTIONS 32,34S(polarized p, p'), E=24.5 MeV; measured σ(Ep', θ), P(Ep', θ). 32,34S levels deduced deformation parameters.
Phys.Rev.Lett. 31, 1015 (1973)
R.M.Lombard, J.Raynal
Polarized-Proton Inelastic Scattering on 32S and Possible Evidence for A Hexadecapole Phonon State
NUCLEAR REACTIONS 32S(p, p'), E=24.5 MeV; measured σ(Ep', θ), A(θ).
doi: 10.1103/PhysRevLett.31.1015
Nucl.Phys. A261, 111 (1976)
R.de Swiniarski, F.G.Resmini, D.L.Hendrie, A.D.Bacher
Study of 16O, 20Ne, 22Ne, 28Si and 32S by Inelastic Scattering of Polarized Protons
NUCLEAR REACTIONS 16O, 20,22Ne, 28Si, 32S(polarized p, p); measured σ(θ), A(θ); deduced form of spin-orbit potential. 20,22Ne, 28Si, 32S deduced deformation parameters. Optical model, coupled-channels analysis.
doi: 10.1016/0375-9474(76)90044-0
Phys.Rev. C23, 1355 (1981)
R.De Leo, G.D'Erasmo, A.Pantaleo, M.N.Harakeh, S.Micheletti, M.Pignanelli
Proton Excitation of 24Mg, 26Mg, and 32S γ Bands
NUCLEAR REACTIONS 32S(p, p'), E=20.37 MeV; measured σ(θ); 24Mg(p, p'), E=20.53, 49.5 MeV; 26Mg(p, p'), E=23.95 MeV; analyzed σ(θ). 32S, 24,26Mg deduced β2, β4. Coupled-channels analysis, deformed vibrational model.
Phys.Rev. C31, 1616 (1985)
S.Kato, K.Okada, M.Kondo, K.Hosono, T.Saito, N.Matsuoka, K.Hatanaka, T.Noro, S.Nagamachi, H.Shimizu, K.Ogino, Y.Kadota, S.Matsuki, M.Wakai
Inelastic Scattering of 65 MeV Protons from 12C, 24Mg, 28Si, and 32S
NUCLEAR REACTIONS 12C, 24Mg, 28Si, 32S(polarized p, p'), E=65 MeV; measured σ(θ), A(θ); deduced deformation lengths, coupling parameters. 12C, 24Mg, 28Si, 32S deduced multipole moments, transition strengths. Optical model, coupled-channels analyses.
Phys.Rev. C39, 311 (1989)
G.M.Crawley, C.Djalali, N.Marty, M.Morlet, A.Willis, N.Anantaraman, B.A.Brown, A.Galonsky
Isovector and Isoscalar Spin-Flip Excitations in Even-Even s-d Shell Nuclei Excited by Inelastic Proton Scattering
NUCLEAR REACTIONS 24,26Mg, 28Si, 32S(p, p'), E=201 MeV; measured σ(θ). 24,26Mg, 28Si, 32S deduced 1+ states, B(M1). Enriched targets. DWBA analysis, shell model calculations.
Phys.Rev. C44, 1963 (1991)
J.J.Kelly, M.A.Khandaker, P.Boberg, A.E.Feldman, B.S.Flanders, S.Hyman, H.Seifert, P.Karen, B.E.Norum, P.Welch, S.Nanda, A.Saha
Neutron and Proton Transition Densities from 32,34S(p, p') at E(p) = 318 MeV. I. Isoscalar Densities for 32S
NUCLEAR REACTIONS 32,34S(polarized p, p'), E=318 MeV; measured σ(θ), analyzing powers. 32S levels deduced isoscalar transition densities. DWIA analysis. Shell model.
Phys.Rev. C44, 1978 (1991)
M.A.Khandaker, J.J.Kelly, P.Boberg, A.E.Feldman, B.S.Flanders, S.Hyman, H.Seifert, P.Karen, B.E.Norum, P.Welch, S.Nanda, A.Saha
Neutron and Proton Transition Densities from 32,34S(p, p') at E(p) = 318 MeV. II. Neutron Densities for 34S
NUCLEAR REACTIONS 32,34S(polarized p, p'), E=318 MeV; measured σ(θ), analyzing powers. 34S levels deduced isoscalar transition densities, neutron, proton transition matrix elements ratio. DWIA analysis. Shell model.
Acta Phys.Hung.N.S. 12, 265 (2000)
Y.Blumenfeld, E.Khan, F.Marechal, T.Suomijarvi
Proton Scattering by Unstable Nuclei
NUCLEAR REACTIONS 1H(30S, 30S'), E=53 MeV/nucleon; measured recoil proton spectra, σ(E, θ). 30,32,34,36,38,40S; analyzed proton scattering data.
Nucl.Phys. A694, 103 (2001)
E.Khan, T.Suomijarvi, Y.Blumenfeld, V.G.Nguyen, N.Alamanos, F.Auger, E.Bauge, D.Beaumel, J.P.Delaroche, P.Delbourgo-Salvador, A.Drouart, S.Fortier, N.Frascaria, A.Gillibert, M.Girod, C.Jouanne, K.W.Kemper, A.Lagoyannis, V.Lapoux, A.Lepine-Szily, I.Lhenry, J.Libert, F.Marechal, J.M.Maison, A.Musumarra, S.Ottini-Hustache, P.Piattelli, S.Pita, E.C.Pollacco, P.Roussel-Chomaz, D.Santonocito, J.E.Sauvestre, J.A.Scarpaci, T.Zerguerras
Proton Scattering from the Unstable Nuclei 30S and 34Ar: Structural evolution along the sulfur and argon isotopic chains
NUCLEAR REACTIONS 1H(30S, 30S'), (32S, 32S'), E=53 MeV/nucleon; 1H(34Ar, 34Ar'), E=47 MeV/nucleon; measured recoil proton spectra, σ(E, θ). 30,32S, 34Ar deduced levels, J, π, deformation. Optical model analysis.
NUCLEAR STRUCTURE 30,32,34,36,38,40,42,44S, 34,36,38,40,42,44,46Ar; calculated proton and neutron radii, density distributions. Quasiparticle RPA, Skyrme interaction.
doi: 10.1016/S0375-9474(01)00981-2
Yad.Fiz. 66, 1546 (2003); Phys.Atomic Nuclei 66, 1501 (2003)
V.Lapoux, N.Alamanos, E.Khan
Structure Studies of Exotic Nuclei Using (p, p') Reactions
NUCLEAR REACTIONS 1H(6He, 6He'), E=38.3, 40.9 MeV/nucleon; 1H(32S, 32S'), (38S, 38S'), (34Ar, 34Ar'), E ≈ 39-53 MeV/nucleon; measured σ(θ). 32,38S, 34Ar deduced transition densities, B(E2). Comparison with model predictions, previous results.
doi: 10.1134/1.1601756
Phys.Rev.Lett. 115, 102501 (2015)
H.Matsubara, A.Tamii, H.Nakada, T.Adachi, J.Carter, M.Dozono, H.Fujita, K.Fujita, Y.Fujita, K.Hatanaka, W.Horiuchi, M.Itoh, T.Kawabata, S.Kuroita, Y.Maeda, P.Navratil, P.von Neumann-Cosel, R.Neveling, H.Okamura, L.Popescu, I.Poltoratska, A.Richter, B.Rubio, H.Sakaguchi, S.Sakaguchi, Y.Sakemi, Y.Sasamoto, Y.Shimbara, Y.Shimizu, F.D.Smit, K.Suda, Y.Tameshige, H.Tokieda, Y.Yamada, M.Yosoi, J.Zenihiro
Nonquenched Isoscalar Spin-M1 Excitations in sd-Shell Nuclei
NUCLEAR REACTIONS 24Mg, 28Si, 32S, 36Ar(p, p'), E=295 MeV; measured reaction products, Ep, Ip; deduced σ(θ), σ(θ, E), the squared spin M1 nuclear transition matrix elements, no quenching for isoscalar spin M1 transitions, while the matrix elements for isovector spin M1 transitions are quenched by an amount comparable with the analogous Gamow-Teller transitions on those target nuclei. Comparison with no-core shell model (NCSM) calculations.
doi: 10.1103/PhysRevLett.115.102501