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Introduction

This manual is a collection of various notes, memoranda and instructions
on procedures for the evaluation of data in the Evaluated Nuclear Structure
Data File (ENSDF). They were distributed at different times over the past few
years to the evaluators of nuclear structure data and some of them were not
readily available. Hence, they have been collected in this manual for ease of
reference by the evaluators of the international Nuclear Structure and Decay
Data (NSDD) network who contribute mass-chains to the ENSDF. Some new
articles were written specifically for this manual and others are revisions of
earlier versions. Draft copies of these articles were distributed to the
network members for review. I would like to thank the authors for their
prompt response and the network members for their helpful review and
comments. Each article is treated as an independent section with its own
pagination, references and fiqures. This manual is issued with a loose leaf
binder and articles will be added in the future. If you would like to
contribute to this effort, please contact me with details of the proposed
articles.

I would Tike to thank Prof. J. Orear of Cornell University who agreed to
the inclusion of his article on statistics. My thanks are also due to the
North-Holland Physics Publishing for permission to reproduce here the paper by
E. Browne which first appeared in Nuclear Instruments and Methods.

M. R. Bhat
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NOTES ON STATISTICS FOR PHYSICISTS, REVISED

Jay Orear

Qriginal Preface

These notes are based on a series of lectures given at
the Radiation Laboratory in the summer of 1958. I wish to
make clear my lack of familiarity with the mathematical liter-
ature and the corresponding lack of mathematical rigor in this
presentation. The primary source for the basic material and
approach presented here was Enrico Fermi. My first introduction
to much of the material here was in a series of discussions with
Enrico Fermi, Frank Solmitz, and George Backus at the University
of Chicago in the autumn of 1953. I am grateful to Dr. Frank
Solmitz for many helpful discussions and I have drawn heavily
from his report "Notes on the Least Squares and Maximum Likeli-
hood Methods."l

Gausssian distribution, binomial distribution, Poisson distri-

The general presentation will be to study the

bution, and least-squares method in that order as applications
of the maximum-likelihood method.

August 13, 1958

Preface to Revised Edition

Lawrence Radiation Laboratory has granted permission to
reproduce the original UCRL-8417. This revised version con-
sists of the original version with corrections and clarifications

including some new topics. Three completely new appendices have
been added.

Jay Orear
July 1982






NOTES ON STATISTICS FOR PHYSICISTS, REVISED

Jay Orear

1. Direct Probability

Books have been written on the "definition" of proba-
bility. We shall merely note two properties: (a) statistical
independence (events must be completely unrelated), and
(b) the law of large numbers. This says that if Py is the
probability of getting an event in Class 1 and we observe
that Nl out of N events are in Class 1, then we have

lim
N >

gl
N

=pl -

A common example of direct probability in physics is that in
which one has exact knowledge of a final-state wave function
(or probability density). One such case is that in which we
know in advance the angular distribution f(x), where x=cos 6,
of a certain scattering experiment. In this example one can
predict with certainty that the number of particles that
leave atvan angle X in an interval Axl is Nf(xl)Axl, where
N, the total number of scattered particles, is a very large
number. Note that the function f(x) is normalized to unity:

1

J f(x)dx =1 .

-1

As physicists, we call such a function a distribution function.
Mathematicians call it a probability density function. Note

that an element of probability, dp, is

dp = f(x) dx .

2. Inverse Probability

The more common problem facing a physicist is that he
wishes to determine the final-state wave function from experi-

mental measurements. For example, consider the decay of a



spin-% particle, the muon, which does not conserve parity.
Because of angular-momentum conservation, we have the a priori
knowledge that

l+ax

f(x) = >

However, the numerical value of a is some universal physical
constant yet to be determined. We shall always use the sub-
script zero to denote the true physical value of the parameter
under question. It is the job of the physicist to determine
Q- Usuallz the physicist does an experiment and quotes a
result a =a * Ao. The major portion of this report is devoted
to the questions What do we mean by a* and Aa? and What is
the "best" way to calculate a* and Ao? These are questions of
extreme importance to all physicists.

Crudely speaking, Aa is the standard deviation,2 and what
the physicist usually means is that the "probability" of
finding

* *
(o =-Aa) < oy < (a0 +Aa) is 68.3%

(the area under a Gaussian curve out to one standard deviation).
The use of the word "probability" in the previous sentence would
shock a mathematician. He would say the probability of having

* *
(0 -Aa) < a, < (¢ +Ao) is either 0 or 1 .

The kind of probability the physicist is talking about here we
shall call inverse probability, in contrast to the direct
probability used by the mathematician. Most physicists use the
same word, probability, for the two completely different con-
cepts: direct probability and inverse probability. 1In the
remainder of this report we will conform to this sloppy

physicist-usage of the word "probability."

3. Likelihood Ratios

Suppose it is known that either Hypothesis A or Hypothesis



B must be true. And it is also known that if A is true the
experimental distribution of the variable x must be fA(x), and
if B is true the distribution is fB(x). For example, if
Hypothesis A is that the K meson has spin zero, and hypothesis

B that it has spin 1, then it is "known" that fA(x)==l and

fg (x) = 2%, where x is the kinetic energy of the decay m divided
by its maximum value for the decay mode K >+ 21",

If A is true, then the joint probability for getting a

particular result of N events of values X1 Xor o eeerXy is
N
i=1
The likelihood ratio is
_ N fA (xi)
¢a = 1 x (1)
i=1l "B i

This is the probability, that the particular experimental result
‘of N events turns out the way it did, assuming A is true, divided
by the probability that the experiment turns out the way it did,
assuming B is true. The foregoing lengthy sentence is a correct
statement using direct probability. Physicists have a shorter
way of saying it by using inverse probability. They say
Eg. (1) is the betting odds of A against B. The formalism of
inverse probability assigns inverse probabilities whose ratio
is the likelihood ratio in the case in which there exist
no prior probabilities favoring A or B.3 All the remaining
material in this report is based on this basic principle alone.
The modifications applied when prior knowledge exists are
discussed in Sec. 10.

An important job of a physicist planning new experiments
is to estimate beforehand how many events he will need to
"prove" a hypothesis. Suppose that for the K+—+w--+2ﬂ+ one
wishes to establish betting odds of 104 to 1 against spin 1.

How many events will be needed for this? The problem and the



general procedure involved are discussed in Appendix I:
Prediction of Likelihood Ratios.

4. Maximum-Likelihood Method

The preceding section was devoted to the case in which one
had a discrete set of hypotheses among which to choose. It is
more common in physics to have an infinite set of hypotheses;
i.e., a parameter that is a continuous variable. For example,
in the u-e decay distribution

l1+ax
2 4

fla;x) =

the possible values for o belong to a continuous rather than a
discrete set. In this case, as before, we invoke the same basic
principle which says the relative probability of any two differ-
ent values of a is the ratio of the probabilities of getting our

particular experimental results, x., assuming first one and then

i
the other, value of o is true. This probability function of o
is called the likelihood function, (o).
L = 1
() = T f(az;x,) . (2)
. i
i=1

The likelihood function, éf(u), is the joint
probability density of getting a particular
experimental result, XyeeorX s assuming f (a;x)

is the true normalized distribution function:

Jf(a;x) dx =1 .

The relative probabilities of a can be displayed as a plot of
() vs. o. The most probable value of a is called the maximum-
*
likelihood solution o. The rms (root-mean-square) spread of o

*
about o 1is a conventional measure of the accuracy of the



*
determination a =a . We shall call this Ax.

J(a—oc*) 2 a0 |®

Ao = J;ﬁda (3)

In general, the likelihood function will be close to Gaussian
(it can be shown to approach a Gaussian distribution as N~ )

and will look similar to Fig. 1lb.

2@ (@ a0
___,////”'— AN
0 5 o -
a* a | 0 a* a i
| * |
' Pig. 1. Two examples of likelihood functions éf(a). I

Fig. la represents what is called a case of poor statistics. 1In

such a case, it is better to present a plot of of(a) rather than
*

merely quoting o and Aa. Straightforward procedures for obtain-

ing Ao are presented in Sections 6 and 7.

A confirmation of this inverse probability approach is the
Maximum-Likelihood Theorem, which is proved in Cramer4 by use
of direct probability. The theorem states that in the limit of
large N, a*-*uoi and furthermore, there is no other method of
estimation that is more accurate.

In the general case in which thefe are M parameters,

Qpewes Oy to be determined, the procedure for obtaining the



maximum likelihood solution is to solve the M simultaneous

equations,

ow | _ -
55; =0 where w = 4n Ikal,...,aM), (4)

5. Gaussian Distributions

As a first application of the maximum-likelihood method,
we consider the example of the measurement of a physical
parameter Oy where x is the result of a particular type of
measurement that is known to have a measuring error ¢. Then

if x is Gaussian-distributed, the distribution function is

iy) = 1L e 32,52
f(uo,x) = 5r o expl-(x ao) /20°) .

For a set of N measurements Xs each with its own measurement

error oi the likelihood function is

N -
1 2 2
éﬁ(a) = [ ——— exp[~(x,-a)/20."1 ;
i=1 v2m o pl=tx; 1
then 1 g (X. =)
W= - = + const;
2 i=1 U?
i
oW e e
ow - (5)
I
i
X, *



The maximum-likelihood solution is

o4 = ———— The weighted mean. (6)

Note that the measurements must be weighted according to the
inverse squares of their errors. When all the measuring errors
are the same we have

Next we consider the accuracy of this determination.

6. Maximum~Likelihood Error, One Parameter

It can be shown that for large N, éf(a) approaches a
Gaussian distribution. To this approximation (actually the
above example is always Gaussian in o), we have

&L *)?
(@) « exp[-(h/2)(a=-a )7] ,

*
where 1//h is the rms spread of a about a ,

w = - %(a-—a*)z + const,
ow _ *

i h(a=-a ) ,

azw _

— = -h

e

Since Ao as defined in Eq. (3) is 1/v/h , we have

L
2 -2
Ao = [— é—%} Maximum—-likelihood Error (7)




It is also proven in Cramer4 that no method of estimation
can give an error smaller than that of Eq. 7 (or its alternate
form Eq. 8). Eg. 7 is indeed very powerful and important. It
should be at the fingertips of all physicists. Let us now
apply this formula to determine the error associated with a*in
Eg. 6. We differentiate Eq. 5 with respect to o. The
answer 1is

éfﬁ=z:l .
8a2 df
Using this in Eq. 7 gives

=%

l 2
Ao = z _—
1

This formula is commonly known as the law of combination of
errors and refers to repeated measurements of the same quantity

which are Gaussian-~distributed with "errors" oi.

In many actual problems, neither a* nor Ao may be found
analytically. 1In such cases the curve () can be found
numerically by trying several values of o and using Eg. (2) to
get the corresponding values of é£01). The complete function
is then obtained by drawing a smooth curve through the points.
If affa) is Gaussian-like, Bzw/auz is the same everywhere.

If not, it is best to use the average
2 J(azw/aaz)éfda
90 Jdgda

A plausibility argument for,using the above average goes as
follows: If the tails of dg(a) drop off more slowly than

2
Gaussian tails, Q_% is smaller than
0.
82w
8a2 *




Thus, use of the average second derivative gives the required

larger error.

Note that use of Eq. 7 for Ao depends on having a particu-
lar experimental result before the error can be determined.
However, it is often important in the design of experiments to
be able to estimate in advance how many data will be needed in
order to obtain a given accuracy. We shall now develop an

alternate formula for the maximum-likelihood error, which

depends only on knowledge of f(a;x). Under these circumstances
2

we wish to determine é—% averaged over many repeated experi-
Ja

ments consisting of N events each. For one event we have

3% Jazzn £
>

= f dx;
aa aaz
for N events
3%y 3% on £
3o o

This can be put in the form of a first derivative as follows:

azznf=i[;ﬁ]=_}_[£}2+;ﬁ
8a2 da (£ da f2 oa f 3a2
2 2 2
a7en £ ¢ g o o [ L J2E]T g5 4 |25 £ oax .
2 f {3a 2
g0 1o}

The last integral vanishes if one integrates before the differ-

entiation because
Jf dx =1

Thus

- 11 -



and Eg. (7) leads to

-y
da = = ||& |2L : dx : maximum-likelihood error (8)
/N LJf (3«
Example 1
Assume in the u-e decay distribution function, f(o;x)= l;aX,

that ay -1/3. How many u-e decays are needed to establish o
to a 1% accuracy (i.e., ao/Ac = 100)?

Q
rh

X
2

= Q

2

2
of - x _ 1 1+a)
[”a‘&} dx = J 3 (1+ax) X = 2u3[“{1-a) 2ol

| — @
Hhj

/_______
Ao = /NJ// l+a Y

H

Note that

2o Laal =/‘1%— ‘
For

Q= - % , ho = _§§ .

For this problem

5
Ao = 300 ’ N=2.52 x 10~ events .

7. Maximum-Likelihood Errors, M-Parameters, Correlated Errors

When M parameters are to be determined from a single experi-
ment containing N events, the error formulas of the preceding

section are applicable only in the rare case in which the errors

are uncorrelated. Errors are uncorrelated only for

x x
(ai-ai)(aj—aj) = 0 for all cases with

- 12 -



*
i#j. For the general case we Taylor-expand w(a) about (a ):

w(a)=w<a*>+§d[-3—w— )B -lZZH B By +
azqlocy ar © 2 2 p aba b
where
_ *
By = a5 — oy
and
2
_ a W
Hij = 90,00 .| 4 (3)
Jla

The second term of the expansion vanishes because aw/aaa-o
*

are the equations for o4

%

_ _ 1

zni(a)—w(a) 51 L H BBy + eer .
ab

Neglecting the higher-order terms, we have

= -1
of(a) = C exp(- 5 g % H , B.8p) -

(an M-dimensional Gaussian surface). As before, our error
formulas depend on the approximation that ;E(a) is Gaussian-
like in the region aj = GI' As mentioned in Section 4, if the
statistics are so poor that this is a poor approximation, then
one should merely present a plot of (o). (see Appendix 1IV).

According to Eq. (9), H is a symmetric matrix. Let U

be the unitary matrix that diagonalizes H:

( 3
-1 hl ©
H'E«H = h2 = .11 where HT=H-1 . (10)
o hM
( )
Let B8 = (By/B5/s---By) @and y = g_-g:l. The element of

- 13 -



probability in the B-space is

d'e = cexpl- 3(x ura «(vy-u)'1 a.

~

Since |UJ| = 1 is the Jacobian relating the volume elements
dMB and dMy, we have

2y M.

o = ¢ exp[-(%) y h v lg y
a

Now that the general M-dimensional Gaussian surface has been

put in the form of the product of independent one-dimensional
Gaussians we have

_ -1
Ya¥p 6abha .
Then
B, = U g, .
8163 g % Ya¥p Yai bj
= ] uiz nt o,
a
_ -1,, .1
=@ " h-U) 5y -
According to Eq. (10), H = Ul .h-U, so that the final result
~4 -~
is
5 |
(o —a*)(u -&?)==(H—l).. where H,. =~ W Maximum
i7i 3 77 w~ 119 ij Baiaa. g
J | Likelihood
Averaged over repeated experiments . Errors, (11)
I
_— 1{ 9€ Mof . M parameters
Bi5=N 8|30, pos) 9%
J i 3

(A rule for calculating the inverse matrixﬁfl is

-1 i+ ijth minor of H

(H determinant of H

)l=(-l) . .)

- 14 -



. . -1
If we use the alternate notation V for the error matrix E' ’
. - . -1 .
then whenever F appears, it must be replaced with EL ; i1.e.,
the likelihood function is

L) « expr- Tev gl (11a)

Examgle 2

Assume that the ranges of monoenergetic particles are
Gaussian-distributed with mean range oy and straggling coefficient
a, (the standard deviation). N particles having ranges

* *
Xq...,Xy are observed. Find Ays Coy and their errors

Then
of N 1 2,. 2
(a An) = I ——m—— exp[-(x.-0,) /20a5,]
1r -2 i=1 V27 a, P i1 2
1 (X -ul)z
w o=-3] - N&na, - N&n(2m)
f i a
2
ow _ (Xi‘al)
30, 2 ’
1 a2
ow 1 z 2 N
2= = V(x - = .
%3 a1 oy

The maximum-likelihood solution is obtained by setting the

above two equations equal to zero.

* 1
0 = §F 1%
1
*
o [l0xgma)?
%2 N

The reader may remember a standard-deviation formula in which N

- 15 -



is replaced by (N-1):

* .« 13 - *
This is because in this case the most probable value, P Y and
the mean,'&}, do not occur at the same place. Mean values of
such quantities are studied in Section 16. The matrix H is
*

obtained by evaluating the following quantities at oy and a;:

2_% S i% , é_% = - i% ) (x -al)z + Bo- {F when o, = *,
a0 a da a az a 2 il
1 2 2 2 2 2
2
3w _ 2 = -
e =~ 3 Z(xl ay) 0 when a; =a, ,
172 a2
*2
(N o,
*2 0 O
o -1 N
0 2N 0 %2
u*z 2N
\ 2

According to Eg. (11), the errors on oy and a, are the square

roots of the diagonal elements of the error matrix, H l:

*
and Aa2==—ﬁ£ (this is sometimes called the error
V2N of the error) .

We note that the error of the mean is JLG where o =a

is
VN 2
the standard deviation. The error on the determination of o
. o]
lS T T .
V2N

- 16 -



Correlated Errors

* *
The matrix V.. = (o,=-a;) (a.=0.) is defined as the error
ij i i j 73
matrix (also called the covariance matrix of o). In Eq. 11
-1 Bzw
we have shown that V=H where H,. =-+~——=—— . The diagonal

elements of V are the variances of the a's. If all the off-
diagonal elements are zero, the errors in a are uncorrelated

as in Example 2. In this case contours of constant w plotted
in (al,az) space would be ellipses as shown in Fig. 2a. The
errors in oy and o, would be the semi-major axes of the contour
ellipse where w has dropped by % unit from its maximum-likeli-
hood value. Only in the case of uncorrelated errors is the rms

.
error Aaj = (H..) * and then there is no need to perform a

i3
matrix inversion.

a
a, (a) a, (b)

(W*-1/72)—=

]
|
1
!
az --------- :
1
1 : d
Aaz —o: —I—lo— !
1
| RO
LY ! H
i ! Aa, I
1 1
0 a* a, o a* I a,
|
{ . Aa!-V(H-')“
‘Fig. 2. Contours of constant w as a function of al and a2. Maximum likeli-
| *
;hood solution is at w=w . Errors in oy and a, are obtained from ellipse

. *
‘where w=(w -}%).
%(a) Uncorrelated errors
‘(b) Correlated errors. In either case Aa§==Vllf=(H_l)ll and
| 2_o (-l
Aoy =V o=(H ) e

Note that it would be a serious mistake to use the
ellipse "halfwidth" rather than the extremum for Ac.

- 17 -



In the more common situation there will be one or more off-
diagonal elements to ﬁ(and the errors are correlated (V has
off-diagonal elements). In this case (Fig. 2b) the contour
ellipses are inclined to the a;s 0, axes. The rms spread of aq
is still Aal==/v—_' but it is the extreme limit of the ellipse

11’
projected on the al—axis. (The ellipse "halfwidth" axis is
=L
(Hll) ? which is smaller.) In cases where Eg. 1l cannot be
*

evaluated analytically, the o 's can be found numerically and
the errors in o can be found by plotting the ellipsoid where

w is % unit less than w*. The extremums of this ellipsoid are
the rms error in the o's. One should allow all the aj to change
freely and search for the maximum change in ay which makes

* . , . . . .
w = (w =%). This maximum change in a; 1is the error in a, and is

vV...

11

8. Propagation of Errors: the Error Matrix

Consider the case in which a single physical quantity, vy,
is some function of Ehe a'i: y==y(al,...,aM). The "best"
value fory is then y ==y(ai). For example y could be the path
radius of an electron circling in a uniform magnetic field where
the measured quantities are a; =T, the period of revolution,
and Oy =V, the electron velocity. Our goal is to find the

%*
error in y given the errors in o. To first order in (ai-ui)

we have
*
y-y =] 2L (o -al) ,
a
v-y12 =11 & @-a),-q) , (12)
a a b :

A well-known special case of Eq. (12), which holds only when



the variables are completely uncorrelated, 1is

— 3
(Ay) =/§ [B%Z_J (ba)? .
rms a a

In the example of orbit radius in terms of T and v this becomes

2
oR 2 [dR
AR =v/{§?J (47) *{aNJ q/‘*‘ (ve)* z(AV’

in the case of uncorrelated errors. However, if ATAv is non-

zero as one might expect, then Eg. (12) gives

"[' ———
27‘_) [E’I-T-J ATAV

It is a common problem to be interested in M physical

/ v2 2 12 2
AR =/ ——7(AT) -k——j(Av) + 2
*/ 47 4m

parameters, YqreeYyr which are known functions of the -
In fact the y; can be thought of as a new set of a; or a

change of basis from o, to Y- If the error matrix of the o,

i i

is known, then we have

x x* BY.
(Yi-y;) (¥i=ys) =7 z 0¥y 9Y; 1
i“4i j 43 5 53 3“b Hab . (13)
Y s
In some such cases the §§£ cannot be obtained directly, but the
30, a
i are easily obtainable. Then
3ya
LN _ ot .
-a—&—l- = (m l)ia, where Jl = 'a_l .
a J Yj
Example 3

Suppose one wishes to use radius and acceleration to
specify the circular orbit of an electron in a uniform magnetic
field; i.e., Yy =r and Yy=a. Suppose the original measured

quantities are al='r=(10il)ps and a2=\7=(100i2) km/s. Also

- 19 -



since the velocity measurement depended on the time measurement,
there was a correlated error AtAvw=l.5><lO—3m. Find r,

Ar, a, Aa.

Since r==%% 0.159 m and a==2¥V==6.28><1010 m/s2 we have

a,0 a oy o Iy
=12 P — 1_ 22 1.4
Y17 A Yp T gl . Then 5T S o 55T
8y2 _ 2ﬂu2 Byz o .
T = - ' = =— . The measurement errors specify the
aal 2 aa a
aq 2 1

error matrix as

1012 §2 1.5x 10"

& E -3
1.5x10 °m 4 x10° m2/s

[ e

' 5 O, 2
Eg. 13 gives (Ay )" = [EFJ Virt [ ][ }
2

12
Tov —i .39 x 10 4n?
4ﬂ2 11 2ﬂ§ 12 4T 2
Thus r = (0.159:0.184)m
For Yor Eg. 13 gives
2T LY 2 270 2
2 _ 2 2112w 2m _ 19 m
(Ay,) = = f ) V11+2{' 2]&"]"12* a|V22=2-92x107" =
oy %y 1 1 S

Thus a = (6.28%0.54) x 1010 m/s2.

9. Systematic Errors

"Systematic effects" is a general category which includes
effects such as background, selection bias, scanning efficiency,
energy resolution, angle resolution, variation of counter
efficiency with beam position and energy, dead time, etc. The
uncertainty in the estimation of such a systematic effect is
called a "systematic error". Often such systematic effects and
their errors are estimated by separate experiments designed for

that specific purpose. In general, the maximum-likelihood
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method can be used in such an experiment to determine the
systematic effect and its error. Then the systematic effect
and its error are folded into the distribution function of
the main experiment. Ideally, the two experiments can be
treated as one joint experiment with an added parameter Ol
to account for the systematic effect.

In some cases a systematic effect cannot be estimated
apart from the main experiment. Example 2 can be made into
such a case. Let us assume that among the beam of mono-
energetic particles there is an unknown background of particles
uniformly distributed in range. In this case the distribution
function would be

[7§%L;— exp[—(x—al)2/2a31-+a3 ,

Q=

f(al,az,a3;x)

r
where max

C(0L1,0L2,0L3) f dx

He—K N

min

*
The solution aq is simply related to the percentage of background
The systematic error is obtained using Eq. 11.

10. Unigqueness of Maximum-Likelihood Solution

Usually it is a matter of taste what physical quantity is
chosen as a. For example, in a lifetime experiment some workers
would solve for the lifetime, T*, while others would solve for
k*, where A =1/1t. Some workers prefer to use momentum, and
others energy, etc. Consider the case of two related physical
parameters A and o. The maximum-likelihood solution for o is
obtained from the equation 3w/3a =0. The maximum-likelihood

solution for X is obtained from dw/3A =0. But then we have

d

g
(%)
g

)

= 3W 3 _ g ang g—‘&l=o.

Q|
>
Q
Q

%

Thus the condition for the maximum-likelihood solution is

unique and independent of the arbitrariness involved in choice
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*
of physical parameter. A lifetime result 1t would be related
* *
to the solution A by 7 ==1/x*.

The basic shortcoming of the maximum-likelihood method is
what to do about the prior probability of a. If the prior
probability of o is G(a) and the likelihood function obtained
for the experiment alone is }{(a), then the joint likelihood

function is
L) = c) Hea

w = 4n G + lng(:

elz

= 9 2

= 33 in G + ™ erge.
3 * ) *
o n %(OL ) = 3 2n G (o )

give the maximum-likelihood solution. In the absence of any
prior knowledge the term on the right-hand side is zero. 1In
other words, the standard procedure in the absence of any prior
information is to use a prior distribution in which all values
of o are equally probable. Strictly speaking, it is impossible
to know a "true" G(a), because it in turn must depend on its
own prior probability. However, the above equation is useful
when G(a) is the combined likelihood function of all previous
experiments and (o) is the likelihood function of the experi-
ment under consideration.

There is a class of problems in which one wishes to deter-
mine an unknown distribution in o, G(a), rather than a single
value o. For example, one may wish to determine the momentum

distribution of cosmic ray muons. Here one observes

cilG) = IG(a) ;H&d;x)da

where Q{ia;x) is known from the nature of the experiment and
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G(a) is the function to be determined. This type of problem is

discussed in Reference 5.

1l. Confidence Intervals and Their Arbitrariness

So far we have worked only in terms of relative probabili-
ties and rms values to give an idea of the accuracy of the
determination a==a*. One can also ask the question, What is
the probability that o lies between two certain values such

as a' and a"? This is called a confidence interval,

P(a'<a<a" = Jo{d/J o{da.

al

Unfortunately such a probability depends on the arbitrary choice

of what quantity is chosen for a. To show this consider the
area under the tail of d?(a)g

IT;Zda | éika)

P(a>a') = i

[ e

o o'
Fig. 3. Shaded area is P(a>a').
(Sometimes called the confidence limit of a')

If A =X(a) had been chosen as the physical parameter instead,
the same confidence interval is

(Lo [d2
a

P(A>A') = A - o'

o]

J Lar wad*

- 00

#Pa>a') .

Thus, in general, the numerical value of a confidence interval
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depends on the choice of the physical parameter. This is also
true to some extent in evaluating Aa. Only the maximum likeli-
hood solution and the relative probabilities are unaffected by

the choice of a. For Gaussian distributions, confidence inter-
vals can be evaluated by using tables of the probability integral.
Tables of cumulative binomial distributions and cumulative
Poisson distributions are also available. Appendix V contains

a plot of the cumulative Gaussian distribution.

12. Binomial Distribution

Here we are concerned with the case in which an event must
be one of two classes, such as up or down, forward or back,
positive or negative, etc. Let p be the probability for an
event of Class 1. Then (l-p) is the probability for Class 2,
and the joint probability for observing N, events in Class 1
out of N total events is

_ N! N _ .y N-N . The binomial
PO = T e P (I=p)-" "1 . 4ictribution . | (14!
N N
Note that )} p(j,N) = [p+ (1-p)] = 1. The factorials correct
=1

for the fact that we are not interested in the order in which

the events occurred. For a given experimental result of Nl out

of N events in Class 1, the likelihood function (p) is then
= N! N, ,_,. N-N
5f(p) N T w7 P (e
1 1
w = Nl_Rnp>+ (N-Nl) 2n(l-p) + const
N N-N
ow _ 1. 1 (15)
oP P 1-p
2w _ M N-'le . (16)
op° p°  (1-p)
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From Eq. (15) we have

(17)

*
=2
—

From (16) and (17):

(p-p*)2 =

* *
Ap =V E__iélﬁ_l (18)

The results, Egs. (17) and (18), also happen to be the same as
those using direct probability. Then

N, = pN
and
2 = -
Example 4
In Example 1 on the p-e decay angular distribution we found
that

is the error on the asymmetry parameter a. Suppose that the
individual cosine, X5 of each event is not known. In this
problem all we know is the number up vs. the number down. What
then is Aa? Let p be the probability of a decay in the up
hemisphere; then we have

1 1+2

_ 1+ax _ 2
0
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By Eg. (18),

2
Ao = 4//é~il:E:l
N 14
*2
_ 4 _Q
Ao = //ﬁ(l i

For small a this is Aa = /%nas compared to /g_when the full
information is used.

13. Poisson Distribution

A common type of problem which falls into this category
is the determination of a cross section or a mean free path.
For a mean free path A, the probability of getting an event
in an interval dx is dx/\A. Let P(0,x) be the probability of
getting no events in a length x. Thenwe have

dP(0,x) = - P(0,x) X %? ’
n P(O0,x) = - % + const,
- o~X/A - -
P(0,x) = e (at x=0, P(0,x) = 1). (19)

Let P(N,x) be the probability of finding N events in a
length x. An element of this probability is the joint proba-
bility of N events at dxl,...de times the probability of no
events in the remaining length:

N |dx. _
a¥p(N,x) = T {—Xi} e X/ (20)
i=1

The entire probability is obtained by integrating over the

N-dimensional space. Note that the integral

X
N ifi _(x N
121 J A [k}

O

does the job except that the particular probability element in
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Eq. (20) is swept through N! times. Dividing by N! gives

N i
B
P(N,x) = L& e-x/A' the Poisson distribution (21)
N!
As a check, note
; P(§,x) = e X/ z(x/x) )= e XN XAy J
Jj=1
N-1.

® w X %
N = 2 xé%) e—x/k - % z KN-l e-x/k =5 .

N=1 N=1

Likewise it can be shown that (N-ﬁ)2 = N.
Equation (21) is often expressed in terms of N:

| Nz
P(N,F) = &y e,  the Poisson distribution . (22)

This form is useful in analyzing counting experiments. Then

the "true" counting rate is N.

We now consider the case in which, in a certain experiment,
N events were observed. The problem is to determine the

maximum-likelihood solution for o =N and its error:

of(a) =

w=N24na - o - &n N! ,

2|2,
|
Q

oW _ N _

=1

d%w _ N

: 7 .
*

Thus we have a =N
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and by Eq. (7), Ao = X

In a cross-section determination, we have a = pxo, where p is
the number of target nuclei per cm3 and x is the total path
length. Then

* Ao 1
(e} = 0x and = = E_
In conclusion we note that a*;fa :
j aéﬂ(a)da J o e %da
g = =2 = 2 =(N;}“=N+1_
Jof(a) da J aN e %dq
o

14. Generalized Maximum-Likelihood Method

So far we have always worked with the standard maximum-
likelihood formalism, whereby the distribution functions are
always normalized to unity. Fermi has pointed out that the
normalization requirement is not necessary so long as the basic
principle is observed: namely, that if one correctly writes
down the probébility of getting his experimental result, then
this likelihood function gives the relative probabilities of
the parameters in question. The only requirement is that the
probability of getting a particular result be correctly written.
We shall now consider the general case in which the probability

of getting anevent in dx is F(x)dx, and

max _
J F dx = N(o)
*min

is the average number of events one would get if the same

experiment were repeated many times. According to Eg. (19),
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the probability of getting no events in a small finite interval

bx 1s xX+Ax

exp ( - J F dx)
X

The probability of getting no events in the entire interval

X . <x<Zx is the product of such exponentials or
min max
X
max —ﬁ
exp (- J F dx) = e
X .
min

The element of probability for a particular experimental result

of N events at X=X 000Xy is then
- N
ad'p = e 1 F(x;) dx; .
i=1
Thus we have
N(@)
(o) = e I F(a;x.)
. i
i=1
and
N max
w() = ] &n F(a;x;) - J F(a;x)dx .
i=1 X _ .
min

*
The solutions a; =a, are still given by the M simultaneous

equations:
oW
—_ =0 .
aai
The errors are still given by
(a;-a:) (as—as) = (271
o -ay aj aj = (M )ij .
where 5
_ 9 w
H.. = - —~ 2
ij da, d0 .
i ]
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The only change is that N no longer appears explicitly in the
formula
_ P%w _ [1(aE)(2F)
do.oa.,  JF (da./|oa x -
i™73 i

A derivation similar to that used for Eq. (8) shows that N is

already taken care of in the integration over F(x).

In a private communication, George Backus has proven,
using direct probability, that the Maximum-Likelihood Theorem
also holds for this generalized maximum-likelihood method and
that in the limit of large N there is no method of estimation

that is more accurate. Also see Sect. 9.8 of Ref. 6.

In the absence of the generalized maximum-likelihood method
our procedure would have been to normalize F(a;x) to unity by
using

fla:x) = EigLﬁl .

JF dx

For example, consider the sample containing just two radioactive

species, of lifetimes aq and Oye Let G g and o, be the two

4
initial decay rates. Then we have

_ -x/0 -x/a
F(ai,x) =a, e 1+ a, e 2,

where x is the time. The standard method would then be to use

e X/0y +og e ¥/
f(Q;X) = ’

ul +a5a2

which is normalized to one. Note that the four original para-

meters have been reduced to three by using a555a4/a3. Then
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a3 and G4 would be found by using the auxiliary equation

J Fdx =N,

: o
the total number of counts. In this standard procedure the

equation
ﬁ(ai) = N ,

must always hold. However, in the generalized maximum-likeli-
hood method these two quantities are not necessarily equal.
Thus the generalized maximum-likelihood method will give a differ-

ent solution for the oy which should, in principle, be better.

Another example is that the best value for a cross section
0 is not obtained by the usual procedure of setting poL = N (the
number of events in a path length L). The fact that one has
additional prior information such as the shape of the angular
distribution enables one to do a somewhat better job of calcu-

lating the cross section.

15. The Least-Squares Method

Until now we have been discussing the situation in which
the experimental result is N events giving precise values
XyreserXy where the X; may or may not, as the case may be, be
all different.

From now on we shall confine our attention to the case

of p measurements (not p events) at the points xl...,xp. The

experimental results are (yl:tol),...,(y :top). One such type

P
of experiment is where each measurement consists of Ni events.

Then yi==Ni and is Poisson-distributed with o; = /Ni. In
this case the likelihood function is

— N.
P [y(x,)]'1 -

C! = 1 ———N%T——— e Y (%5)
= l.

- 31 -



and

f N. 2n y(x,) - E v(x,) +
i=1 1 i i1 Y( l) const.

We use the no i v(,; i
e notation y(ui,x) for the curve that is to be fitted

to the ex 1 i i
*perlmental points. The best-fit curve corresponds

to a; =ag. In this case of Poisson-distributed points, the

solutions are obtained from the M simultaneous equations

dy (x vy
a=1 o3 a=1 y(xa) 30Li
- -
y
(o JYO8
..... .y‘.u.
cr,/’%
C’z\
X, xto Xy Xq Xy Xe¢ Xq X

ig. 'L, y(x) is a function of known shape to be fitted to the 7 experlmentall
points.

If all the Ni>> 1, then it is a good approximation to
assume each Yi is Gaussian-distributed with standard deviation
oy ."(It is better to use N rather than N for o, * where N can
be obtained by integrating y(x) over the 1th 1nterval.) Then

one can use the famous least squares method.

The remainder of this section is devoted to the case in
which y; are Gaussian-distributed with standard deviations o
See Fig. 4. We shall now see that the least-squares method is
mathematically equivalent to the maximum likelihood method. 1In

this GCaussian case the likelihood function is

v 2 2
Q’f §1 7 o, exp{-ly_-y(x_)]1"/20, (23)
w(a) = - % S(a) - § gn V21 o,
a=1
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where

ly,-vy
S(a) = ‘f a a (24)

* . .
The solutions oy oy are given by minimizing S(a) (maximizing
w):

9S (o)
8ai

=0 . (25)

This minimum value of S is called S*, the least squares sum,
The values of oy which minimize are called the least-squares
solutions. Thus the maximum-likelihood and least-squares sol-
utions are identical. According to Eg. (11), the least-squares

errors are

x x .
(a--ai)(a--a-) = (H

-1 1
i ).., Wwhere Hij"f

J 3 ~ 1]

Let us consider the special case in which §(ai;x) is

linear in the a.:

i
_ M
y(ai;x) = a£1 aafa(x) .
(Do not confuse this f(x) with the f(x) on page 2.)
M
Then Ya - -Z- abfb (Xa)
38 _ b=1
= =2 5 fi(xa) . (26)
i a=1 ’ o4

Differentiating with respect to aj gives

_ E fi(xa)fj(xa)

H.. = (27)
1] a=1 02
Define v £. (x.)
v, = ¥ YaiZal (28)
a=1 Oa
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Then

M
9S
= = =2{U, = } aH .
oy [ N bl]

In matrix notation the M simultaneous equations giving the
least~-squares solution are

0 = u-o9o <H
* _l (29)

e
[
[
tm

is the solution for the a*'s.

using Eg. 1ll. To summarize:

The errors in o are obtained

M
If y(a;x) = gl a £ (x)
= M Ypfal®p) 3
Q. - 2 (E )ai 14
a=1l b=1 oy
£f.(x_)f.(x_)

_* Ty ol - i'7a’'""j a

(a; ai)(aj aj) Hrij where Hij«a=l 02 (30)
a

Equation (30) is the complete procedure for calculating the
least squares solutions and their errors. Note that even though
this procedure is called curve-fitting it is never necessary

to plot any curves. Quite often the complete experiment may

be a combination of several experiments in which several differ-
ent curves (all functions of the ai) may be jointly fitted.

Then the S-value is the sum over all the points on all the
curves. Note that since w(a*) decreases by % unit when one

of the aj has the value (a; iAaj), the S-value must increase

by one unit. That is,

* *
S(al,...,uthaj,...,aM) =S +1 .
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Example 5 Linear regression with equal errors

v (x) is known to be of the form y(x) = a, +a,X. There are p
experimental measurements (yjio) .
Using Eg. (30) we have
fl=l, f2=x, T x
B _a
02 02
g = 2
Xy ZXa
e
o] o]
sz -IX
a a
-1 02
H =
~ sz-(Zx )2
PaXy a -Ix ]
a
Ty Zx2-Zx T(x_y.)
a* - a“"a a a‘a
1 2 2
pra- (Zxa)
* pZ(xaya)--Zxa Ly,
Yy Tx° - (3x.) 2
paXy Xa

These are the linear regression formulas which are programmed
into many pocket calculators. They should not be used in

those cases where the Gi are not all the same. If the Oi are
all equal, the errors

2 _ -1
or
in
Ao, = o
1 2 2
pra (Zxa)
fa,, = /(H'l)22 =0 p
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Example 6 Quadratic regression with unequal errors
The curve to be fitted is known to be a parabola. There
are four experimental points at x=-0.6, ~-0.2, 0.2, and 0.6.
The experimental results are 52, 3#1, 5x1, and 8+2. Find
the best-fit curve.
V(X) = o, + a.x +a.x°
1 ¢ T 93
- = = 2
fl =1, f2 = x, f3 X,
x2 x4
1 a a
TR R R i T
11 5 02 22 5 02 33 5 G2 ’
a a a
X X3 %
Hp =13 Hy=]-5=m5,, Hy3 =1—3
o] o o
a a a
2.5 0 0.26 0.664 0 -2.54 (the
- -1 _ - error
H=10 0.26 0 Ei =10 3.847 0 'S matrix)
0.26 0 0.068 -2.54 0 24.418
u = (11.25 0.85 1.49)
*
al = 3.685, AG.1=0.815, A(llAaz =0
a’z‘ = 3.27, Ao, =1.96, Boqha g = -2.54
*
a3 = 7.808, Aa3==4,94,
2 .
¥ (x) = (3.685 £0.815) + (3.27 +1.96)x+ (7.808 £4.94)x" is the
best fit curve. This is shown with the experimental points
in Fig. 5,
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i 1 i L

-1 -5 0 5 I X
Fig. 5. This parabola is the least squares fit to the 4 experimental points
in Example 6.
Example 7

In example 6 what is the best estimate of y at x=1? What
is the error of this estimate?

Solution: Putting x=1 into the above equation gives
y = 3.685 + 3.27 + 7.808 = 14.763 .

Ay is obtained using Eq. 12.

_[e2 2 2
Ay t/flvll-+f2V22-+f3v33-+2f1f2V12-+2flf3vl3-+2f2f3V23

=J.664-+x2(3.847)-+x4(24.418)-+0-+2x2(—2.54)-+0

Setting x=1 gives

AY =5.137
So at x=1, y=14.763+5.137 .

Least Squares When the y;_are Not Independent

Let

be the error matrix of the y measurements. Now we shall treat
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the more general case where the off diagonal elements need not
be zero; i.e., the quantities y; are not independent. We see
immediately from Eq. lla that the log likelihood function is
(Y-§5'Xfl'(y—§)T + const.

——

w = -

Nj =

The maximum likelihood solution is found by minimizing

S = =9V e y-y)

Generalized least squares sum

where Vij==(yi—yi)(yj—yj)

16. Goodness of Fit, the x2 Distribution

The numerical value of the likelihood function at

(u*) can, in principle, be used as a check on whether one
is using the correct type of function for f(o;x). If one is
using the wrong f, the likelihood function will be lower in
height and of greater width. 1In principle, one can calculate,
using direct probability, the distribution of (a*) assuming
a ?ziticular true f(ao,x). Then the probability of getting
an o ) smaller than the value observed would be a useful
indication of whether the wrong type of function for f had been
used. If for a particular experiment one got the answer that
there was one chance in lO4 of getting such a low value of

(a*), one would seriously question either the experiment or
the function f(a;x) that was used.

In practice, the determination of the distribution of
(a*) is usually an impossibly difficult numerical integration
in N-dimensional space. However, in the special case of the
least-square problem, the integration limits turn out to be
the radius vector in p-dimensional space. In this case we use
the distribution of S(a*) rather than of (a*). We shall first
consider the distribution of S(aO). According to Egs. (23)
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and (24) the probability element is

aP P « exp[-5/2] dPy

i
Note that S==p2, where p is the magnitude of the radius vector

in p-dimensional space. The volume of a p-dimensional sphere

is U OCpp. The volume element in this space is then

- - -1
Py, = oP 1 gp « sP1)/257% 44

Thus

The normalization is obtained by integrating from S=0 to S =.

ap (s ) = 1 s (p/2)-1 e-SO/ZdS (30a)
o) 2p/2 I'(p/2) o] o)

where S =S (a_).
o o

This distribution is the well-known x2 distribution with p
degrees of freedom. x2 tables of

=}

J dP (S)

5o

for several degrees of freedom are commonly available — see
Appendix V for plots of the above integral.

From the definition of S (Egq. (24)) it is obvious that

§o - p. One can show, using Eq. (29) that (SO-§6)%=2p. Hence,

one should be suspicious if his experimental result gives an
S-value much greater than

(p +/2p).

Usually o is not known. In such a case one is interested

in the distribution of
*

*
S S(a ) .
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Fortunately, this distribution is also quite simple. It is
merely the x distribution of (p-M) degrees of freedom, where
P is the number of experimental points, and M is the number
of parameters solved for. Thus we have

* 2 . . )
dP (s ) = x” distribution for (p-M) degrees of freedom
% * —_—

s" = (p-m) ana &5 =/ (s*-5= /2(p-M) (31)

Since the derivation of Eg. (31) is somewhat lengthy, it is
given in Appendix II.

Example 8
. 2 A
Determine the X~ probability of the solution to Example 6.

" - [5-7(0.6))% 7 (-0.2) 2

. N [5—1"(10.2)]2 . [e—g"‘(o.s)r
p)

S = 0.674 compared to §* = 4-3 = 1 .

According to the x2 table for one degree of freedom the proba-

*
bility of getting S > 0.674 is 0.41. Thus the experimental data
are quite consistent with the assumed theoretical shape of

= _ 2
Y = ay ta,x Foagxt .

Example 9 Combining Experiments

Two different laboratorles have measured the llfetlme of
the K] to be (1.000.01) x 10 =10 _.c and (1.04+0.02) x 1010 sec

respectively. Are these results really inconsistent?

. * -10
According to Eg. (6) the weighted mean is o = 1.008%10 sec.

(This is also the least squares solution:ﬂJrTKo.)
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Thus

2 2
* 1.00-1.008 1.04-1.008 ry

= = =2~1=
s { e ] +[ T } 3.2 S=2-1=1

According to the x2 table for one degree of freedom, the
probability of getting S*> 3.2 is 0.074. Therefore, according
to statistics, two measurements of the same quantity should be
at least this far apart 7.4% of the time.
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Appendix I: Prediction of Likelihood Ratios

An important job for a physicist who plans new experi-
ments is to estimate beforehand just how many events will be
needed to "prove" a certain hypothesis. The usual procedure
is to calculate the average logarithm of the likelihood ratio.
The average logarithm is better behaved mathematically than
the average of the ratio itself.

We have

14

f
log /?L N flog fé fA(x)dx, assuming A is true (32)
B

or ——
£
log /%1 N jlog fé fB(x)dx, assuming B is true
B
. . +

Consider the example (given in Section 3) of the K meson. We
believe spin zero is true, and we wish to establish betting odds
of 104 to 1 against spin 1. How many events will be needed for
this? 1In this case Eg. (32) gives

1 1
log 10% = 4 = Ilog (o) dx = =N [109 (2x)dx ,
(o} (o]
N=30

Thus about 30 events would be needed on the average. However,
if one is lucky, one might not need so many events. Consider
the extreme case of just one event with x=0: ﬁwould then
be infinite and this one single event would be complete proof
in itself that z?f K+ is spin zero. The fluctuation (rms

spread) of log for a given N is

f

t 2
A 2 _ A .
(log H - log«)2 = NU(log fg) fAdx (Ilog -——-fB fA dax) ]
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Appendix II: Distribution of the Least-Squares Sum

We shall define

Y. f.(x,)
the vector 2. = e and the matrix F,. = 2
i oy ij 0y
Note that H = gT- F by Eq. (27),
*
Z*F=o0 -H by Eg. (28) and (29) . (33)
Then * -1
o =2-F-H" . (34)
s Py et p) + a2
= -al + (o, —a ’
o a=1 bel a b "ab b "b’"ab

where the unstarred o is used for ag.

s,=f 1

ab

*
y o, £, (x_)12
2. _b_ob_a_J +2(Z~-a ~E )f“_(a o) + ( -a)z F (o —oc)T
a a

* * '
s,=8" +2Ee gD @)+ @ e DEE T 2 )

using Eq. (34). The second term on the right iszero because of
Eg. (33).
* - -
S =8 = (Z+F- FTF)H lHH l( TZT-FTFOLT) ’
@] -_— s A A ~ o~ ~m o
* = =T T _
S = (2-2)(1-Q(Z-Z2) where a*F = Z and
- - M A N N _ A~
0 = FH IFT. (35)
~ Ao A A
Note that
Q2 - (EE—IFT) (EE-lET) - FE_lFT - 9,

If qy is an eigenvalue of Q, it must be equal qi, an eigenvalue
2

of Q. Thus q; = 0 or 1. The trace of g'is
_ -1 T _ -1 _ _
Tr 2= ) Fabfpe Fea = ) Hopipe = T L=M .
a,b,c b,C

- 43 -



Since the trace of a matrix is invariant under a unitary trans-
formation, the trace always eguals the sum of the eigenvalues
of the matrix. Therefore M of the eigenvalues of‘g’are one,
and (p-M) are zero. Let U be the unitary matrix which diagon-
alizes‘g (and also (&72))' According to Eq. (35),

* - — -

S = n - R(w_%) H 1 . D.T' where HE (.Z.—_z_) . gvl ,

* § 2 .

s = ’n%na where'w% are the eigenvalues of (1~Q).
=1 diand

x Pt o5 .

S = Z na since the M nonzero eigenvalues of Q cancel
a=1l ~

out M of the eigenvalues of 2:

Thus

*
ap(s™) « & 5 /2 P My

where S* is the square of the radius vector in (p-M)-dimensional

. . . 2 4. .
space. By definition (see Section 16) this is the x~ distri-
bution with (p-M) degrees of freedom.
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Appendix III. Least Squares with Errors in Both Variables

Experiments in physics designed to determine parameters
in the functional relationship between quantities x and y
involve a series of measurements of x and the corresponding y.
In many cases not only are there measurement errors Gyj for
each yj, but also measurement errors 6xj for each xj. Most
physicists treat the problem as if all the ij==0 using the
standard least squares method. Such a procedure loses accuracy
in the determiantion of the unknown parameters contained in
the function y=£f(x) and it gives estimates of errors which

are smaller than the true errors.

The standard least squares method of Section 15 should be

used only when all the ij<< dyj. Otherwise one must replace

the weighting factors wl/oi in Eq. (24) with (<Sj)_2 where
2 2 2 ’ .
2 a.f
§T =l= Sx.| + |6 36
=[5 [ o) 36)
Eg. (24) then becomes 2
n y.-f(x.)
s = _l_g_.l_ (37)
j=1 J

A proof is given in Ref. 7.

We see that the standard least squares computer programs may
still be used. In the case where y==al+a2x one may use what
are called linear regression programs, and where y is a poly-
nomial in x one may use multiple polynomial regression programs.
The usual procedure is to guess starting values for %§ and then

*
solve for the parameters aj using Egq. (30) with oj replaced by

Gj. Then new %% 3 can be evaluated and the procedure repeated.

Usually only two iterations are necessary. The effective
variance method is exact in the limit that %5 is constant over
the region 6xj. This means it is always exact for linear

regressions.
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Appendix IV. Numerical Methods for Maximum Likelihood and

Least Squares Solutions

In many cases the likelihood function is not analytical
*
or else, if analytical, the procedure for finding the a. and

their errors is too cumbersome and time consuming compared to
numerical methods using modern computers.

For reasons of clarity we shall first discuss an in-
efficient, cumbersome method called the grid method. After
such an introduction we shall be equipped to go on to a more

efficient and practical method called the method of steepest
descent.

The grid method

If there are M parameters al,...,aM to be determined one
could in principle map out a fine grid in M-dimensional space
evaluating w(a) (or S(a)) at each point. The maximum value
obtained for w is the maximum likelihood solution w*. One could
then map out contour surfaces of w==(w*-%), (w*—l), etc. This
is illustrated for M= 2 in Fig. 6.

Qa az
2 (W*-3/2)
(w*-1) \\\ (W*—w2)~\\\
(w¥-172) d
\
i
a’r :
2 ]
I !
1 ! 1
i ! 1
! ! 1
o T - ! » ' pe
o Q, al a‘ ai a,

Fig. 6. Contours of fixed w enclosing* Fig. 7. A poc?r siéatistics case
the max. likelihood solutionw,} of Fig. ©.

In the case of good statistics the contours would be small

ellipsoids. Fig. 7 illustrates a case of poor statistics.
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*
Here it is better to present the (w -%) contour surface (or
*
the (S +1) surface) than to try to quote errors on o. If
. - +
one is to quote errors it should be in the form ap<ag <oy

- + .
where 04 and ay are the extreme excursions the surface makes

in aq (see Fig. 7). It could be a serious mistake to quote

+ .
a or a as the errors in al.

In the case of good statistics the second derivatives
azw . . . *
= = -H could be found numerically in the region near w .
BaaBab ab

The errors in the a's are then found by inverting the H-matrix
to obtain the error matrix for a; i.e.,
-1

* * _
(ai-ai)(aj—aj) = (H

).. . The second derivatives can be found
numerically by using '

1]

92
w

SOLi 90

j = [w(ai+Aai,aj+Aaj)4—w(ai,aj)-w(ai+Aai,a-)

J

- w(ai,aj+Aaj)] / AaiAaj .
1 3%s
In the case of least squares use H,.=3 =——=— =
ij 2 Baiaaj

So far we have for the sake of simplicity talked in terms
of evaluating w(a) over a fine grid in M-dimensional space.
In most cases this would be much too time consuming. A rather
extensive methodology has been developed far finding maxima or
minima numerically. In this appendix we shall outline just one
such approach called the method of steepest descent. We shall
show how to find the least squares minimum of S(q). (This is

the same as finding a maximum in w(q)).
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6___
~N

STARTING (2) a,
POINT —= o—

STARTING
POINT == (')

(1)

Qa, 0 a,
Fig. 8. Contours of constant S vs. Fig. 9. ©Same as Fig. 8, but using
al and a2. Stepwise search the method of steepest

for the minimum, descenti‘

‘the other a's fixed) until a minimum is found. Then vary o

Method of Steepest Descent

. At first thought one might be tempted to vary oq (keeping
2
(keeping the others fixed) until a new minimum is found, and
so on. This is illustrated in Fig. 8 where M=2 and the errors
are strongly correlated. But in Fig. 8 many trials are needed.
This stepwise procedure does converge, but in the case of
Fig. 8, much too slowly. 1In the method of steepest descent
one moves against the gradient in a-space:

v.8 = 95 &, + 05 &2 + e

o Bal 1 8a2

So we change all the o's simultaneously in the ratio

CE 95 : 85 . _... . In orderto find the minimum along
30.1 3(!2 30.3

this line in oa-space one should use an efficient step size.
An effective method is to assume S(s) varies quadratically
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* »
from the minimum position s where s is the distance along

this line. Then the step size to the minimum is

38, - 48, +8
so - 5. + As 1 2 3

1 2 Sl--232+S3

where Sl’ SZ’ and S3 are equally spaced evaluations of S(s) along
s with step size As starting from s;; i.e., sz==sl+ As,
s3==sl-+2As. One or two iterations using the above formula will
reach the minimum along s shown as point (2) in Fig. 9. The
next repetition of the above procedure takes us to point (3) in
Fig. 9. It is clear by comparing Fig. 9 with Fig. 8 that the
method of steepest descent requires much fewer computer evalu-

ations of S(a) than does the one variable at a time method.

Least Squares with Constraints

In some problems the possible values of the aj are restric-
ted by subsidiary constraint relations. For example, consider
an elastic scattering event in a bubble chamber where the
measurements yj are track coordinates and the a; are track
directions and momenta. However, the combinations of oy that are
physically possible are restricted by energy-momentum conservation.
The most common way of handling this situation is touse the 4 con-
straint equations to eliminate 4 of the a's in S(@). Then S is
minimized with respect to the remaining a's. In this example
there would be (9-4) =5 independent a's: two for orientation
of the scattering plane, one for direction of incoming track in

this plane, one for momentum of incoming track, and one for

scattering angle. There could also be constraint relations among
the measurable quantities Y- In either case, if the method of
substitution is too cumbersome, one can use the method of Lagrange
multipliers.

In some cases the constraining relations are inequalities rather

than equations. For example, suppose it is known that a, must be

1
a positive quantity. Then one could define a new set of a's where

(ai)2==al, aé==a2, etc. Now if S(a') is minimized no non-physical
values of o will be used in the search for the minimum.
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Appendix V, Cumulative Gaussian and Chi-Squared Distributions

Fig. 10. X2 Confidence Level vs. x2 for np Degrees of Freedom(9)
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The X? confidence limit is the probability of Chi-squared

exceeding the observed value; i.e.,
cL = J P (x%)dy?
2 P

X
where Pp for p degrees of freedom is given by Eg. (30a).

Gaussian Confidence Limits

2
2 _ Ix =
Let ¥ = {3) . Then for n, = 1,

1 X -1 x2 X 2 1 x2
® AT [5} e"p{’ }}7) d[E] ”E‘/ﬁ exp{' ’{?ﬂdx

Thus CL for ny is twice the area under a single Gaussian tail.
For example the nD==l curve for x2==4 has a value of CL=0.046.
This means that the probability of getting |x| > 20 is 4.6% for

a Gaussian distribution.
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Getting Started on
Mass—-Chain Eval_uations

T. W. Burrows

National Nuclear Data Center
Brookhaven National Laboratory
Upton, NY 11973 USA
September 22, 1987

INTRODUCTION

This guide is designed to provide an evaluator of nuclear structure data
with a brief overview of the information which should be included in an eval-
uation and an outline of the procedures involved in the preparation of such
data for inclusion in the ENSDF (Evaluated Nuclear Structure Data File) and
publication in the Nwuclear Data Sheets. It is based on previous memos
from the Nuclear Data Project (NDP) and presentations made by the staffs of
the NDP and the National Nuclear Data Center (NNDC) and includes information
from the ENSDF formats manual' the Style Manual? Guidelines for Evaluators?
and recent network meetings*5 An index of other relevant communi-
cations 1is also included. Unavoidably, some interpretations based on the
author's personal experiences have also been included.

The reader should also be aware that the format, style, presentation of infor-
mation, and standards are evolving with time. Therefore, the current manuals!?
guidelines® and results from the more recent network meetings should also be consulted.

PHILOSOPHY
The philosophy of ENSDF and Nwuclear Data Sheets is to:
1. present the "best” data available from each type of experiment,
2. present the "best” information available on each isotope as a result of
an evaluation of all the experimental data,
3. present the above information in a concise and well-documented manner,
and
4. present a reasonably complete list of references.

The philosophy of a nuclear structure evaluation should be conservative with
emphasis given to the experimental evidence and to well-founded systematics and
theory. Whereever possible, adopted values should be model independent.

GENERAL PROCEDURES

1. Scan the old Data Sheets and the ENSDF listing for the mass chain --- get
a quick overview of the whole A-chain.



GENERAL PROCEDURES

Sort the reference list --- check all secondary sources’ discarding all
those which are superseded. Write for further information or authors con-
sent to include data from secondary sources. Obtaining the authors' consent

reduces the inclusion of errors or preliminary data in ENSDF and Nwuclear Data
Sheets.

Read all papers carefully -—- do not assume everything in the paper must
be correct.

a. Begin with the most recent papers; many older references may be '"retired”
by comparison.

b. Extract the data, including uncertainties, noting carefully assumptions
and standards or constants that enter into the authors' calculations;
e.g. an &¢/a ratio for one nucleus might depend on a value for a
different nucleus, a conversion coefficient might depend upon some assumed
standards, etcl

c. Present interrelated data such as in (b) so that the effect of changes
in the assumed constants is clearly displayed, e.g., ax=0.032 6 if
og(!¥’Cs)=. .. We often have better or newer values for the constants than

did the authors.

d. Present data so that the authors’ measured data and their assumptions are
clearly separated. For example, a (d,p) reaction might yield (-values
whereas to obtain spectroscopic factors, the authors would also need /.
We would indicate that /{ was measured while J was "assumed by the authors
for the extraction of S.”

e. Check the bibliography in each article against your own list to see that
the NSR scanning procedure has not missed any references, particularly second-
ary sources’ Also, authors will sometimes quote data received as private
communications. These data should be checked if possible.

f. Do not depend upon the authors to extract older data correctly. Even if
the authors collect all the old values in a convenient table, the original
articles should be checked. This checking procedure is especially impor-—
tant in view of (b) above.

* Secondary sources are abstracts, reports, and other unrefereed materials
and are usually recognized by the keynumber containing letters, instead of
numerals, for the last two characters of the keynumber. Note that the Nuclear
Structure References file (NSR) may be incomplete for these sources due to lack
of or delay in receipt of the references.

T Note that the original version of these procedures also contained the sug-
gestion that data should be presented in its most "elementary” or
"basic” form. For example, a list of I,'s and ag's may really be a measure-
ment of I, and [y normalized to give a specific ay for one of the
¥'s. The I, and Ig are the more "basic” data. If the data are not presented
in the most "basic” form, the data should be presented as described in 3.c.



GENERAL PROCEDURES

Carefully document any and all changes in data from values given by the
authors. A flagged comment, record comment, or documentation record
could indicate a change due to a misprint, a change in constants or
in a dependent piece of data.

Write spin assignments, comments, etc. based on the data as given and
as evaluated by you.  Assignments should conform to the spin and parity
assignment rules as outlined in the introduction to Nwuclear Data Sheets
and in other sections of this manual.

Do not repeat discussions of old discrepancies if the problems are
no longer relevant.

Suggested method of approach

a.

a

After scanning the old Data Sheets and sorting the references, decide on

an order of evaluation. Two of the recommended methods have been to

i . begin with the data on the isotopes farthest from the line of g
stability and work in towards the center or

i1 . compile the data from similar types of experiments. For example,

all radiaocactive—decay data, then all stripping reaction data, etc. This

approach is useful in those cases where the information for a large por—

tion of the mass chain is dominated by a few types of measurements.

As each data set is completed, run the appropriate ENSDF codes on the data.
(See Appendix)

Do not compile the adopted data set until after the experimental data sets
for a given nuclide have been completed and checked.

Before submitting the evaluation to the NNDC check the monthly updates
from NSR or the online NSR and emend your evaluation accordingly. This step
should be repeated if you receive a preliminary copy from the NNDC or when
the reviewer’'s comments are received.

Be sure that all references for which keynumbers have not been assigned
are clearly and uniquely indicated in the data sets and that the necessary
information is sent to the NNDCt

1 As described in Nuclear Structure memo NS/1A-36 (April 1982), "dummy"”

keynumbers may be assigned by the evaluators as long as a list of refer-
ences associated with these keynumbers accompanies the evaluation and, in
the case of an unpublished reference or unusual journal, a copy of the re-
ference is sent to the NNDC. The "dummy” keynumbers should be of the form
YYLLXX where YY is the year of publication, LL are the first two letters of
the first author’s last name, and XX are Latin characters chosen from the
beginning of the alphabet (e.g., XX=AA for the first reference for the
same YYLL, =AB for the second reference for the same YYLL, etc.). Note:
Characters from the end of the alphabet (e.g., X, Y, and Z) should not
be used since they are assigned by the computer on entry to the NSR file
to secondary sources and there may be confusion between a "dummy” and a se-
condary-source keynumber.



GENERAL PROCEDURES

Normal procedures for mass chain evaluations

Evaluator notifies the NNDC that the evaluation is to start.

The NNDC sends a complete reference list for the mass and a complete
ENSDF listing for the mass. If the ENSDF data were unpublished, tables of

these data will be sent on request. The ENSDF data sets on taped will
also be sent on request.

The NNDC continues to send monthly updates of NSR.

As the evaluation proceeds, unusual documents may be obtained by the eval-
uator from the NNDC and parts of the evaluation may be sent to the NNDC on
tape for processing if the programs are not available locally.

When the evaluation is complete, the evaluator will send to the NNDC all
data sets, private communications and other unusual references requiring
keynumbers, and a transmittal form containing the processing information.

The NNDC will place the data sets in a temporary file after correcting
any serious format errors and will perform certain calculations and
consistency checks on the data sets.

If the evaluator requests or if major revisions seem to be indicated,
the NNDC will provide the evaluator with preliminary tables, drawings,
reference list, abstracts, relevant printouts from the checking pro-
grams, and a listing of the current data sets with all changes from
the original indicated.

If major revisions are suggested at this stage, the NNDC will also return
a tape of the current data sets with some general comments on how the
data may be improved. Tapes of the current data sets will be returned
in all cases if requested.

The evaluator will inform the NNDC when the data sets for the evaluation
are complete.

NNDC will send one copy of the semifinal tables, drawings, reference list,
and abstract to the evaluator. Another copy will be sent to a referee
who is assigned in accordance with the Review Procedures?

§ This includes magnetic tapes, diskettes, cards, or other file transfer

procedures which are mutually compatible between the NNDC and the evalua-

tor's institution.



GENERAL PROCEDURES

The referee will send to the editors a report on the review of the evalua-
tion. On the basis of the report, the editors will decide whether:
i . The manuscript is accepted for publication in Nwuclear Data Sheets
and recommend prompt publication.
ii. The manuscript is generally satisfactory, but contains certain
errors or omissions.
iii. Several pages of the manuscript contain substantive or systematic
errors and the referee's rejection is clearly justified in the written report.

If the manuscript is accepted for publication in Nwuclear Data Sheets,
the editors will promptly notify the evaluator. At this stage the eval-
uator should send final corrections to the NNDC. Final changes in grammar,
spelling, punctuation, and layout to ensure a uniform high quality for
Nuclear Data Sheets may be made by the editors and communicated to the
evaluator.

The editors shall send a galley of the manuscript to the evaluator for proof-

reading. Corrections of errors only shall be done and any corrections
or disagreements in layout communicated to the editors within one week of
receipt. The manuscript is now accepted for publication and the

evaluator's commitment has been satified.

The NNDC will prepare the final manuscript for publication. One
preprint copy will be sent to the evaluator when the photoready copy is
sent to the publisher.

If the referee has suggested minor changes, the editors will consider the
referee’s comments and send a copy of the report to the evaluator. The
evaluator should mark revisions on one copy of the ENSDF listing and
return it to the NNDC. The editors may accept these changes as complying
with the referee's recommendations or may consult further with the eval-
uator and referee until an acceptable manuscript is prepared. The manu-
script is then processed for publication as in (k) above.

If the manuscript requires major revisions, the editors will consider the
referee’'s comments and send a copy of the report to the evaluator. The
evaluator will make modifications at his own institution and resubmit
evaluation as in (e) above. The editors may ask for a second referee's
opinion or proceed as in (j) above.

After a manuscript has been published in Nwuclear Data Sheets, the NNDC
will supply copies of reprints as received from the publisher, replace all
old data sets with the new evaluation unless advised otherwise, add a
REFERENCE data set containing keynumbers and CODEN (an abbreviated citation
of the reference) for all references contained in the evaluation, and add
the citation to the COMMENTS data set.

[f the evaluator believes that the changes suggested by the referee are
not justified or are incorrect, an appeal, using the established arbitra-
tion procedure! may be made through the editors.



PHYSICAL PROPERTIES/STANDARDS

PHYSICAL PROPERTIES COMPILED OR EVALUATED

AND
STANDARDS FOR ENSDF DATA SETS

Data which are required by the standards are indicated by ® and must be
included if known. The other data should be considered in the evaluation and would

normally be

included or referenced if relevant.

A. General Standards

L A-Chain Completeness ~—-~ For each A-chain there must be at least one
data set for each known isotope. A COMMENTS data set must be included for
each evaluation and contain at least the evaluators’ names and addresses and
an approximate literature cutoff date.

2. Isotope Completeness -—- For each nucleus, there must be at least one
data set for each distinct type of experiment? gim level or gamma
information about that nucleus.

For each nucleus, there should be one, and only one, ADOPTED LEVELS or
ADOPTED LEVELS, GAMMAS data set. By convention, if only one data set
exists for an isotope that data set will be treated as an "adopted’ data

set®

3. Data—-set Identification (ID-Records) --- No two distinct data sets may
have the same data-set name (cols. 10-39 of the ID-Record).

a.

For radioactivity data sets the data-set name contains the parent
isotope and the type of decay followed by the word DECAY. Isomers
are identified by their half-life (in parentheses) following the
word DECAY.

For reaction data sets the reaction (including the target) should be
explicitly given whenever possible. The final nucleus should not be
given, since it is contained in cols. 1-5.

Some experiments can be grouped efficiently since the properties
measured are similar. For example, one could have one data set sum-
marizing Coulomb excitation by protons, a's, and heavy ions.

Experiments should not be grouped if the properties measured or
deduced differ significantly.

The reference field (cols 40-64) on the ID-record should be used for
no more than three keynumbers. If there are more than three prin-
ciple references for a data set, then all the keynumbers should be placed
on comment cards immediately following the ID-record.

# Experiments should be grouped into one data set when the properties
measured or deduced are similar. Two examples would be Coulomb excitation
and proton-transfer reactions.

®3uch data sets must satisfy the standards for adopted data sets except
for cross references.



PHYSICAL PROPERTIES/STANDARDS

4. Data-Set Contents

Standard formats should be used unless there are compelling reasons

to do otherwise®

Uncertainties must be given for all measured values and all
adopted values whenever possible!‘

Units must be given when appropriate® The only exceptions are the
standard units listed in Appendix D of the formats manual!

Documentation should be included in the [D-record and in general or
specific comments. A copy of every document cited in an A-chain
must be on file at the NNDCR Each evaluator is responsible
for sending copies of private communications and special reports,
which may have been received directly by him, to the NNDC.

If many references are used in a data set, you should be specific
as to which data items come from each reference. In general. all
experimental numeric information is obtained only from exper-
iments "belonging” to the data set as identified by its ID-record.
Numbers which are "borrowed” from other data sets should be
specifically identified as such.

There should be sufficient documentation in each data set so that
the user will know what was measured and how, what was deduced or
calculated, and the reasons for the evaluators’ adoption of specific
properties.

B. Physical Properties
1. Adopted Properties

a. Q" S, S, and QR Note that a Q-card must be given even
if none of the values are known.

b. Levels: E(level)R J7R T,/ or total 'R decay branching® BA (if
T,/ is unknown)R® static electric and magnetic moments® configuration
assignments® band parameters®® isomer or isotope shifts® charge dis-
tributions? and deformation parameters of g.s?

c. Gammas: Placement® E.,,R branching from each level® Multipolarity
(including mixing ratio)® total conversion coefficient (a/(1+a)20.001)R
penetration coefficients, reduced transition probabilities® and
ratios of reduced transition probabilities?

d. Cross References: XREF's must be included in all ADOPTED LEVELS
or ADOPTED LEVELS, GAMMAS data sets®

® Special case or special mass regions



PHYSICAL PROPERTIES/STANDARDS

Radioactive Decay

a.

b.

Energies of o, 8, ¢ or B-, Y. or other nuclear radiationsR®

Intensities of a, B7, B*. & ¥. ¥*. or other nuclear
radiations with normalization to absolute intensities® Quantities
related to intensities as calculated (log ft's. a—hindrance factors)R
X-ray intensities as compiled or calculated®

Other properties of radiations as evaluated or calculated:® y-mul-
tipolarities (including mixing ratios), K. L, M+ fractions of ¢
decay, average B energies, degrees of forbiddenness of unique B-tran-
sitions, 7 total conversion coefficients, K, L, M, N+ conversion
coefficients, and internal pair formation.

Placement of radiations® and coincidence relationships.

Level properties of the daughter nucleus if derived from the radio—
active decayR®

Properties of rare forms of radioactivityRa

Experimental conversion-electron data in cases of high precision
(Aa$5%), penetration effects, or other anomaliesRk®

B-spectrum shape factors?

e/8* ratios?

Angular correlation parameters or polarization results?

Radiations not observed but expected to exist on the basis of infor-
mation from other data sets or from systematics?

Nuclear Reactions

Level energies observed®

Angular momentum transfers®

Transition strengths®

LR
J" as determined by the reaction:

Gamma-ray properties deduced from the reaction Fsee above .for
specifics).n Note that calculated total apd .partlal converm.on
coefficients should be included only if they aid in the understanding
of the data presented.

Resonance parameters or a citation of references containing the

parametersR®

a
Cross sections and Q-values.

. . a
Parameters relating to reaction mechanisms:

8
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b See the index which follows for information on obtaining the references.



of data sets.

APPENDIX

APPENDIX

Listed below are the possible sequences for running the ENSDF codes on various types

Note that running these codes is really an iterative procedure and as you

add or change data the codes may have to be run again.

A

All Data Sets
FMTCHK

codes
TREND

1.
2.

3.

Produces tables of the data contained in ENSDF data sets,

Checks for format and syntax errors in ENSDF data sets. All other ENSDF

assume the data to be error free.

This is useful to
Proofread your work,

Check for data entry errors which cannot be found by FMTCHK,
and

Organize your data for concise presentation in the Nuclear Data
Sheets.

Reaction Data Sets with Gammas

1.

All
GTOL

HSICC

RULER

SPINOZA

This program should be run to check the placement of gammas
in the decay scheme and where appropriate to create a new data
set containing the level energies calculated by the program.
If experimental a's are given, this program should be run to
check the conclusions of the authors.

If T,,.'s are given, the program should be run in the com-
parison mode to provide you with limits on the possible y-ray
multipolarities and to check any conclusions made by the authors
based on RUL.

In cases of complex decay schemes it is useful to run this code

to check the Jm assignments made and to find other possible as-
signments based on the y-transitions and the current IJn's.

Capture and Heavy-ion Fusion Reactions

HSICC

GTOL

For the vy-transitions where conversion is significant the a4
from HSICC should be factored into the data set. This will produce
a more meaningful comparison when GTOL is run.

For these types of reactions it is also useful to use the GTOL re-
sults to check the intensity balancing.

Decay Data Sets

1.

All
HS1CC

GTOL

RADLST

This code should be run for all the reasons given above. In ad-
dition, the partial a's should be included in the data set so that
the ENSDF data sets may be used for various applications (e.g. dosi-
metry and reactor engineering).

This code should be run for all the reasons given above. The
results will also be useful in deriving the normalizations and the
a, B—, and f+.& feedings to various levels.

This program or MEDLIST should be run to check tpe calc.ulated
energy deposited with that predicted from the branching ratio and
Q-value. Also, in the cases where 7yx, X-ray, or Auge':r-electron
intensities, <Eg> <E,> etc. have been measured, it can be
used to compare these data with the results from your decay’sch'eme
and may, in some cases, add in obtaining the normalizations.

10



APPENDIX

APPENDIX (continued)

RULER See above.
SPINOZA See above. In decay data sets, SPINOZA also takes into account the
a, -, and B+.& data.
2. f- and B+.&e Decay

LOGFT This code should be run to provide information on the log ft's and
<Eg>'s, lg,’s, l.;'s, and capture fractions for applied
applications.

D. Adopted Levels and Gammas

PANDORA The results of this code provide a convenient way of organizing the
data for making your adopted level and gamma assignments. It also
provides useful physics checks, both on the individual "experimental”
data sets and between your adopted Jm assignments and relevant exper—
imental data. Finally, it can aid in adding the XREF required in the
adopted data set.

GTOL See B.1, above. Note that in those cases where the primary 7's from
neutron capture are the source of precise bound-state level energies
the program should be run on a data set containing the capture state
and associated primary 7¥'s (this information should be deleted from
the adopted data set prior to submittal).

HSICC For y-transitions where conversion is significant, the oy, from
HSICC should be factored into the data set, both for use by the rea-
der and to produce the correct results when RULER is run.

RULER This program should now be run in the calculation mode and the
results checked and incorporated into the data set.

SPINOZA See above. Note that in those cases where the primary v's from
neutron capture are the source of bound-state J™s the program
should be run on a data set containing the capture state and asso-
ciated primary 7's (this information should be deleted from the
adopted data set prior to submittal).

E. After the Adopted Levels and Gammas Data Set is Completed
PANDORA This program’s results may be used to check that you have factored
into the "experimental’ data sets the appropriate adopted level
and gamma information as outlined in the Guidelines for Evalua-
tors. Note that, depending on the changes made, you may have to
run various codes (e.g., FMTCHK) again on the "experimental”
data sets.

F. Prior to Submission

As a final check before submitting your the evaluation, the codes FMTCHK and
PANDORA should be run on the complete evaluation and the results checked.
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OTHER EVALUATIONS, COMPILATIONS,
AND THEORY PAPERS
T. W. Burrows
National Nuclear Data Center
Brookhaven National Laboratory
Upton, NY 11973 USA
November 3, 1987

Listed below are various compilations, evaluations, and theory papers which evaluators have found useful; those
that are used often or are recommended for use in the Nuclear Data Sheets have their keynumbers underlined. See the
continuing series "DATA COMPILATIONS IN PHYSICS" in Physik Daten for other references. Note that the data from several
of these references are conveniently summarized in Table of Radioactive Isotopes (86BrzQ) and in Table of Isotopes,
7t* Edition (78LeZA).

72E121

79Ry03

80Sc26

68Ha54

718t47

71St48

71Ta32

72An20

67Be73

72Bb16

78Po08

79Ah01

a ENERGIES, INTENSITIES, AND HINDRANCE FACTORS

Y.A.Ellis, M.R.Schmorak - Nucl.Data Sheets B8, 345 (1972)

Survey of Nuclear Structure Systematics for A 2z 229

A.Rytz - At.Data Nucl.Data Tables 23, 507 (1979)

New Catalogue of Recommended Alpha Energy and Intensity Values

M.R.Schmorak - Nucl.Data Sheets 31, 283 (1980)

Systematics of Nuclear Level Properties in the Lead Region

W.Westmeier, A. Merkin - Physik Daten 29-1 (1985)

Catalog of Alpha Particles from Radioactive Decay

Decay Data of The Transactinium Nuclides, IAEA Technical Reports Series No. 261 (1986)

ANGULAR DISTRIBUTIONS AND DIRECTIONAL CORRELATIONS

H.J.Rose, D.M.Brink - Rev.Mod.Phys. 39, 306 (1967)

Angular Distributions of Gamma Rays in Terms of Phase—Defined Reduced Matrix Elements
L.C.Biedenharn. ~ Nuclear Spectroscopy, Ajzenberg-Selove, Ed., Academic Press, NY, p.732 (1960)
Angular Correlations in Nuclear Spectroscopy

R.S.Hager, E.C.Seltzer — Nucl.Data A4, 397 (1968)

Internal Conversion Tables. Part [I: Directional and Polarization Particle Parameters for Z = 30 to
Z = 103

R.M.Steffen - LA-4565~-MS (1971)

Angular Distributions and Correlations of Radiation Emitted from Oriented Nuclei

R.M.Steffen - Proc.Int.Conf.Angular Correlations in Nuclear Disintegration., Delft, Netherlands
(1970), H.van Krugten, B.van Nooijen, Eds., Wolters-Noordhoff Publ., Groningen, p.1 (1971)
Angular Distributions and Correlations of Nuclear Radiations in Nuclear Spectroscopy
H.W.Taylor, B.Singh, F.S.Prato, R.McPherson - Nucl.Data Tables A9, No.i, 1 (1971)

A Tabulation of Gamma-Gamma Directional-Correlation Coefficients

[.V.Anicin, R.B.Vukanovic, A.H.Kukoc - Nucl.Instrum.Methods 103, 395 (1972)

The New Feature of 1-3 Directional Correlations with Mixed Unobserved Transitions

ATOMIC DATA

J.A.Bearden, A.F.Burr - Rev.Mod.Phys. 39, 125 (1967)
Reevaluation of X-Ray Atomic Energy Levels
W.Bambynek, B.Crasemann, R.W.Fink, H.-U.Freund, H.Mark, C.D.Swift, R.E.Price, P.Venugopala Rao -
Rev.Mod.Phys. 44, 716 (1972)

X-Ray Fluorescence Yields, Auger, and Coster—Kronig Transition Probabilities

K.D.Sevier - Low Energy Electron Spectroscopy, John Wiley and Sons, New York (1972)
S.1.Salem, S.L.Panossian, R.A.Krause — At.Data Nucl.Data Tables 14, 9§ (1974)

Experimental K and L Relative X—Ray Emission Rates

J.H.Scofield - At.Data Nucl.Data Tables 14, 121 (1974)

Relativistic Hartree-Slater Values for K and L X-Ray Emission Rates

F.B.Larkins - At.Data Nucl.Data Tables 20, 313 (1977)

Semiempirical Auger—Electron Energies for Elements 10 s Z s 100

F.T.Porter, M.S.Freedman - J.Phys.Chem.Ref.Data 7, 1267 (1978)

Recommended Atomic Electron Binding Energies, 1s to 6p;/, for the Heavy Elements, 2 = 84 to 103
ILAhmad - Z.Phys. A290, 1 (1979)

Precision Measurement of K-Shell Fluorescence Yields in Actinide Elements

M.H.Chen, B.Crasemann, H.Mark - At.Data Nucl.Data Tables 24, 13 (1979)

Relativistic Radiationless Transition Probabilities for Atomic K- and L-Shells

M.0.Krause - J.Phys.Chem.Ref.Data 8, 307 (1979)

Atomic Radiative and Radiationless Yields for K and L Shells

W.Bambynek - Nuclear Standard Reference Data, Proc. Advisory Group Meeting on Nuclear
Standard Reference Data, IAEA-TECDOC-335, p. 413 (1984)

Emission Probabilities of Selected X—-Rays for Radionuclides used as Detector—-Calibration Standards



85Bo10
85Wa02

85Wa03

85Wa04

73Ta30

69Be42

71Go40

87Ral1

83ReZX

84Ma39

69Be42

71Go40

77Ba48

79He 19

ATOMIC MASSES AND Q-VALUES

V.K. Bodulinskij, A.E. Ignatochkin, A.l. Khovanovich, F.E. Chukreev - Yad. Konst. 2(46), 31 (1982).
Translated in INDC(CCP)-212 (1983)

A Mass Table for a Consistent Set of Atoms

K.Bos, G.Audi, A.H.Wapstra - Nucl.Phys. A432, 140 (1985)

The 1983 Atomic Mass Evaluation. (III). Systematics of Separation and Decay Energies
A.H.Wapstra, G.Audi ~ Nucl.Phys. A432, 1 (1985); Nucl.Phys. A432, 55 (1985)

The 1983 Atomic Mass Evaluation. (I). Atomic Mass Table

A.H.Wapstra, G.Audi - Nucl.Phys. A432, 55 (1985)

The 1983 Atomic Mass Evaluation. (II). Nuclear~Reaction and Separation Energies

NOTE: Use 85Wa02 as keynumber in the evaluation.

A.H.Wapstra, G.Audi, R.Hoekstra -~ Nucl.Phys. A432, 185 (1985)

The 1983 Atomic Mass Evaluation. (IV). Evaluation of Input Values,Adjustment Procedures

B—DECAY HALF-LIVES

K.Takahashi, M.Yamada, T.Kondoh - At.Data Nucl.Data Tables 12, 101 (1973)
Beta—-Decay Half-Lives Calculated on the Gross Theory

B-SPECTRA SHAPES

H.Behrens, J.Janecke - Numerical Data and Functional Relationships in Sci.Technol.,

Landolt—Bornstein, New Ser., H.8chopper, Ed., Springer—Verlag, Berlin, Group 1: Nucl.Phys.Technol.,
Vol.4 (1969)

Numerical Tables for Beta—Decay and Electron Capture

N.B.Gove, M.J.Martin - Nucl.Data Tables A10, 205 (1971)

Log—-f Tables for Beta Decay R

H.Behrens and L.Szybisz - Physik Daten 6-1 (1976)

Shapes of Beta Spectra

DEFORMATION PARAMETERS

S.Raman, C.H.Malarkey, W.T.Milner, C.W.Nestor,Jr., P.H.Stelson ~ At.Data Nucl.Data Tables 36, 1
(1987)
Transition Probability,B(E2),from the Ground to the First-Excited 2* State of Even-Even Nuclides

DELAYED NEUTRON YIELDS

P.L.Reeder - NEANDC Specialists Meeting on Yields and Decay of Fission Product Nuclides, BNL, Upton,
N.Y., R.E.Chrien, T.W.Burrows, Eds., BNL-51778, p.337 (1983)

Survey of Delayed Neutron Emission Probabilities

F.M.Mann, M.Schreiber, R.E.Schenter, T.R.England - Nucl.Sci.Eng. 87, 418 (1984)

Evaluation of Delayed—Neutron Emission Probabilities

e/B8+ RATIOS AND ¢ SUBSHELL RATIOS
H.Behrens, J.Janecke - Numerical Data and Functional Relationships in Sci.Technol.,
Landolt-Bornstein, New Ser., H.Schopper, Ed., Springer—Verlag, Berlin, Group 1: Nucl.Phys.Technol,,
Vol.4 (1969)
Numerical Tables for Beta—-Decay and Electron Capture
N.B.Gove, M.J.Martin — Nucl.Data Tables A10, 205 (1971)
Log—-f Tables for Beta Decay
W.Bambynek, H.Behrens, M.H.Chen, B.Crasemann, M.L.Fitzpatrick, K.W.D.Ledingham, H.Genz, M.Mutterer,
R.L.Intemann - Rev.Mod.Phys. 49, 77 (1977); Erratum Rev.Mod.Phys. 49, 961 (1977)
Orbital Electron Capture by the Nucleus

&—RAY ENERGY AND INTENSITY STANDARDS

R.G.Helmer, P.H.M.Van Assche, C.Van der Leun - At.Data Nucl.Data Tables 24, 39 (1979)
Recommended Standards for Gamma—-Ray Energy Calibration (1979)

R.Vaninbroukx - Nuclear Standard Reference Data, Proc. Advisory Group Meeting on Nuclear
Standard Reference Data, IAEA-TECDOC-335, p. 403 (1984)

Emission Probabilities of Selected Gamma Rays for Radionuclides used as Detector Calibration Standards
Decay Data of The Transactinium Nuclides, IAEA Technical Reports Series No. 261 (1986)



76Kr21

77Kr13

77Kr17

78Kr19

80Kr22

79En04
79En05
80Sc26

81En06

68Ha53
68Lol6
69Dros

69Ha61

71Dr11
72Tr09

76Ba63

78Ba45

78Ro21

OTHER EVALUATIONS, COMPILATIONS, AND THEORY PAPERS

K.S.Krane - At.Data Nucl.Data Tables 18, 137 (1976)

E2,M1 Multipole Mixing Ratios in Odd-Mass Nuclei, A > 150

K.S.Krane - At.Data Nucl.Data Tables 19, 363 (1977)

E2,M1 Multipole Mixing Ratios in Odd-Mass Nuclei, 59 s A s 149

K.S.Krane - At.Data Nucl.Data Tables 20, 211 (1977)

E2,M! Multipole Mixing Ratios in Even—-Even Nuclei, 58 s A s 150

K.S.Krane - At.Data Nucl.Data Tables 22, 269 (1978)

E2,M! Multipole Mixing Ratios in Nuclei with A s 57

K.S.Krane - At.Data Nucl.Data Tables 25, 29 (1980)

E2,M!l Multipole Mixing Ratios,Supplement and Corrections through December 1979

¥y—RAY TRANSITION STRENGTHS

P.M.Endt - At.Data Nucl.Data Tables 23, 547 (1979)

Strengths of Gamma-Ray Transitions in A = 45-90 Nuclei
P.M.Endt - At.Data Nucl.Data Tables 23, 3 (1979)

Strengths of Gamma—-Ray Transitions in A = 6-44 Nuclei (III)
M.R.Schmorak - Nucl.Data Sheets 31, 283 (1980)

Systematics of Nuclear Level Properties in the Lead Region
P.M.Endt — At.Data Nucl.Data Tables 26, 47 (1981)

Strengths of Gamma—-Ray Transitions in A = 91-150 Nuclei

INTERNAL CONVERSION COEFFICIENTS AND PAIR FORMATION

R.S.Hager, E.C.Seltzer - Nucl.Data A4, 1 (1968)

Internal Conversion Tables. Part I: K-, L~, M-Shell Conversion Coefficients for Z = 30 to Z = 103
R.J.Lombard, C.F.Perdrisat, J.H.Brunner - Nucl.Phys. A110, 41 (1968)

Internal Pair Formation and Multipolarity of Nuclear Transitions

0.Dragoun, H.C.Pauli, F.Schmutzler — Nucl.Data Tables A6, 235 (1969)

Tables of Internal Conversion Coefficients for N-Subshell Electrons

R.S.Hager, E.C.Seltzer - Nucl.Data Tables A6, 1 (1969)

Internal Conversion Tables. Part I[II: Coefficients for the Analysis of Penetration Effects in
Internal Conversion and EO0O Internal Conversion

D.A.Bell, C.E.Aveledo, M.G.Davidson, J.P.Davidson - Can. J. Phys. 48, 2542 (1970)

Table of E0O Conversion Probability Electronic Factors

0.Dragoun, Z.Plajner, F.Schmutzler - Nucl.Data Tables A9, 119 (1971)

Contribution of Outer Atomic Shells to Total Internal Conversion Coefficients
V.F.Trusov - Nucl.Data Tables 10, 477 (1972)

Internal Conversion Coefficients for High—-Energy Transitions

I.M.Band, M.B.Trzhaskovskaya, M.A.Listengarten - At.Data Nucl.Data Tables 18, 433 (1980)
Internal Conversion Coefficients for Atomic Numbers Z s 30

I.M.Band, M.B.Trzhaskovskaya, M.A.Listengarten — At.Data Nucl.Data Tables 21, 1 (1978)
Internal Conversion Coefficients for E5 and M5 Nuclear Transitions, 30 < Z s 104
F.Rosel, H.M.Fries, K.Alder, H.C.Pauli — At.Data Nucl.Data Tables 21, 91 (1978)

Internal Conversion Coefficients for all Atomic Shells

NOTE: 30 <= Z s 67

F.Rosel, H.M.Fries, K.Alder, H.C.Pauli - At.Data Nucl.Data Tables 21, 291 (1978)

Internal Conversion Coefficients for all Atomic Shells

NOTE: 68 = Z s 104

W.B.Ewbank - ORNL-5704 (1980)

Graphical Comparison of Calculated Internal Conversion Coefficients

H.H.Hansen - Physik Daten 17-1 (1981)

Compilation of Experimental Values of Internal Conversion Coefficients and Ratios for Nuclei with Z
s 60

H.H.Hansen — European Appl. Res. Rept.—Nucl. Sci. Technol. 6, 777 (1985)

Evaluation of K-Shell and Total Internal Conversion Coefficients for Some Selected Nuclear
Transitions

H.H.Hansen - Physik Daten 17-2 (1985)

Compilation of Experimental Values of Internal Conversion Coefficients and Ratios for Nuclei with Z
> 60

A.Passoja, T.Salonen - JYFL RR 2/86 (1986)

Electronic Factors for K-Shell-Electron Conversion Probability and Electron-—Positron Pair Formation
Probability in Electric Monopole Transitions

D.P. Grechuchin, A.A. Soldatov - Yad. Konst. 7(1), 55 (1987)

Conversion of Low Energy Nuclear Transitions (hws3 keV) on External Electronic Shells of an Iso-
lated Atom



73Rai0

76Fu06

71Go40

73Ra10

81MuzQ

84MuzyY

87Rall

71Bulé

77Ch27

77En02

76Fu06

78ShZM

80Sc26

87Ra01

Jm ASSIGNMENTS

S.Raman, N.B.Gove - Phys.Rev. C7, 1995 (1973)

Rules for Spin and Parity Assignments Based on Log ft Values
G.H.Fuller - J.Phys.Chem.Ref.Data 5, 835 (1976)

Nuclear Spins and Moments

Log ft's

N.B.Gove, M.J.Martin - Nucl.Data Tables A10, 205 (1971)

Log—-f Tables for Beta Decay

S.Raman, N.B.Gove - Phys.Rev. C7, 1995 (1973)

Rules for Spin and Parity Assignments Based on Log ft Values

NEUTRON RESONANCE PARAMETERS

S.F.Mughabghab, M.Divadeenam, N.E.Holden - Neutron Cross Sections, Vol.l, Neutron Resonance
Parameters and Thermal Cross Sections, Part A, Z = 1-60, Academic Press, New York (1981)
S.F.Mughabghab - Neutron Cross Sections, Vol. {, Neutron Resonance Parameters and Thermal Cross
Sections, Part B, 2Z=61-100, Academic Press, New York (1984)

REDUCED TRANSITION PROBABILITIES

S.Raman, C.H.Malarkey, W.T.Milner, C.W.Nestor,Jr., P.H.Stelson - At.Data Nucl.Data Tables 36, 1
(1987)

Transition Probability,B(E2).from the Ground to the First-Excited 2% State of Even—Even Nuclides
NONROTATIONAL STATES AND DEFORMED NUCLEI

M.E.Bunker. C.W.Reich - Rev.Mod.Phys. 43, 348 (1971); Erratum Rev.Mod.Phys. 44, 126 (1972)

A Survey of Nonrotational States of Deformed Odd-A Nuclei (150 < A < 190)

E.P. Grigoriev,V.G. Soloviev - Structure of Even Deformed Nuclei, Nauka, Moscow (1974)
R.R.Chasman, l.Ahmad, A.M.Friedman, J.R.Erskine — Rev.Mod.Phys. 49, 833 (1977)

Survey of Single-Particle States in the Mass Region A > 228

POLARIZATION IN NUCLEAR REACTIONS

Polarization Phenomena in Nuclear Reactions, Proc. of the Third International Symposium,
Madison, WI, H.H.Barschall, W.Haeberli, Eds., The University of Wisconsin Press, Madison,
p- xxv (1971)

The Madison Convention

W.Haeberli - Polarization Phenomena in Nuclear Reactions, Proc. of the Third International
Symposium, Madison, WI, H.H.Barschall, W.Haeberli, Eds., The University of Wisconsin Press,
Madison, p. 235 (1971)

Experiments on Transfer Reactions

G.G.Ohlsen ~ Rep. Prog. Physics 35, 717 (1972)

Polarization Transfer and Spin Correlation Experiments in Nuclear Physics.

SINGLE-NUCLEON TRANSFER REACTIONS

P.M.Endt - At.Data Nucl.Data Tables 19, 23 (1977)
Spectroscopic Factors for Single-—Nucleon Transfer in the A = 2i-44 Region

STATIC AND INTRINSIC MOMENTS

G.H.Fuller - J.Phys.Chem.Ref.Data 5, 835 (1976)

Nuclear Spins and Moments

NOTE: Use for octupole and higher moments.

V.S.Shirley, C.M.Lederer ~ Table of Isotopes, 7th Ed., John Wiley and Sons, New York, Appendices,
p-42 (1978)

Appendix VII. Table of Nuclear Moments

NOTE: Use 78LeZA as keynumber in the evaluation.

M.R.Schmorak - Nucl.Data Sheets 31, 283 (1980)

Systematics of Nuclear Level Properties in the Lead Region

S.Raman, C.H.Malarkey, W.T.Milner, C.W.Nestor,Jr., P.H.Stelson - At.Data Nucl.Data Tables 36, 1
1987

T(ransi)tion Probability B(E2).from the Ground to the First-Excited 2" State of Even-Even Nuclides
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y-ray Intensity Normalization for Radioactive Decays in
Nuclear Data Sheets
J. K. Tuli

National Nuclear Data Center
Brookhaven National Laboratory
Upton, NY 11973, U.S.A.

(September 1987)

Introduction

One of the most important parts of mass-chain evaluation in Nuclear Data
Sheets is the normalization of the decay schemes. By normalization, we mean
the calculation of factors for converting the relative y -ray intensities to
the absolute intensities (i.e., the number of photons per hundred parent
decays.)

Normalization Methods

Most radioactive decay measurements fall into one of several cases for
normalization purposes. These are described below and a suggested method for
normalization calculations is indicated in each case. Note that no discussion
of the uncertainty in the calculation is given here, as this 1is separately
discussed by E. Browne.

Notation

Relative y-ray intensity: Iy
Absolute y=-ray intensity: %Iy (photons per 100 parent decays)
Relative transition intensity: TI

TI=I(y+ce)=Iy(l+a)

Absolute transition intensity: %TI
%TI=%1(y +ce)

Total internal conversion coefficient: «
Normalization factor: N
PIy = N x Iy, 4TI = N x TI

Note: In terms of quantities, NR and BR, defined in ENSDF,
N = NR x BR
Where,

Iy x NR is the photon intensity per 100 decays
through this decay mode, and

BR is the ratio of parent decays through this
mode to parent decays through all modes.



1. Absolute intensity is measured

T\ \ 8" Ce+pt
g, L(y +cellin) ¢+ @7
! Ny

%o Iy \ i I(y+‘Ce)(OU”i

(a) (b) (¢)

a. When the absolute intensity of one of the gamma radiations in the
daughter nucleus has been measured, the normalization factor for the
relative gamma intensities is calculated as follows:

Normalization factor N = Ehy
Iy
If instead of the photon intensity the transition intensity, which is

y+ce, is known in absolute units, then the normalization factor is
calculated as follows:

Aly = %1(y+ce)
(14a)

3y
Iy

u

Normalization factor N

1f absolute intensities for more than one transition are known, an
average of normalization factors, calculated for each transition,
should be taken.



b. If the g~ intensity for a transition to a level other than the ground

state has been measured in absolute units, and in addition one knows
all the transition intensity feeding and leaving that level, one can
calculate the normalization factor as follows:

Transition intensity (y+ce) leaving level i (in rel units) = TI(out);
I(y+ce)(out);

Transition intensity (y+ce) feeding level i (in rel units) = TI(i
I(y+ce)

n);
(in )

B~ intensity to level i per 100 parent decays = %IB;

Normalization factor N = %185
I(y+ce)(out); - I(y+ce)(in);

If the gt intensity for a transition to a level other than the ground
state has been measured in absolute units, and Q(e) is known, then if
one knows all the transition intensity feeding and leaving that level,
one can calculate the normalization factor as follows:

Transition intensity (y+ce) leaving level i (rel units) = TI(out);
= I(y+ce)lout);
Transition intensity (y+ce) feeding level i (rel units) = TI(in);

Ly +ce) (in);

+

g" intensity to level i per 100 parent decays = %13+1

Electron capture intensity to level i per 100 parent decays

%Ie;=(e/8%) ;i (theory) x %IB+1

(%le; + %1g+;)
TI(out); - TI(in);

Normalization factor N



d. Normalization can be calculated if the relative intensities are known
with respect to a transition in a granddaugher or further down in decay
chain provided that the sample is in equilibrium (transient) and the

absolute intensity is known for some transition in the decay chain,
Suppose the decay chain is

AO -+ Al > A2 > A3

with respective half-lives as Tos Tys To, and T

. Further assume that
T1s Tp<Ty and that initially there were no daugh%er

nuclides Aj, Ay, Ag

present.
T
0
Ao \
B
7)
) T
I
Al
B T,
A2 AN -
B~ v 3

Az

Let yq be a transition seen in Ag + Ay decay and y5 in Ay » A3 decay.
If y3 is known to have an absolute intensity of %1%73) per hundred Ao
decays and the ratio of y; and y5 intensities in a Sample containing
Ags Ays Ags Ag in equilibrium has been determined in relative units
then ghe a%so]ute intensity of y; per 100 decays of Ay is given by (see
R. D. Evans, The Atomic Nucleus, Robert Krieger Pub. {1982) p.490)

4 T T
%I(Yl) = 7I(Y1)XI(Y1) X I X al
I(Y3) To-Tl To-T2

Normalization factor N = 211
IYl
2. Direct feeding to the ground state is known
—_—
\\\\ Y

Nt

i iti i ity, I(y+ce), for
is case, one sums up the transition Intensity, :
2?1 gnssdecayfng directly to the g.s. and the normalization factor 1s

calculated as follows:

(100-direct feeding of g.s.)
£ I(y+ce) to g.s.

Normalization factor =



3. Annihilation radiation intensity is known

Ferpt

(€+B+)2

(e+8T),

NN

¢(7+ce)(in)

l(y-t-ce)(out) (e +B+)o

I[f in e+8+ decay, the intensity for v¥ radiation is known, then one can
proceed to calculate the y-ray normalization as follows:

i. Let measured annihilation intensity = %I(y¥)
ii. Assume e+8' branch to g.s. is by = %I(e+8+)o

iii. Intensity imbalance, X;, for level i, in relative units,
Ki = [(y+ce) (out)s-(y+ce) (in);]

iv. Then normalization factor N = L100=Do)
T X;
i

v. The e+6+ branch to level 1 is by = X3 x N

vi. For level 1 let r; denote the theoretical electron
capture to positron ratio, rj = e/g+ (theory)

vii. Total annihilation radiation =

b b b
2 ° LI 2 +] = %I(y?%)
1+r0 1+r1 1+r2

viii. Substituting for by from (v) one calculates the only unknown, b,
and the normalization factor is calculated from (iv). .

Note: If there are gamma transitions in the decay scheme that undergo
significant pair conversion, then their contribution to
annihilation radiation should be subtracted out of I(y¥)



4. X-ray intensity is known

Ketgt
rd

l(r+cﬂ(m) ‘//(‘+3+H
l (y+ce)(out)

//Ac+eﬂo

. + . .
If, in e+ decay, the x-ray intensity, say for the K x-ray, is known,
then one can proceed to calculate the normalization as follows:

.i.
ii.

iii.

iv.

Vi

vii,

viii,

Note:

Let the measured K x-ray intensity = %I(K x-ray)

Assume s+3+ branch to g.s. is by = %I(e+s+)o

Intensity imbalance for level i (in relative units),
Xj = [(y+ce)(out); - (y+ce)(in);]

Normalization factor, N = (100 - b

in
For Tevel i let r; denote the theoretical electron capture to
position ratio, ry= ¢/8+ (theory)

The e intensity for level i is then given as I(ej) = bixry
(1+r;)

The K x-ray intensity, KXj, resulting from electron capture
to the level i is then given by

KX = 1(81') X Ppi X wy

where P ; is the fraction of the decay proceeding by K capture
(from, say, the program LOGFT) and wy is the K-shell fluorescence
yield (given by Bambynek et al., Rev. Mod. Phys. 44, 716 (1972))
Sum of intensities calculated in (vii) is equal to I(K x-ray)

LKX; = %I1(K x-ray)
Only unknown b, can then be calculated, which in turn gives the
normalization factor.

If there are gamma transitions in the decay scheme that undergo
significant internal conversion, then their contribution to
I(x-ray) should be subtracted from (i) above.

-6 -



5. X-ray-y coincidence is measured

(y+ce)(in)
¢+B+

(y +ce){out)

4

In some simple decay schemes the normalization factor can be calculated
from x-ray-y ray coincidences. It is important to single out the x-ray
intensity (KXj) as being due to the e branch to level i which emits
the vy ray.

The normalization is calculated in a manner similar to that described
in (4) above. From (4)(vii),
Ie. - —_K_Xj__

1 Pri X wg

Since, be = lej(l*ry)
l‘.i’-X.iXN

one can calculate N (normalization factor), X; is the intensity
imbalance for level 1.






Calculated Uncertainties of Absolute y-ray Intensities
and Decay Branching Ratios Derived from Decay Schemes.

E. Browne
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This paper presents analytical methods for calculating uncertainties of absolute v-ray
intensities and decay branching ratios derived from decay schemes. The equations have been
derived with standard mathematical error-propagating techniques, using first-order approxima-
tions in Taylor series expansions of absolute y-ray intensities.

]

I. Introduction.

Accurate values for absolute radiation intensities, i.e., the percentages of various types of
radiations emitted in a nuclear transformation, are frequently required. For example, they are
the basic quantities from which transition probabilities may be derived for testing nuclear
models; and these intensities, together with their corresponding energies, are often used in
applications of radioactivity to other fields for calculating average radiation energies emitted
per disintegration. Hence it is important to report absolute radiation intensities and their
uncertainties accurately. The concurrent determination of decay branching ratios is of course
mandatory.

It generally requires elaborate calibrated detector systems and delicate measuring tech-
niques to determine absolute radiation intensities. For short-lived isotopes and for isotopes
which decay through more than one mode, e.g., 3 and electron-capture, the experimental diffi-
culties may be even greater. Chemical and isotopic purities of the source are also important,
especially for a beta emitter, for which it is difficult to remove contributions from possible
impurities from the continuous-energy beta spectrum. Consequently, most of the known abso-
lute radiation intensities have been derived from relative intensities (i.e., intensities measured
relative to that for a nominal transition for each radiation type) and from the knowledge of the
isotope’s decay scheme (which often includes assumptions based on nuclear-structure theory).
A set of radiations, usually v rays which represent the full disintegration intensity of the isotope
provides the normalizing factor between the relative and absolute scales. It is important to
choose this set carefully, because the accuracy of the resulting absolute radiation intensities is of
course affected by the relative intensities and assumptions for the set. Methods for calculating
uncertainties of the absolute y-ray intensities and the decay branching ratios derived from a
decay scheme, respectively, are addressed in this paper.

II. Description of the Framework.

II.1 Absolute y-ray Intensities

Let us consider first a hypothetical 3” emitter which populates the first excited state in the

daughter nucleus, as shown in Figure 1. The absolute intensity (v(%)) for the subsequent v ray
is

¥y =1 M

where a is the total y-ray conversion coefficient, i.e., the ratio of the total number of conversion
electrons to the number of photons. Notice that the accuracy of this absolute intensity is

independent of the photon intensity measurement, and depends only on the accuracy of «. Let

us consider now the decay scheme shown in Figure 2. A normalizing factor N, between the
relative and absolute intensity scales is

_ 100
I(Fan+l(1Fay ’ )

where 1., 1,3, a), and a3 are the relative y-ray intensities and their corresponding total

N,



conversion coefficients. Notice that an alternative normalizing factor is

= 100
Lol +a)+1(1+ay) * Q)

This latter factor assumes no direct 8° population of either the ground state or first excited
state, where NV, assumes only no direct 8~ population of the ground state. The accuracy of N t

depends on the values of the relative y-ray intensities, on their corresponding total conversion
coefficients, and on the one decay-scheme assumption.

N,

8
T2
\
Y RAT L
& 4 y
Figure 1. Figure 2.
Choosing N, the absolute intensity of Y, is given by
1007,
=NI,= . .
MO =N = e T (v e )

The uncertainty of the normalizing factor similarly affects the absolute intensities of all of the v
rays. Its numerical value, however, may not be the same for each v ray, because the normaliz-
ing factor and the relative vy-ray intensities are not always independent quantities. The max-
imum contribution to the uncertainty of the absolute intensity applies to those vy rays which
have not been included in the calculation of the normalizing factor, i.e., v,. Other 4 rays have
lower uncertainties because of a cancellation effect, e.g., 7, (see equation (4)).

11.2. Decay Branching Ratios

Decay branching ratios may be calculated from relative y-ray intensities and decay-
scheme considerations. Let us consider the hypothetical decay scheme shown in Figure 3.

If we assume no direct population to the ground states of the respective daughter nuclei,
the §8° branching ratio (B4-) is given by

17|(1+a|)+173(1+(¥3) (5)
I+ +H (1 +as)+ a1 +ag)

As with N, above, the accuracy of Bs- is affected by cancellation effects, i.e., the numerator
and the denominator in equation (5) are not independent quantities.

EC# g

Bg_=

2
3

Figure 3.
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II1. General Formulation.

I11.1. Uncertainties of Absolute v-ray Intensities.

Let us consider the case of an isotope which decays through several decay modes (¢),
where only a fraction G, of each mode does not populate the corresponding ground state in the
daughter nucleus (i.e., | —G, is the fraction for that decay mode which directly populates the
ground state). The absolute intensity of the /-th y ray associated with the /-th decay mode is

1007;;
L (6)
—T.

where Tj, =I;(1+a;) is the total transition intensity, a;, is the total conversion coefficient of
the j-th v ray, and the summation is over all v rays (j) from the various decay modes (¢) used
in the normalizing procedure. Notice that for each decay mode there may be several v rays.

The relative uncertainty of v, (%) may be derived by first defining the variable

v1i (%)=

1
j;'c‘;:‘Tjt(l_ajl)

. . Yy dv;(%
where § is the Kroenecker delta function, and then by calculating dY d (= 77[‘(‘(%))) in first
li li
order approximation in a Taylor series expansion. ‘ ‘
Using
av; 1 Y y 2 0Y *

% Y | 26T, TG 1) ®)

the relative uncertainty of v; (%) becomes
1%
2
1 1 dG,
——da:é; 2 ()2
d‘yh(%) dYu 2 2 dI/i ]EG’ a;i0ji (JE‘]jlt) [EGIZ( Gt )
) Y, | DTG — L |+ . 9)
i i i —T. —T, 2
ZG. b ‘26, ™
where
2
1 dT? _l_‘[" 1—5
2-(';_2' le (1_61'1) Eth jl( jl)
Dp =4~ 0 and Cpf=-—1 0
—T.)? —T. 2

(E G( jl) (g Gt jt)

For one decay mode, ¢t =1 and equation (9) becomes
%
da; 64
dvi(%) dl, 240 5 dG
— <+ 2 (—\2 I N 2\
J

where



TdTH1—8;) [ 21’,-(1—5,-.)] 2
= 2 J
— and Ct =
(ST ' (ST)?
J )
Equation (10) is equivalent to one given by Browne and Firestone.(1| Notice that for v rays

which have not been included in the calculation of the normalizing factor (i.e., for v rays with
[#j), C#=1 and the third term vanishes in equations (9) and (10). Equauon (10) then

becomes
() _ an , 4G, |"
w(%)—[ Df + (7— )+(G)} : (11)

where the first and third terms in the second member of the equation represent the contribution
from the uncertainty of the normalizing factor, and the second term, that from the relative pho-
ton intensity. These contributions are independent quantities.

{

IIL.2 Uncertainties of Decay Branching Ratios.

The following expression gives the branching ratio (B;) for the i-th decay mode of an iso-
tope which decays through several decay modes (¢):

G 2%
B = ——-l’——— (12)
—T

Here the summation in the numerator is over all y rays (j) which carry the total decay intensity
through the i-th decay mode, and the summation in the denominator includes all y rays which
carry the full disintegration intensity through all decay modes (¢). Since once again the
numerator and the denominator in the equation are not independent quantities, the relative
uncertainty of B; may be derived by first defining the vanable

1 ERu'Tjt(l —84)

. It 1
Z; = B, =1+ 27;‘ , (13)
i
dz; dB;
where R; = %—-, and then by calculating —2-'—( —1—3—) in a manner analogous to that in sec-
t i i
tion IIL1.
The relative uncertainty of B; becomes \
dB. i ZthTjt(l"‘sn') ) )
L= d dT3+ S RATH1—5,)+ (zr,u a,,-)] SdR} | (14)
B, ZR.T; 2T E g 2 “ ! :
i J
where

dG, dG
dR2=R}? [ —’~) +(——'—) )



If the v rays used in the calculation carry the full intensity for each decay mode, ie., if
there is no direct ground-state population of the daughter nuclei, G, =1, R; =1, and dR,; =0 for
all values of ¢+ and /. Equation (14) is then

Y%
E T)‘t(l —0y;)
Bi o L] | & TdT}+3dTH=8:) | (15)
B 2L | 2m | U
J

equivalent to an equation given by Browne and Firestone,! but with slightly different notation.

IV. Application to the Decay of 192y,

192 As shown in the partial decay scheme in Figure 4, 192, decays to 192py by 87, and to

Os by electron capture, with no direct ground-state population of the respective daughter
nuclei. Data given in Table 1, along with the decay scheme and equations (10) and (15), can be
used to calculate the decay branching ratios and the absolute y-ray intensities, and their
corresponding uncertainties. (2][3][4]

4- 0
S 192 AW
EC Ir -
B o
3- \'4-’\1378.5
©
© 4+ & |12010
3+ §6904
S “© w»
20 & | a0 3t & |_| a0
® 4+ v& |_1_1_78486
& S o
2+¥ 205.8 20 6125
NN
wjui
O+y 0 &
<
192OS 2+™ 316.5
WD i
O+y | 0
Figure 4. 192py
IV.1 Decay Branching Ratios.
The 8~ percentage branching is given by
By—(%)=100 T(316.5y)+T(612.5y)+T(1378.5y) =952 |

T(316.5y)+T(612.5v)+ T(1378.5y)+ T(205.8v)+ T(489.1%)
and the corresponding relative uncertainty by

dBs- 1| (3173 )210+0021 %=000127
Bs—  120.74 (‘114967 T '

Therefore Bs—(%)=95.2+0.1 , and Bgc(%)=4.8+0.1




IV.2 Absolute v-ray Intensities.
The normalizing factor for the absolute intensities is
N 100

T 120.74

=0.8282

The relative uncertainty of the intensity for the 316.5-keV v ray (which has been used for
calculating the normalizing factor N) is

%
d‘Y(%) = (DIZ+C12( ?0.2) )2+( 0.0085 100)2] ,

¥(%) 120.74
where
. 0.14524+0.0092+0.0272+0.00052 5.233+0.540+6.464+0.0016 2
D = =1, X -6 2= . > . e = -2
la 20742 1.5OX107°% and G 120.74 1.02X 1074,
d~y(%)

+(%) then becomes 0.00716 and the absolute intensity,

¥(%)=82.8+0.6% .

For the 468-keV y ray (which has not been used for calculating the normalizing factor N),

]
dy%) (D;+C,z(9-_zzs_)z] ,

¥(%) 57.76
in which
2 2 2
pp=2:145 +0.0092+1.02+20.027 +0.0005° _5 % 10-5 and C2=1.0.
120.74
dy(%)

~(%) then becomes 0.00927 and the absolute intensity,

+(%)=47.80+0.44% .

Table 2 shows the absolute y-ray intensities and their corresponding uncertainties for the
strongest v rays from the decay of 92[r The uncertainties calculated in the present work agree
well with those of Iwata, et al.,2 as seen in the third column.
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Table 1. '%%Ir v rays populating the ground states of 192p¢ and 1920s.t

Energy(E,) Relative Intensity(/,) Multipolarity and Transition Intensity(T)
(keV) (rel) Conversion Coefficient(a) T=I(1+a)
205.8 4.01x0.06 E2, 0.305 5.233+0.145
316.5 100.0+0.5 E2, 0.085 108.5+1.0
489.1 0.527+0.009 E2, 0.0242 0.540=0.009
612.5 6.365+0.025 E2, 0.0155 6.464 +0.027
1378.5  0.0016+0.0005 E3, 0.0035+0.00091 0.0016+0.0005

t y-ray energies and intensities are from Iwata, et al.2 Conversion coefficients are theoretical
values from Hager and Seltzer,® with 10% assumed uncertainty, except as otherwise indicated.
+t+ Experimental value from Schellenberg and Kern.*

Table 2. Absolute intensities of the strongest v rays from 192, decay.

Energy (E ,)’.I Relative Intensity‘ I,  Absolute Intensity (v(%))

(keV) (rel) (%)

Iwata, et al.>  Present Work
205.8 4.01 £0.06 3.32+0.05 3.32+0.06
296.0 34.69+0.17 28.73+0.28 28.73+0.28
308.5 35.87+0.19 29.7+03 29.7+03
316.5 100.0+0.5 82.8+0.6 82.8+0.6
468.1 57.76 £0.23 47.8+0.5 47.80+0.44
484.6 3.828+0.018 3.17+0.03 3.17+0.03
588.6 5.423+0.021 4.49+0.04 4.49+0.04
604.4 9.79+0.04 8.11+0.08 8.11 £0.08
612.5 6.365+0.025 5.27+0.05 5.27+0.05

* From Iwata, et al.2



To:

MEMO
April 4, 1972

Compilers of the Nuclear Data Sheets From: D. C. Kocher

Subject: (1) Adoption of The Madison Convention

1)

2)

(2) Strong spin-assignment rule for vector analyzing
power measurements in single-nucleon transfer reactions
(3) Weak spin-assignment rule for measurements on jsobaric
analog states

The Nuclear Data Group adopts The Madison Convention! (see Appendix) to
describe polarization phenomena involving spin-1 particles and to denote
nuclear reactions in which particles are either prepared in a polarized
state or their state of polarization is measured.

Typical examples of usage of the convention in the Nuclear Data Sheets are
as follows:

31 (4,p), measured vector analyzing power
ZH(B;H), measured tensor polarization p,,(6)
40Ca(th ﬁ;?), measured circular polarization

In the second example, the notation p,,(6) should be included if it is
important to distinguish between different types of deuteron tensor
polarization. In the third example, we use the terms linear or circular
polarization for y-rays.

The Nuclear Data Group adopts the following strong rule for spin
assignments.

For Z< 50 and Z~ 82, if the vector analyzing power for a single-
nucleon transfer reaction shows a clear preference between J = 2+-92
and J = 2-92 and if the fL-value is known, then the J-value is
determined.

The limitation in the regions of applicability results from a lack of
measurements in other regions rather than an expected or observed
violation.

A discussion of this rule and the reactions upon which it is based is
enclosed.

The Nuclear Data Group adopts the following weak rule for spin
assignments.

The spin and parity of a parent state may be inferred from the
measured properties of its assumed isobaric analog resonance, and
vice versa.

The rule implies that the properties of an isobaric analog resonance can

be reliably determined (see, for example, ref.2’3) and that the
correspondence between parent and analog is reasonably unambiguous.



VECTOR ANALYZING POWER FOR SINGLE-NUCLEON TRANSFER REACTIONS

The adopted strong spin-assignment rule is based on the reactions listed
on the following pages, for which the J-value obtained from a vector analyzing
power measurement can be compared with assignments obtained from strong rules
currently used by the Nuclear Data Group. The 74 cases listed here represent
about 30% of the total number of transitions studied to date. References for

most of the data and a review of polarization studies in transfer reactions
are given by Haeber1i?,

Of the 74 test cases given here, there is only one possible contradiction
in spin assignments; namely, for 40Ca(?i,p), Ey = 3.62 MeV5. Even without the
polarized-beam measurement, there is a fundamental discrepancy between (d,py)
angular correlation and decay studies which observe a level with J # Dé and a
(th h,y) circular polarization measurement® which observes a level with J = Yo,
At present it appears likely that the discrepancies result from the existence
of a doublet, but conclusive experiments have not yet been performed.

The spin-assignment rule requires that a clear preference between
J = 2+-b@ and J = 2-’92 transfers be shown in the vector analyzing power.
This usually involves comparing the data with theoretical predictions (DWBA,
for example) or with empirical curves obtained from transitions with known J-
value in the same mass region. In practice, the J-dependence of the vector
analyzing power is generally more pronounced for lower g -values, and the
effects can also depend on the bombarding energy and reaction Q-value. But
the inability of the data to establish a clear preference in J-value does not
invalidate the rule, Most transitions upon which the rule is based have
relatively large spectroscopic factors (S$>0.2). However, transitions with S
as low as 0.02 have also been successfully tested against other strong rules
for spin assignments. Experience has shown that if the relative cross-section
angular distribution is characteristic of a simple stripping process, then the
vector analyzing power does not depend on the spectroscopic factor. On the
other hand, if the cross section suggests that reaction mechanisms other than
simple stripping dominate, then the vector analyzing power does not resemble
that expected for either J = 2+lp or g = %=1 . Again such difficulties
merely mean that the rule is inapplicable, not that it is invalid.



In subjectively judging the extent to which reliable spectroscopic

information can be obtained from the data, it is useful to bear in mind that
the determination of J-values from measured vector analyzing power angular

distributions very closely parallels the determination of 2-values from

measured relative cross-section angular distributions; i.e., both methods have

the same range of applicability and the same limitations.
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[. Reactions A(H,p)B

A Ey(B) (MeV) J"
%Be 0.0 3/2"
12¢ 0.0 1/2"
16 0.0 5/ 2+
28pg 0.0 5/2*
0.98 3/2t

1.96 5/2%

28g; 1.27 3/2*
2.03 5/2%

3.07 5/2*

3.62 1/2°

40ca 0.0 72"
1.95 3/2°

2.46 3/2°

3.62 /2"

3.95 1/2°

48¢, 0.0 3/2°
2.03 1/2°

4674 0.16 1/2-
1.55 3/2°
2.55 3/2°
481; 0.0 1/2"

A E, (B) (MeV) J
481 1.38 3/2°
1.59 3/2"
1.72 1/2"
3.18 1/2-
50T 0.0 3/2"
1.16 1/2"
52y 0.0 3/2"
0.56 1/2-
2.32 3/2"
53¢r 0.0 3/2"
2.83 3/2"
S4re 0.0 3/2°
0.41 /2"
0.93 5/2"
57ce 0.0 12"
88y 0.0 5/2%
907, 0.0 5/2%
207py, 0.0 1/2"
208py, 0.0 9/2*
1.57 5/2*
2.49 7/2*
2.54 3/2*



I1. Reactions

A E, (B) (MeV) J'

IBe 0.0 3/2"

28g; 0.0 5/2%
32g 1.24 3/2%
2.23 5/2%

34g 0.0 3/2*
40ca 0.0 3/2*
48¢a 0.0 7/2°
4975 0.0 1/2°
53cr 0.0 3/2"
57Fe 0.0 1/2"
58y 0.0 3/2"
61y; 0.0 3/2"

III. Reactions A(Tj ,n)B

A E,(B) (MeV) J
40¢4 0.0 7/2"
1.73 3/2"
89y 0.0 /2"

A E,(B) (MeV) J'
90zr 0.0 9/2*
0.59 1/2°
1.10 3/2"
91zr 0.0 5/2%
92M0 0.0 9/2%
0.65 1/2-
1.16 3/2°
118g, 0.16 3/2%
0.32 11/2"
0.73 7/2%
1.03 5/2*
IV. Reactions A(d,t)B
A E, (B) (MeV) J
9Be 0.0 3/2-
13¢ 0.0 1/2-
208py, 0.0 1/2-
0.57 5/2"
0.90 3/2°



Appendix

" THE MADISON CONVENTION
(1970)

I. Polarization effects involving spin-one particles should be described

either by spherical tensor operators Tkqs with normalization given by
Tr {quTkqu} = 36kk‘6qq‘ , or by Cartesian operators Sj,

(3/2)(Sisj+5j51)-Zéij(i=x,y,z). S; denotes the usual spin-one angular
momentum operators.

IT. The state of spin orientation of an assembly of particles, referred

to as polarization, should be denoted by the symbols tkq (spherical) or
Pis Pij (Cartesian). These quantities should be referred to a right-
handed coordinate system in which the positive z-axis is along the
direction of momentum of the particles, and the positive y-axis is along
Rin X }out for the nuclear reaction which the polarized particles
initiate, or from which they emerge.

II, Terms used to describe the effect of initial polarization of a beam
or target on the differential cross section for a nuclear reaction should
include the modifiers amalyzing or efficiency, and should be denoted by
Tkq (spherical) or Aj,Ajj (Cartesian). These quantities shoqu.be |
referred to a right-handed coordinate system in which the positive z-axis
is along the beam direction of the incident particles and the y-axis is

tion in question,
along iin X ?Out for the reactio q

Iv. In the expression for a nuclear reaction A(b,c)D an arrow placed over
a symbol denotes a particle which is initially in a polarized state or
whose state of polarization is measured.



Arguments for Isobaric Spin Assignments

P. M. Endt, C., van der Leun

Fysisch Laboratorium, Rijksuniversiteit
Utrecht, The Netherlands

(June 1980)

Strong Arguments

1. Spin and parity

Members of a T-multiplet (analogues) have the same J" value.

2. Energy

The energies of members of a T-multiplet obey the isobaric mass equation

E=a+bT, + ch, where T, is the z-component of T (t, = +1/2 for the
neutron).

3. Gamma-decay

a. Gamma-transitions have AT < 2.

b. The RUL's for Eljg, Mipg, E2y7y, and M2yg transitions (IS = isoscalar,
IV = isovector) may be used to limit aT,.

4. Beta-decay

For beta-transitions between analogue states, the Fermi matrix element is
given by Mp = [T(T+1) - T;,T¢,11/2, where T;, and T¢, indicate T, for the
initial and final nucleus. This implies, for instance, logft <3.79 for
transitions between mirror nuclei, logft = 3.49 for transitions between
JV = 0+, T =1 states, and logft <3.49 for transitions between T = 1
states with J # 0.

5. Particle decay

> > >

In the particle decay A+ B + b the vector addition rule Tp = TB + Tb should
be obeyed.



6. Transfer reactions

a. Single-nucleon transfer

Neutron and proton stripping reactions on the same target nucleus
yield the same spectroscopic factors for transitions to analogue final
states. The same rule holds for pick-up reactions. For unbound final

states and spectroscopic factor may be calculated from the measured
nucleon width.

b. Two-nucleon transfer

For transitions to analogue final states, the (p,t) and (p, r)
reactions on the same target nucleus have equal angular distributions.
The cross-section ratio is determined by the ratio of the squares of
the isospin Clebsch-Gordan coefficients.

Remarks

It should be kept in mind that isospin is not necessarily always a good
quantum number; T, and T, states may mix or, in other words, analogue
states may be split.

In addition to the strong rules given above, two weak rules of thumb exist
which are useful for locating analogue states but not for unambiguous T-
determinations.

First one can say that the energy differences between analogue states
should be approximately equal to those between the parent states. As an
example, corresponding states in mirror nuclei should have approximately
equal excitation energies. Observed energy shifts are listed for A = 21-
44 in the last table of each A-chain; see Nucl. Phys. A310 (1978) 1.

Second, one may say that analogue states have relatively simple shell-
model configurations and thus may be excited relatively strongly in all
sorts of transfer reactions.



The strong rules 3-5 given above might be clarified by some examples.

3a. The y-emission from the lowest 0%, T = 2 state in 325 can only proceed
to T =1 states,

3b. If the strength of the y-transition from a 1% state in 285§ to the ot
ground state exceeds 30 mW.u., the initial state has T =1,

4. Almost all g-transitions within a T-multiplet concern the gt decay of
the most proton-rich component'(Tzi = =T, T,¢ = -T+1). This leads to
Me = (2T)1/2, |

5. The a-particle decay from T = 1 states in 24Mg leading to the 20Ne
ground state is forbidden.

The neutron decay from analogue states in neutron-rich nuclei (TZ > 0) is
forbidden.






SINGLE-NUCLEON TRANSFER REACTIONS

by
P. M. Endt

Fysisch Laboratorium, Rijksuniversiteit, Utrecht, The Netherlands

(June 1987)

The following remarks on single-nucleon transfer reactions are hopefully
useful to A-chain evaluators. For some more details see the introduction of
the paper: P, M. Endt "Spectroscopic factors for single-nucleon transfer in
the A=21-44 region", Atomic Data and Nucl. Data Tables 19 (1977) 23.

For the time being it does not seem advisable to list S-factors from two-
or more-nucleon transfer reactions in the NDS. For such reactions it is not
possible to factorize the cross section into a nuclear structure part and a
part relating to the reaction mechanism. Spectroscopic information from
single-nucleon transfer reactions in which the in- and outgoing particles are
heavier than the a-particle should also be excluded, because as yet the
reaction mechanism for such reactions is far from being established.

Finally, work performed at either too low or too high bombarding energy,
or with poor resolution should not be listed. At low bombarding energy
(Ein s 5 Mev) the compound-nucleus contribution is relatively large.
Especially for rather 1light nuclei the Hauser-Feshbach theory is not
considered good enough to predict the magnitude or the angular distribution of

this contribution with confidence. At high bombarding energy (E;, > 50 MeV)

the incoming particle penetrates deep into the nucleus, which entails changes
in the optical potentials on which, at present, too 1little systematic
information is available. Poor resolution (FWHM > 100 - 200 keV) not only

reduces the number of resolved particle groups but, perhaps worse, makes it



more difficult to recognize contaminant groups and to subtract their
contribution. Contaminant groups are characterized by their energy changes as
a function of angle and/or bombarding energy; for adequately accurate energy

measurements, good resolution evidently is a necessity. In this respect, work

performed with magnetic spectrometers is generally superior over that with
semi-conductor detector telescopes,
The following notation has proved practical for the spectroscopic factors
relevant to the four different types of single-nucleon transfer reactions:
S:'neutron stripping (d,p),(t,d),(a, 1);
Sg'proton stripping (d,n),(tr, d),(a, t);
Sy neutron pick-up  (p,d),(d,t),(t, a);

SE proton pick-up (dy 1),(t, a).

Poor resolution generally excludes work with the (n,d) reaction.

The distorted-wave Born approximation (DWBA) theory for the analysis of
differential cross sections for direct single-nucleon transfer reactions has
certainly been very successful, A vast number of &-determinations have
greatly furthered our knowledge of J™ values. It is also true, however, that
the theory is not as perfect as, say, that for y- y angular correlations.
Contributions from multistep processes (calculated with the coupled-channel
formalism) and from compound-nucleus formation exist and are often evaluated
quantitatively, but the reliability of such calculated corrections is not yet
fully known. Uncertainty also exists in the values of the optical-model
parameters to be used, in the parameters determining the bound-state radial

wavefunctions of the transferred particle, and in finite-range and ﬁon]oca]ity



corrections. One may apply a least-squares analysis to measured angular
distributions, but xz-va1ues close to unity are still, at least for good
statistics, a dream of the future. The correctness of ¢-values is still
judged by eye, and consequently only very few g-assignments are unambiguous,
in the sense that other 2-possibilities can be excluded at the 0.1%
probability limit.

The difficulties mentioned above are even more important for the
spectroscopic factors extracted from a DWBA analysis. Few authors assign
errors to spectroscopic factors because in most cases these would be of a
systematic rather than of a statistical nature. It is thus difficult to
compare the results of two measurements (the definition of good or bad
agreement depends on the errors) or to compare measured and theoretical
values.,

The measured differential cross section o(e)exp and the theoretical

differential cross section o(6)pypy pProvided by a DWBA program are related as

follows:

O(G)exp = NCZS- O(B)DNBA for pick up, (1)
and

o(e)exp = NC2 (2d¢+1) st o(8)pypsn for stripping (2)

This is true, for example, for JULIE, but we note that the output of DWUCK,

the most widely used program, is slightly different:

WUCK _ (0 JULIE
8 = (2541 9 \
o )ngA (23+1) ol 8) Jen

where j is the total angular momentum of the transferred nucleon.



In these expressions ¢ denotes the (squared) isospin Clebsch-Gordan

coefficient for single-nucleon transfer
C = <T1TZ'| 1/2 ¢ 1/2!Tszf>9

where (T;,T,;) relates to the initial (target) nucleus and (T¢sT,¢) to the
final state. The ¢® values can be evaluated with the help of Table 1. It
shows, for example, that one has 2 =1 for neutron stripping. It should be
remarked that in many papers published before about 1970 the S-values have to
be interpreted as CZS.

The normalizing factor N is proportional to the square of the overlap
integral between (for stripping) the wavefunctions of the outgoing particle
coupled to the transferred nucleon and that of the incoming particle. For
pick-up the words "ingoing" and "outgoing" in the preceding sentence have to
be interchanged.

One can consider N as the spectroscopic factor for the light particles
participating in the reaction., Whereas, in a transfer reaction A(a,b)B, the
spectroscopic factor measures the wavefunction overlap between A and B and the
transferred nucleon, the factor N has the same function for a and b and the
transferred nucleon. Numerical values of N for some reactions are given in
Table 2.

Spectroscopic factors can be subjected to several tests. First one can
check that reactions of one type, such as (d,n) and (3He,d) (proton
stripping), or (p,d), (d,t) and (3He, o) (neutron pick-up), produce the same
spectroscopic factors. The same should hold for pairs of reactions, éuch as
(d,p) and (3He,d), or (p,d) and (d,3He), exciting mirror states, or, more

generally, components of the same isospin multiplet. Finally, one can check

-4-



the equality of spectroscopic factors for pairs of inverse reactions, for
example, (d,p) and (p,d), connecting ground.states of stable nuclei. Because
the ratios of spectroscopic factors found for the pairs of reactions mentioned
above are reasonably close to unity, one may conclude that the set of
normalization constants used is internally consistent.

The experimentally observed deviations from these consistency rules
provide some ideas as to the experimental errors in S-factors. For absolute
measurements the error may be taken as 25%. Relative measurements are
presumably more accurate, in particular for groups of S-factors relating to
the same g-value,

The credibility of published 2-values not only depends on statistics and
on the number of points in the angular distributions, but also on the g£-value
itself. In the sd shell, values £>3 have proved quite unreliable, and the
same presumably holds for £>4 in the fp shell. Generally high g&-values
(1ike 2=4) should be mistrusted, if the author does not show explicitly that
the DWBA curves for ¢=3 and 2=5 are sufficiently different from that for
L=4, A reaction 1like (1, a) yields relatively unstructured angular
distributions and thus leads to unreliable %-values.

Spectroscopic factors cannot be arbitrarily large because they are
subject to sum rules.

The sum rules useful for the derivation of upper 1limits are the

following:
2Tf s, = <p> (3)
2T+
and
2Jgtl S:-= <n-1>s (4)
2+



where <p> is the number of protons and <n=1> the number of neutron holes in a
subshell (n, £ ,j), both in the target nucleus. The summation has to be
extended over all final states (whatever the spin) which can be reached by
transfer of a particle in the subshell (n, &, j). For the proton pick-up and
neutron stripping considered here one can only reach final states with isospin
Te = T3 + 1/2. Equation (3) also holds for neutron pick-up and Eq. (4) for
neutron stripping (both right-hand members unchanged) if the summation is
extended over T¢ = T3 + 1/2 states only; in these cases the reaction can
proceed to both T¢ = T; + 1/2 and Tg¢ = T3 - 1/2 final states (if at
least T; > 0).

We shall use here Eqs. (3) and (4) only for even-even target nuclei,
corresponding to J; = 0, J¢ = j. From the fact that neither <p> nor <n~1s
can exceed 2j + 1, one then obtains for this case the upper 1imits for any -
single transition

S;‘ <2_Tf_+i (23+1)
2T¢ (5)
and

Sp <1. (6)

The more complicated rules for proton stripping and for neutron pick-up

reactions leading to T¢ = T3 - 1/2 states are not mentioned here because their

applicability is very limited.



Table 1

Isospin Clebsch-Gordan coefficients (C) for use in

single-nucleon transfer reactions’
Stripping Pick-up
2
Y n Y n
Te =T - 1/2 2T 0 0 2Tf+l

t T; and T¢ denote the isospins of the target nucleus and the final state,

respectively.
Table 2

Normalizing factors (N) for single-nucleon transfer reactions #

Reaction N Reaction N
(d,p),(d,n) 1.53 (p,d) 2.29
(1, d) 4,42 (d, 1) 2.95

(a, 1) 46 (t a) 23
(d,t) 3.33

# These N-values fulfill the relation for inverse reactions

N(b,a) = N(a,b) (2s, +1)/(2sp, +1), where sy and s, are the spins of the
particles concerned.

-/



MEMO
December 7, 1971

To: Nuclear Data Group From: M.B. Lewis

Subject: Definitions, Sum Rules, and Selection Rules in Direct Reactions*
(This note supersedes that of March 2, 1970)

I. Single-Nucleon Transfer Reactions: A(a,b)B

( %g_ ) =GN (gz) where (gﬂ) is typically the direct output of a
@/ measured ¢/pwsa ®/pwBA

distorted wave Born approximation code. N is a constant for each reaction type. It de-
pends upon the internal structure of the incident and exit projectiles. The following table

summarizes the values of N which have been calculated and which have been checked ex-
perimentally. '

Stripping Pickup
(d, p) 1.5 @, d) 2.3
(d,n) 1.6 ---
(r,d) 4.5 d,7) 3.0
(t, d) 5.0 d, t) 3.3
(@, 1) 40 - 50 (1,9) 20 - 25
(2, t) 40 - 50 t,a) 20 - 25

Note: The reaction N and its inverse N are theoretically related by

Nb,a) 2s,+1

where s is the projectile spin.

*Based primarily on the following references:

1. R.H. Bassell, R.M. Drisko, G.R. Satchler, ORNL~3240 (1963) unpublished

2. J.B. French-and M.H. Macfarlane, Nucl. Phys. 26, 168 (1961)

3. N.K. Glendenning, Ann.Rev.Nucl.Sei. 13, 191 (1963); Phys.Rev. 137, B102 (1965)
4. R.H. Bassel, Phys.Rev. 149, 791 (1966)



G is the reaction strength and is related to the spectroscopic factor S: G = czs’ for

. 2+l 2
stripping reactions in which case §” = 27 +1 S; G = C S for pickup reactions. In
both stripping and pickup, 22 is the isospl}in coupling coefficient. * It follows from C2
that in neutron stripping and proton pickup reactions that only states with Tg = TZB can
be excited. On the other hand, for neutron pickup and proton stripping, Tg =Tgzp or
Tg=Tzg+ 1, and c? weights the reaction strength to these states accordingly.

G Sum Rules

The magnitude of the spectroscopic factor is determined not only by the likeness of the
final state to a single-nucleon excitation relative to the target, but also by the number of
equivalent target nucleons or holes whose transfer leads to this final state. The follow-
ing sum rules relate the total reaction strength GJ- (T)=2 Gij when summed over all

states (i) having isospin (T) excited in a transfer (j) Lg= Py/gr ds /g eten).

neutron stripping: Gj (TZB) = # neutronj holes in the target (A)
+1)=
G]. (Typ*+ D=0
proton pickup: Gj (T
G, (T
J

ZB) =# protonsj

zg* V=0 ,
1
i : G, =# =\ e .
neutron pickup GJ (TZB) neui:r:onsJ \ T+ l) # protonsJ

1
Gj (TZB+ )= (ZTA " l> # protonsj

N _ 1 ,
proton stripping: Gj (TZB) =# protonj holes - <—-————2TA " 1> # neui:ronj holes
1
Gj (TZB + 1) = <§ﬁ-:—l> # neutronj holes

. T 2 Tp,2 .
Ta 172 TBY for stripping or (C.B v A" for pickup where T,, =

* [C
Tza TzB - Tzp Tza Z

ol

(N -72)
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MEMO
March 17, 1970

To: Nuclear Data Project ' From: M.B. Lewis

Subject: Momentum Matching and C2S Values

Extraction of spectroscopic factors from DWBA is expected to be accurate only when
the reaction is said to take place near the nuclear surface. This is basically true be-
cause DWBA does not properly account for non-locality (in the nuclear interior) and

because the shape of the nuclear potential at large radii (in the nuclear extremity) is
unknown.

A suggested criteria for knowing if an author's direct reaction is a "surface' one (or

for knowing how to ''evaluate' various direct reaction data) is given below for reaction
A(a,b)B.

For /3
c . 1
Esb=13 2, 5%, /M4 B

and

L=0.22R, I VI, E, - VM B!
funitss MeV, e, amu, Fermil

one should have

C C
E, >ES, E, >Ef

0.5LSf, hS2L

where Eg,b is the Coulomb barrier for a or b;

L is the angular momentum transfer "matched" at R A. the nuclear radius.






To:

MEMO
June 10, 1971

Nuclear Data Group From: M. Lewis

Subject: Inelastic Scattering, Transition Rates, and "Model Independent” Sum Rules for

1.)

3.)

Odd-A Nuclei

(This memo supersedes the one on inelastic scattering issued February 16, 1970)

Unlike the case for even nuclei (see J. Rapaport's guide lines for the presentation of
inelastic scattering data - March 7, 1969), the derivation of the deformation 8 for
odd-A nuclei in inelastic scattering depends on both the assumption of Jgjpn4] and the
vibrational and rotational character* of the nuclear states.

2

O heasure d/ “OwBA = [3L for even nuclei
but = Kzﬁi for odd nuclei in which case
K%, (23, + 1/ (2J + (2L + 1) for the vibrational model
2
and Kg [ IJ;loLI'{If] for the rotational model with band K and

angular momentum transfer L

The parameter K2 makes for a different relation between B and B(EL)¢ for odd as
opposed to even nuclei.

L\2
BELy -8 (?z_R)

even 4

L\2
B(EL)} 4y = k%62 (3ZR)

Taking the ratio of the two equations in 2.) for a given B_,

B(EL)} 14 = K2 B(EL)1 .
od even

This means that the reduced transition rate t derived from simple Coulomb excita-
tion in odd nuclei is both spin and model dependent compared to the even case.

*Sometimes referred to as weak and strong coupling, respectively.



4.) Since ZK_ = ZKZ = 1 for (both vibrational and rotational) cases in 1.), a "model

5.)

Jg A Js R
independent” sum rule follows for inelastic scattering and simple Coulomb excitation.
sz B(EL)édd - B(EL)évenT

2 -2
and ffﬁ odd BevenT

The transition rates li.e., B(EL)+] or lifetimes follow an entirely different relation.
from B(EL)¢ = B(EL)+ (2L + 1) for even
and B(EL)t = B(EL)+ (2J P + 1)/ (ZJi + 1) for odd nuclei, the relation 3.) gives

- K2 2L+ 1)(2J; + 1)

¢
B(EL)odd @t D B(EL) ‘even
K2 . L
B(EL)édd ==3 B(EL)}aven using K defined in 1.).

The result is that in regions of weak coupling
= '
B(EL)c‘)dd B(EL)evcsen
and in regions of strong coupling

K
=R
dd g B(EL) :even

Ki

where, for example, 0.05 s% = 2,7 for all (L = 2) cases of rotations with Ji =9/2.

KV

This means that the EL transitions rates or widths for an odd nucleus can actually be
considerably larger than the neighboring even nucleus with the same deformation. a

B(EL)S

TOr ;Bi(EL)even if the higher lying states are significantly collective.
i

2An example of a well documented case is the decay of the 0. 134 level of 187Re.
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6.)

T.)

The model independent sum rule limit for both odd and even nuclei and pertaining to
all transitions from the ground state is

2L-2 lb
mean

2
= = + o v
Sh‘.mit ?Efo(EL)f L2L+ 1) 1l.64ZR
According to this rule, all vibrations in the bound states. of most nuclei exhaust only
about 10% of the available collective strength.

Conclusion: The relations abovec show that all the data pertaining to transition rates
can be evaluated with more significance if it is all expressed in a reduced form, such
as in Weisskopf unii:sd (which also has some intuitive significance). Expressing all
transition rates in such a reduced form is especially convenient for the reader when
he wishes to study data systematies.

b

The Syjuit ¢an be divided into two parts: %S for all vibrations in which the neutrons and

protons are in a T = 0 configuration (for example low-lying excitations) and ES forT=1
types (for example the giant dipole excitation). A

c .
The formulas are primarily from various sections of Siegbahn's a-, p-, y-Spectroscopy.

A convenient expression for reducing By, to Weisskopf units is

2
Pl @+12z2 2 @+rwiar

EL enhancement = = = ——
;3% (s.p.) 4m(@L+1) "L (21+1)9R2L

B(EL)t.
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NS MEMO 1B/1 (82) September 27, 1982
To: NSDD Network Evaluators
From: M. J. Martin

Subject: Reduced Gamma-Ray Matrix Elements, Transition Probabilities, and

Single-Particle Estimates

For an electromagnetic transition of energy EY’ the relationships among

the reduced matrix elements, B(oL), and the partial y-ray half-life, TY1/2’
are ‘
2 2L+1
TYI/Z(EL) B(EL)+ = (an 2) L [(2L + ;)é!] 5 /fic (1)
8r (L + 1) b E,
2 2L+1
TYl/z(ML) BOML)y - n2) L [(2L +21)£13 f [ fic (2)
8 (L + 1) m" b E,

The Weisskopf single-particle estimates for the B(oL) are

1 3 \2 .2L (3)
B (EL)+ = —— [—2—\* R
S.p. 4TrbL <3 N L>
10 3 \2 ,2L-2 (4)
B (ML)+ = R
S.p. TrbL—l <3 . L>
so that
TY1/2 . (EL) = (¢n 2) L {(2L ; 1;1!]2 5 (3 + 1\ fic oL+l (5)
-P- 2 (L+1)e°R 3 E,
Ty o () - Gn 2L O +21)é£1§ £ (3 4 L\ 6\ (6)
-P- 80 (L + 1) ny" R™ E,



The relationship between a measured B(oL)+ to a level with spin Jf from

a level with spin Ji connected by a transition vy, is given by Eq. (1) or

K
(2) with
y

Ty ) = T8 (L) ery) (7)

and
(2J + 1)

B(oL)+ = T__—_——_T B(oL)+

where e(YK) is the fraction of the decays of level Jf proceeding via the

observed mode Yk and is given by

,
) = 1 K _ Ry

— =
i(l + gi) A i (1 + aK)

where AYi is the relative partial decay constant for gamma transition "i,"
@ is the total conversion coefficient for transition "i," and BR(YK) is the
total (i.e., Yy + ce) branching ratio for transition "K."

If the transition "K" is of mixed multipolarity L, L + 1, then a factor
62/(1 + 62) for L + 1 or 1/(1 + 62) for L must be inserted on the right-hand
side of Eq. (7). 52 is the ratio of the L + 1 and L components.

In Eqs. (1) through (6), b = 10 24 cm ; 'R =R Al/3 x 10713 cm; and

B(EL), B(ML) are expressed in units of e b and uNQ L- 1, respectively.

For the constants appearing in the above expressions, we adopt the fol-
lowing values:

fic =1.9733 x 10‘8 keV - cm

£ = 0.6584 x 10718 kev - s

e? = 1.43998 x 10710 keV - cm
uNz - 1.59234 x 10~38 keV - cmd
Ry = 1.2

Specific expressions for the above equations, along with that for

B(oL)(W.u.) = B(oL)/BS p_(cL),

-2 -



are given here for L = 1 through L = 5. EY is in keV, and W.u. stands for
Weisskopf units.

As noted above, if a transition under consideration is of mixed multipo-
larity, L, L + 1, then the expressions below for B(oL)(W u.) and T 1/2 (J) X
B(oL)* should be multiplied on the right by & /(1 + 8 ) for the Ll +1 and by
1/(1 + & ) for the L-components.

El Transitions

-9
4.360 x 10
1/2(E1) B(E1)+ = 3
(E_)
Y
S-P-(El)+ = 6.446 x 10—4 A2/3 (32 X 10—24 cmz)
)
Y - 6.764 x 10 (s)
T 1/2 s.p.(El) - (E )3 A2/3
¥
6.76 -6
B(E1)(W.u.) = 3-72§3x 107" BR
(EY) A Tl/z (1 + 0)
TI/Z(J ) B(E1)4 = 4.360 x 10 =9 g [2g + 1
(E )3 (1 + a) 27, + 1
E2 Transitions
5.659 x 101

T'. . (E2) B(E2)+ =
1/2 (EY)S

BS p_(E2)+ = 5.940 x 10‘6 A4/3 (e2 X 10"48 cm4)

(EZ) 9 527 X 106 (S)

.
T'1/2 s.p. PR e
.

B(E2) (W.u.) = 9.527 x 100 BR

(EY)S A4/3

T1/2 (1 + a) -

1 2J 1
TI/Z(J ) B(E2)* = 5.659 x 10~ BR £+
(E )5 (1 + a) 23, + 1
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E3 Transitions

1.215 x 1012

7
(EY)

\
T, /5(E3) B(E3)¥ =

B > (E3)¥ = 5.940 x 10‘8 A2 (e2 x 10772 cm6)

2.045 x 1017 (s)
(EY)7 A%

y
T 1/2 s.p.(Es) =

2.045 x 1019 BR
(EY)7 A2'T (1 + a)

B(E3)(W.u.) =
1/2

12 27, + 1
T1/2(Jf) B(E3)+ = 1.2157x 10°“ BR f
(EY) (1 + ) 275 + 1

E4 Transitions

TY 22

1/2

4.087 x 10

9
(EY)

(E4) B(E4)+ =

By, (E4)+ = 6.285 x 10710 48/3 (2 4 10796 )

6.503 x 103! (s)

y
T'y/2 s.p.(B4) =

6.503 x 109! BR
(EY)9 Ab/J T (1 + a)

B(E4)(W.u.) =
1/2

22 2J, + 1
TI/Z(Jf) B(E4)+ = 4~0879x 10““ BR £
(EY) {1 + a) 2Ji + 1




E5 Transitions

2.006 x 1053
11
(k)

TYI/Z(ES) B(E5)+ =

By . (ES)v = 6.929 x 10712 21073 (2 o 107120

44
_2.895 x 10 (s)
T1/2 s.p.(E5) = (£ )11 41073
Y

44
B(E5)(W.u.) = 2.895 x 107" BR

11 .10/3

33 2. + 1
T,y (3p) BES)* - 2.00?1x 10°° BR [ “'f
(E)"" (1 +0) \2J, +1

For ML transitions we have:

]

TYI/Z(ML)/TYI/Z(EL) 9.043 x 10° B(EL)/B(ML)

Bs.p.(ML)/BS.p.(EL)

2.778 x 103 A™%/3

Y 2/3
T 12 s.p.(ML)/TYl/Z S.p.(EL) = 3.256 A /
B(ML) (W.u.)/B(EL) (W.u.) = 3.256 4%/3

M1 Transitions

-5
TV, _(M1) B(M1)+ = 3:943 x 10
1/2 (EY)3

2
Bs.p.(M1)+ = 1.791 (pN )

2.202 x 1072 (s)
3
(E )

TY1/2 s.p.(Ml) =

B(M1)(W.u.) = 2-222 x 1072 BR
(EY) T}/Z (1 + a)

Ty/2(Jg) B = 3.943 x 1075 R [Hr * !
3
(EY) (1 + a) 20, + 1
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M4 Transitions

26
T p(M4) B(MA)Y = 3.696 x 10

9
(EY)

By 0 (M4)+y = 1.746 x 10‘6 A2 (uNz x 10772 cm6)

T (g) - 22117 x 102 (s)
1/2 s.p. (& )9 2
y
32
B(M4) (W.u.) = —2:117 x 10°% BR

9 ,2
(EY) A TI/Z (1 + a)

1/2'°f S

(EY)g (1 + a)

M5 Transitions

37
17, /o (45) B(M5)+ < 1314 X 10
(E,)

By . (M5)¥ = 1.925 x 1078 48/3 (uNz x 1079 )

44
v _9.426 x 10%%  (s)
T 1/2 S.p.(MS) - (E )11 A8/3
¥

44
B(M5) (W.u.) = ?i42§/§ 10™* BR
(EY) A T (1 + a)

1/2

37
1.814 x 10°/ BR
T, ,,(J.) B(M5)+ =
/2 (EY)ll (1 + a)







EO TRANSITION PROBABILITIES FOR 0T—0" TRANSITIONS
R.B. Firestone

Isotopes Project
Lawrence Berkeley Laboratory
Berkeley, CA 94720

August 24, 1987

An EO transition results from a penetration effect caused by the Coulomb interaction
between a nucleus and its surrounding atomic electrons. It is highly forbidden and can occur
only between levels with identical quantum numbers J*K. For 0*—0" EO transitions, there
are no competing vy rays emitted and only internal conversion or pair production are possible.
EQ transitions may also compete with very retarded M1 and E2 transitions. The treatment of
mixed EO transitions is complex and has been discussed by Aldushchenkov and Voinova.'
Experimental data are seldom extensive enough to allow full analysis of mixed EQ transitions.
The following discussion is limited to 0" —07 transitions.

The theoretical transition probability for EQ decay by the emission of internal conversion
electrons has been derived by Church and Weneser.? This probability may be presented in Wil-
kinson single-particle units (W) * defined for internal conversion as

Twi(E0), =2.9009X 10"% [A(EQ)x +A(EQ)\ +A(EQ)L2 + . .. | sec™ L. 1

Here k is the transition energy in units of m,c? (energy(keV)/511.0034) and 4(EQ) is a coeffi-
cient tabulated by Hager and Seltzer* for the K, L1, and L2 atomic shells. T(E0), is also tabu-
lated in single-particle units (I'w;(E0), =I(E0)./4.91) by Passoja and Salonen® for Z<40 and
by Bell, et al.® for Z=40. Internal conversion in the L3 shell is very small and can be
neglected. Analytic expressions for 4(E0Q)} are given in the Appendix.

For E >2m,c? EOQ decay may also proceed by pair emission. The corresponding transi-
tion probability may be given in Wilkinson single-particle’ units defined for pair production as

Twi(E0),=7.41X 104A4/3(§ - 1)3(§+ 12B(s)C(Z ,k) sec™!. )

Here A is the mass number and k is the transition energy. The function B(s) with s = %:_*_—é)

3 s _s*, s} 5s3
B)==n(l—> - 42— ..
R T 64+512+ )
and C(Z,k) is the Coulomb correction factor. Functions B(s) and C(Z,k) are tabulated in
tables I and II, respectively.

The total Wilkinson single-particle transition probability for internal conversion plus pair
production is

Twi(E0)=Tw;(EQ)e +Twi(EO),. (3)
The experimental EO transition probability is
Texp(E0)= —122'~BR 4)

L2

where t)/; is the half-life of the initial state and BR is the branching fraction for the EOQ transi-
tion (internal conversion plus pair production). The reduced EQ transition probability can be
presented in Wilkinson units, analogous to the Weisskopf photon transition probabilities for
higher multipoles, as



Texol EO)
Twi(E0) ()

Systematics of EO transition probabilities are given for A<150 by Endt.”®° The following
examples illustrate the calculation of reduced EO transition probabilities

Bwi(E0)=

Example 1. In '%Sm the 740-keV 0% level deexcites by a 1.32% EO branch to the 0+ ground
state. The level half-life is 19.7 ps. A(E0) values, calculated as shown in the Appendix, are

AEQ)=1.11X10"10
AEQ),,=1.48X 101!

A(EQ)L,=2.50X10"13,

The transition energy is k=1.45 in m,c? units. From equation (1) the Wilkinson single-particle
EQ transition probability becomes T'y;(E0), =5.30X10° sec™!. The experimental EO transition
probability, defined in equation (4), is Texp(E0)=4.68X10% sec . Since pair production is
energetically forbidden in this decay, the reduced transition probability from equation (5) is
simply

Cexp(E 0)e

BWi(E0)=_—‘_'rW'(EO)

=0.088.

Example 2. In %Zr the 1594-keV 0+ level deexcites by a 100% EO branch to the 0+ ground
state. The level half-life is 38 ns. A(E0) values, calculated as shown in the Appendix, are

A(EQ)x=4.24X10712
A(EOQ)L;=4.43X1071

A(E0)1,=3.53X1071.

The transition energy is k=3.12 in m,c? units. From equation (1) the Wilkinson single-particle
internal conversion probability is T'y;(E0), =4.24X 108 sec ~!. Pair production also contributes
to this EO transition. B(s)=1.11 from table I for s=0.22, and C(Z,k)=1.91 from table II for Z=40
and k=3.12. From equation (2) the Wilkinson single-particle pair production probability
becomes T'y;(E0),=7.93X107 sec™!. The experimental transition probability from equation
(4) is Texp(E0)=1.82X 107 sec~!. The reduced transition probability as defined in equation $ is
then

Texp(E0)

Bui(E )= 1 E0), +Twi(EO),

=0.036.

Appendix

The derivation of the single-particle EQO internal conversion probability is described by
Church and Weneser.2 A point nucleus is assumed and only the higher-order Coulomb and
momentum terms are considered. Using the formalism adopted by Hager and Seltzer*, the ana-
lytic expression for 4 (EQ)k for the K atomic shell is

1 o 1+y
8xak 36 T(2y+1)

Here k is the transition energy in units of m,c%,a=1/137, y=[1~(«Z)}/2, Py is the K-electron
linear momentum, R =0.426a4'/3, S£ is the atomic screening correction for the K shell, and

(2aZR)Y"*2F(Z ,Px)S}. (1

A(EQ) =



B . 2
mZW‘/Px;’I‘('yﬁ-laZWK/PK) B

Ty |
In equation (2) Wx=[PZ+1]'/2, is the total energy of the emitted electron. The Gamma func-

tions in equation (2) can be solved by using equations 6.1.3, 6.1.15, 6.1.18, and 6.1.25 of
Abramowitz and Stegun.!® These yield

F(Z,Px)=2(1+~)2PxR)» 2 )

o !
2,2C(v+1/2) G2 | —+1/2um
2 w(y+1/2)% I [1+ el |

2

T(y+iaZWx/Px) . i

= — (3
Tyt w[ [ «ZWy JI_JI :
i 4y, 2

SO L L ey

where C=0.5772156649 is Euler’s constant. Expressions for 4(E£0).; and A(E£0).; may be
derived from

A(EO)x _ Pe(Wyx+)F(Z,PK)Sk X+1 X¥+2 @
A(EO)Ll PL(WL+'Y)F(Z,PL)SL| X+2 2‘)’"*‘1

and
AEOQL _2+X X—1 Wity Si 5)
AEQYL; 2—-X X+1 Wr—+ S;,
where X =[2(1++)]"/? and quantities with L subscripts correspond to those above. Neglecting
screening, Wy =k+vy and W, =k + i. The screening corrections Sg,S.; ,and Sy, were calcu-

2
lated by Brysk and Rose!! and are shown in figures 1, 2 and 3.
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Table I. The function B(s)"

LS B(s) s By |
{0.00 1.1781  0.52 0.9945 '
1002 11722 054  0.9866
1004 L1661 056 09786 |
1006 11599 058  0.9706 !
008 11536  0.60 0.9626 |
10.10  1.1472 0.62 0.9545
10.12 1.1408 0.6 0.9465 '
(014 11342 066 09384 |
1016 11275 0.68 0.9302 |
(018 L1207 070 09221 !
(020 L1139 072 09139
1022 1.106 074 09058 |
1024 1.0999 076 0.8976 |
1026 1.0928 078  0.8894 |
1028 1.0856  0.80 0.8812 ,
'0.30 10784 082 0.8731
1032 10710  0.84 0.8649 |
10.3¢  1.0636 0.86 0.8567
1036 1.0562  0.88 0.8485 '
10.38 1.0487 090 0.8404 |
1040 1.0411 092 0.8323
'0.42 1.0334 094 0.8242
1044 10257 096 0.8161 |
:0.46 1.0180 098 0.8080
1048 10102  1.00 0.8000 '
10.50  1,0024

|

Table II. The Coulomb function C(Z,k,)’

L 1 ky &
L Z ‘ 2.3 2.5 2.8 3.3 4 5 7 10 15 20 25 t
lr 5{ 1.0172 10151 1.0137 10126 1.0118 10111 1.0102 1.0094 1.0084 1.0076 1.0071,
i 10; 1.0619 1.0569 1.0526 1.0487 1.0456 1.0428 1.0392 1.0356 1.0314 1.0284 1.0260!
15, L1116 1.114 1116 1.108 1101  1.0950 1.0866 1.0781 1.0684 1.0613 1.0358
20] 1.190 1.201 1.204 1.192 L.181 1169 1154 1138 L1119 1.106 1.0961
30i 1.393 1458 1466 1.448 1431 1402 1362 1320 1272 1239 1213
40' 1732 1877 1921 1902 1.852 1799 1709 1616 1514 1.443 1.390
60! 3.153 3.819 4.066 4.054 3.849 3594 3213 2.825 2427 2.173 1.991
80! 7.861 10.80 12.07 1193 11.02 9.671 7.831 6.181 4656 3.788 3.219
100l31.39 4871 56.18 5429 48.63 3794 2649 1770 1100 7.774 5.916 |

*D.H. Wilkinson, Nucl. Phys. A133, 1 (1969).
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PHASE CONVENTIONS FOR MIXING RATIOS IN ELECTROMAGNETIC TRANSITIONS
FROM ANGULAR CORRELATIONS AND ANGULAR DISTRIBUTIONS

M. J. Martin
Oak Ridge National Laboratory, Oak Ridge, Tennessee
August, 1987

As is well known, the multipole components in a gamma transition of
mixed multipolarity mix coherently so that, from an angular distribution
or correlation measurement, one can determine the phases, i.e. the
relative sign, of the largest two multipole matrix elements. In
principle, the relative signs of more than two multipole matrix elements
can be determined; however, we will restrict the following discussion to
the case where only two components are significant. Since this relative
sign is invariant with respect to any arbitrary phase convention for the
wave functions or the transition operators, it is physically
significant.

The two phase conventions most widely used at present are those proposed
by Steffen (1) and by Rose and Brink (2). A brief description of these
approaches and the differences between them is given below along with a
summary of the explicit forms of the angular correlations for some
specific common cases. This is followed by a summary of the relation
between the phase conventions suggested by these authors and other
conventions occasionally encountered in the literature.

Consider the Y¥ cascade

1
f 4
I, ¥ | L g
L'=L+1
f 4
3, ¥ | Iy L

All major treatments of the directional correlation of ¥, and ¥, can be
reduced to the form

W(e) == B (¥,) A (X.,) P, (cos®©) (1)
K=even k‘°1 k 2 k

For a given transition, ¥, we denote the relative amplitude of the two

multipole orders, L’=L+1 and L, by %(¥). The phase of & is dependent on
several factors.

a) The form in which equation (1) is expanded
b) Choice of emission or absorption matrix elements



c) Form of the Wigner-Eckart theorem used to define the reduced
matrix elements

d) Form of the electromagnetic multipole transition operators.

For the extraction of & from the analysis of an anqular correlation or
angular distribution experiment, only a) is relevant. That is, once the
Bx and A, are expanded in terms of tabulated constants which depend only
on the L’s and J’s, the sign of & is fixed. 1If, however, an attempt is
made to calculate the mixing ratios on the basis of some model and to
compare the values with those deduced from an experiment, then of course
the factors b), c¢), and d) must be taken into account.

Following the work of Steffen (1), we write the orientation parameter, By
and the directional distribution coefficient, Ay, for the case of an
unpolarized, unaligned initial state J,, as follows:

B, (¥,)=

x(¥1 )

Fy (L LT, 3,)+2 6(3'1)(-1)1"1"+k Fy (L 11T, 3,)+ sz(xl) Fy (L{L{3,3,)

1+ 5%
A (¥,)=

(3)

2 4 f 4
Fl(L,L,T,0,) + 26 (5,)F (L,L33,3,) + 8° (5,)Fy (L3L5T,7,)
1+ 6%(r,y)
where S(yp) = <J, "friLi “J1>//'<J21|771L1 “J1> (4)
5(8,) = <Jy H L “J2>/ <3, “ moLy, 357 (5)

e coefficients, Fx , are defined and tabulated in Reference 3. _They
zge also tabulatéd ;n References 4, 5, and 6. Steffen uses em}sston
matrix elements, and the initial state always appears on tpe'rlgh é'
Equations (1), (2), and (3) define a unique sign for the mixing ratios.
Note that the coefficients Fyx , are defined such that

P (LL'3,3,) = Sy;¢ and thus By(¥) = A () =1

For the cascade J, =4, J,=2, J3=0, for example, one has F2(2242)=—0.1707
and F, (2202)=-0.5976.

-2 -



, \ 0
The definition of operators and reduced matrix elements, <lTL l>, used
by Rose and Brink are such that

<Je "77L "Ji>= )
Ji-Jf+L

(-1) [(23;+1) / (2Jf+1)]1/2 <3, | Tz,"Jf>

Thus, & (Rose-Brink) = (-1)L-L’ & (Steffen) (7)

Note that Rose and Brink use absorption matrix elements and the initial
state always appears on the left.

As a consequence of (6) (or (7)), in the notation of Rose and Brink, the
coefficients Fy are replaced by coefficients R, defined such that

_ ,_. L-L’+k
R, (LL'T,J.) = (-1) Fl (LL'J .J.) (8)

but otherwise, the forms of equations (2) and (3) remain unchanged.
Tables of R« are given in an appendix in Reference 2. Both Rose-Brink
and Steffen give a thorough discussion of the factors a) through d)
mentioned above, so that calculations of § can be carried through
consistently in either formalism.

Another phase convention that one still encounters in the literature,
although mainly in old references, is that of Biedenharn and Rose (4).
These authors adopt the convention of always writing the intermediate

state (J; in our case) on the right. This convention leads to an
additional phase factor of

L-L’+k
(-1)

in the second term of equation (2), thus,
(Biedenharn-Rose)

= - §(Steffen) for ¥,
= &(Steffen) for &2

Note that in the Biedenharn-Rose formalism the sign of the mixing ratio
depends on whether a given transition occurs first or second in a
cascade. Table I gives a summary of the phase conventions one might
encounter in the literature. These values are all relative to the
convention of Steffen where the signs of the mixing ratios for both the
first and second transitions are arbitrarily set to be positive. Note
that in the formalism of References 9, 10, and 16, the sign of the
mixing ratio depends on whether the transition involves a parity change
(e.g. E1+M2) or no parity change (e.g. M1+E2).



Comments and Special cases

The parameters, By, are characteristic of the (axially symmetric)
orientation of the intermediate state (J2) while the coefficients A,
characterize the directional distribution of ¥, with respect to the
orientation axis of J,. The above discussion i1s concerned with the case
where the intermediate state J, is oriented by the emission of the
preceding radiation from J, . The general case, where the orientation is
produced by low-temperature alignment, nuclear reactions etc. is
discussed in several sources (see f) below). Some cases of special
interest to evaluators are discussed below. As pointed out in (20), the
sum over even k in equation (1) holds for the case where the nuclear
states J,, J2 and J; have pure parity and the radiations are parity
conserving (electromagnetic radiation, conversion electrons, alpha
particles) in which case the directional distribution coefficients with
odd k are zero. If the circular polarization of the gammas is observed;
if the nuclear states have parity admixtures; if beta particles are
observed, then, if the intermediate state is polarized and not just
aligned, odd-A terms in equation (1) can contribute.

a) Intermediate unobserved radiation

Consider the cascade J, (¥, )J2 (¥.)J3(¥;)Jy where the directional
distribution of ¥; is measured relative to the direction of ¥, and
radiation ¥; is unobserved. This case can be handled by expression (1)
with the introduction of a multiplicative factor Uyx(J, J;) defined by

Uy (J95)= )
I +J3.+L J.J.k J.J
243 1/2 2 —1| )29k [ 2 { 292 }
- J.+1) (23 +1 1+ A
(-1) [(27,+1) (23, )] (1+ A7 (¥,)] J3J3L} 33,141
S(U(LT.T.) + AU (I+13.3.) 101+ a2yt (9)
=(Uy (LJyd, X 293

where Az (3’2)= 1+ X(L+1 777) 52( xz) , o< being the total conversion
1+ (L TT)

coefficient and & (¥) the mixing ratio defined by (4), (5). The g }

6-J s ols. The above expression is given by I. V..Anicip et al.
?gi). Exﬁ??cit expressions given in all other sources with which I am
familiar incorrectly contain & in place.of A . It should be noted that
A is parity dependent, the parity sensitivity degendlng on the magnitude
of the oS relative to unity, that is, for the &« 5 <<i, 4 = s .

-ori i icients and take account of
The Uk (JJ’) are called de orlentgtlon coefficien _acc
the deérease in alignment resulting from the unobserved radiation. The
Uk (LJJ’) coefficients are tabulated in (2), (16), and (17). Note that
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equation (9) contains no interference term since the radiation it
represents is not observed. Note also that U, (JJ)=1.

The angular distribution for the general case of n radiations, with the
correlation between the first and last radiations being measured, is
then given by

W(B) == B (¥)Up(¥,)---Up (¥, A (¥ )P, (cos ©)  (10)
k=even

b) Internal conversion electrons (1b,20,22)

If internal conversion electrons, rather than gammas, are observed for
either of the transitions in the cascade described by equation (1), then
the factors F appearing in Egs. (2) and (3) should be replaced by
factors b(ce; A A’)F, where the b(ce. A N’)’s are particle parameters for
conversion in the i shell for A, N’=M1,E2 or E1,M2 etc. tabulated by
Hager and Selzer (22), and the mixing ratio & (¥) should be replaced by

oy () ]| M2

0<i (L) J

For a (X)(cei)(69) experiment where the second transition is M1+E2, for
example, equation (3) becomes

A (ce;) x [1+ 5(cei)]2 = F, (113.7,)b, (ce

S(ce;) = 5 (%) | (12)

i M1,M1) +
) (13)
25(cei)Fk(12J3J2)bk(cei M1,E2) + & (cei)F(22J3J2)bk(cei E2,E2)

2
where the 1+ & factor has been transposed to the left-hand side.

c) Resonance Fluorescence

The angular distribution in a (¥,¥) experiment, where the exciting and
deexciting transitions are identical follows immediately from egs. (1),
(2) and (3) with the further observation that the reduced matrix

elements defined in eqgs. (4) and (5) have, for this case, the property
5(81)=- 6(55). One then gets, for the sequence J3(L2L2+1)J2(L2L2+1)J3

W) = > Ak(xz):lz P, (cos o) (14)
k=even
with A (¥ ) given by equation (3), and &(¥ ) given by equation (5).
k 2 2

The more general case of .(¥,¥’) is treated like ¥ ¥(©) with the ground
state as the initial state, J,.

-5-



d) Coulomb Excitation (5)

The angular distribution of gammas in a Coulomb excitation experiment
takes the form of equation (1) with

By (¥ ) = by (5)F (227,3,) (15)

where Jl is the target spin, J2 the spin of the Coulomb-excited state,
J3 is the spin of the final state following gamma emission, and bk(g )

is a particle parameter which depends on the excitation process through
the parameter ¥ . These particle parameters are tabulated in (5).

e) Alpha Decay (1b,1c,3,23)

The form for the alpha-gamma angular correlation is similar to that
described above for ce-gamma correlations. The factors F« in the
expression for By are multiplied by the particle parameters for alpha
decay, bk, defined, for L=0, by

| 1/2
b, (LL") = b, (L"L) = cOS(J.= 77+v) __ 2[L(L+1)L" (L"+1) ] (16)
k k T 7o L(L+1) + LY(L"+1) - k(k+1)

where L"=L+2, L+4 etc., and &(¥) is replaced by

§(x) = <J, || Hyu(e) "J1>/ <T, || Hy ) |7, > (17)

For alpha decay in which a single L value dominates, Bx takes the same
form as equation (15), namely

B, (¢) = b, (LL)F, (LLJ,J,) (18)

For mixed-L transitions, since L+L"=even, the phase factor in the second
term of equation (2) becomes +1, and equations (2) and (3) have’exactly
the same form. The phase angle appearing in equation (16) contains the
Coulomb phase shifts and depends on the target nucleus and the a}pha
particle energy. It enters only in the mixed L,L" term of equation (2).
See refs. (3,23) for a definition of this phase term gno§e that in
equation (123) of (23), the cross term should be multiplied by a factor
of 2). The differences in phase angles for L and L" are usually §ma11
(see (24) and references contained therein) so that the cos term is
close to +1 or -1. We adopt cos(7, - %,7)=+1 which, along with the forms
of equations (19) and (20) below, defines the phase of &(«).



For the case where only the two lowest L values contribute
significantly, equation (2) then takes the form

B (x)=
k! (19)

1] 1] 2 "ur w urt.w
b, (LL) F) (LLJ,J,)+2 § (X )b, (LL") F} (LL"J,J )+ &% (X )by (L"L"M)F, (L"L 3,3,)

1+ 62 ()

For the case of L=0, the particle parameter cannot be defined in terms
of the functions Fx for the gammas. For 1=0+2, using equation (7.10) of
Steffen (1b), (or equation (107) of (1lc)), equation (19) for k=2 becomes

(20)
2
2 63132 E(x)cos( N, =7g) + & (=)b,y(22)F,(223,7,)

IS + 82 (x)
J195

For a pure L=0 alpha transition, one sees that the alpha-gamma angular
correlation is isotropic.

£) Other cases

When the intermediate state, J, is oriented by low-temperature
techniques, or by nuclear reactions, etc., the angular distribution can
be described by equation (10), with the By now treated as alignment
parameters which may be determined experimentally, estimated
empirically, or evaluated on the basis of a specific model (17). See,

for example, refs. (1), (2), and the tabulations and references quoted
therein of refs. (17) and (18).



TABLE I

First Second
Transition Transition Reference
+ (norm) + (norm) Steffen (1), (14), (15)
+ + Frauenfelder-Steffen (3)
+ + Poletti-Start (13)
+ + Taylor, et al. (8)
+ + Yamazaki (17)
+ + Ferguson (19)
- + Biedenharn-Rose (4)
- + Ferguson-Rutledge (1957) (7)
Pure E2 assumed + Alder, et al. (5)
+ (ATr=yes) + (oM =yes) Litherland-Ferguson (10)
- (0T =no) = (o™ =no) [: Poletti-Warburton (16)
. Ferguson-Rutledge (1962) (9)
- - Rose-Brink (2)

- - Smith (11)
- - Harris, et al. (12)

- - Watson-Harris (18)
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I. Introduction

To assist the evaluator of Nuclear Structure and Decay Data for the Nuclear Data
Sheets, as well as to help provide some degree of uniformity and consistency in
the resulting evaluations, numerous guidelines have been established over the
years. Many of these are categorized as being either "strong" arguments or
"weak" arguments for making Jm assignments to energy levels in nuclei. For
those levels that are members of rotational bands in strongly deformed nuclei,
however, the establishment of "strong" or "weak" rules for making Jn
assignments is at one and the same time a trivial task and a complex one. On
the one hand, implicit in even considering that a level might belong to a
rotational band is that a model-based judgement is being made, taking into
account other information in addition to that which is explicitly being
evaluated. Such "external" information includes, for example, the observation
that a relatively simple relationship exists between the energy and Jv value

of the particular level and those of certain other levels in the same nucleus
and that similar patterns, presumably analogous to the case at hand, are
observed in other, near-lying, nuclides.

On the other hand, as regards Jw values, members of rotational bands are not
really different from levels in nuclides that are not strongly deformed, in that
the usual means of assigning such values (y-decay and feeding properties, a-

and p-feeding probabilities, y-y directional correlations, etc.) still



apply. It was, in fact, only after definitive Jn values had been assigned to
certain groups of levels (and strongly enhanced connecting E2 transitions
observed) that the occurrence of the hypothesized rotational bands could be
established in the first place.

It should be recognized that reliable Jn assignments to levels in the strongly
deformed nuclei can frequentiy be made primarily by using nuclear model-based
considerations. For example, the existence of rotational bands in many nuclides
is extremely well established; and the models of the intrinsic (i.e.,
nonrotational) states upon which they are built are relatively simple and, also,
quite well understood (at least as regards Jv values). In addition, the
angular-momentum coupling scheme underlying this picture is simple and can
usually be app]ied to actual nuclear level schemes without the use of complex,
computer-based nuclear structure calculations. These considerations, together
with the existence of an extensive "systematics" of level properties of the
strongly deformed nuclei makes it possible in many cases for the experienced
nuclear physicist to construct a level scheme for a previously unstudied
strongly deformed nuclide in which the Jn assignments can be regarded as
reliable, even though the available data are sufficiently meager that, in other
mass regions, they would yield almost no insight into the Jw values.

It should further be noted that these judgments are frequently based on
qualitative considerations rather than guantitative ones (such as, for example,
the magnitude of a log ft value or the lifetime of a y-ray transition).

Consequently, these inferred Jv values cannot be regarded as being based on
“strong" arguments, as this term is employed in Nuclear Data Sheets evaluations,
even though they are reliable as far as the underlying nuclear theory is
concerned. Thus, for the strongly deformed nuclei, the traditional distinction
between "strong" and "weak" arguments for Jm assignments becomes blurred. In
these cases, then, the assignment of Jw values ultimately comes down, as it
always should, to the judgment of the individual evaluator.

In the discussion below, we lay out some considerations to help guide the
evaluator in his or her evaluation of nuclear-structure data to provide Jr
assignments for levels in the strongly deformed nuclides. The topics treated
involve only those aspects of the data that are specific (or unique) to the



II.

angular-momentum coupling schemes appropriate to these nuciides. Our thinking
here is guided by those features of the strongly deformed nuclei that are
commonly encountered in the “rare-earth" region (say, 150<A<190) and the
actinide region (say, 220<A). However, the concepts should be broadly

relevant to those other regions of the Nuclide Chart where, as indicated by an
increasing body of experimental data, strongly deformed nuclei also occur. It
is assumed that the reader is familiar with those considerations for making Jr
assignments (such as y-ray multipolarities) that are independent of the
features of any specific nuclear coupling scheme; and, although implicit use is
made of these, no explicit elaboration of them is given.

In Section II, we give several considerations to be kept in mind in treating

data on the strongly deformed nuclides. In Section III, to further elucidate
some of these ideas, we provide a summary of the analysis of a specific case,
namely the strongly deformed, presumably reflection-asymmetric, nuclide 223Ra

[1]. Finally, in an Appendix we give a concise summary of the ideas presented
in these three Sections.

For further reading on nuclear-model considerations as applied to the analysis
of the level structure of strongly deformed nuclides, the following references
are recommended. Quite instructive, although somewhat old, reviews are those of
Mottelson and Nilsson [2] and Gallagher and Soloviev [3]. Comprehensive
evaluations of the then-available data on the odd-mass nuclides in the
rare-earth and the actinide regions, respectively, are given in Refs. [4] and
[6]. The level schemes of the even-A nuclides in the rare-earth region are
interpreted, and the underlying nuclear theory presented, in Ref. [6].

Selected Properties of Rotational Bands

A. Level Energies

1. Low Rotational Frequencies and Weak Band Mixing

The rotational spectra of strongly deformed nuclei at low frequencies of
rotation are customarily analyzed using the well known expression
(see, e.g., Refs. [4, 7, 8,])



E(J,K) = Eg + AX + BX2 + CX3 +---

K .
+ (-1)9K TT9#) (hyy + Byk 013 (1)
i=1- ’

where X represents either J(J+1) or J(J+1)-K2.
In the present discussion, we choose the latter expression for X. K denotes the

projection of the total angular momentum of the intrinsic state on which the
band is built onto the nuclear symmetry axis.

In applying eq. (1) to the analysis of level energies within a given rotational
band, one typically works with level-energy differences only, and thus the

parameter Ex (which serves to locate the energy of the band head) can be

neglected. For bands with K = 0, the terms in eq.(1l) with alternating signs vanish,
while, for bands with K = 1/2 and 1, one has explicitly

Eg = Eg + AX + BXZ +---

(-1)J+% (J+3){A, + B, X+:+-} , for K
* ('1)J+1J(J+l){A2 + B X+--+} , for K

]
N

(2,a)
(2,b)

f
—

Corresponding expressions can be derived from eq. (1) for bands having larger
values of K. With the identification A1 = Aa, where a denotes the decoupling
parameter, eq. (2,a) can readily be expressed in the usual form for K = 1/2
bands, viz.

E(J,1/2) = E3 + ALI(I+1) - 1/4 + (-1)9*1/2(g+1/2)a]. (3)
In the derivation of the relationship expressed in eq. (1), it is assumed that K
is, at least approximately, a good quantum number. This implies that the
coupling (mixing) of the band under consideration to (with) other bands in the
same nucleus is not too strong and that the rotational frequencies of the states
are not too high. In such cases, the coefficients B and C are expected to be
small (e.g., B/A ~1073 and C/B ~10°%) and a reasonably good descrip-
tion of the energies of the band can usually be provided using only a few

parameters (e.g., A, B and, for K = % bands, a).

Although explicit expressions can be derived [8, 9, 10] relating several of the
parameters in eq.(1) to the matrix elements assumed to couple the band in

4



question to the other bands in the nucleus, such computations usua]]y’1ie beyond
the scope of the typical A-chain evaluation. Rather, the usefulness of giving
values for these parameters in an A-chain evaluation lies in providing the
interested reader with a rapid and convenient means of gaining information about
the band. For example, for K = 4 bands, the decoupling parameter provides
almost unique information about the nature and extent of the single-particie (or
one-quasiparticle) content of the band. Similarly, the rotational constant A

(= A2/2% ) gives information about the effective moment of inertia (F ) of

the band; and an extensive systematics of the A-values for bands in the strongly
deformed nuclei exists (see, e.g.,Refs.[4, 5]).

The other parameters, also, play an important role in helping the reader
“understand" the band. The values of the parameters Asyx (and Bpgk) give

a measure of the "staggering"t (signature splitting) within the band and

hence can be informative. The magnitudes of these parameters are expected to
decrease rapidly with increasing K-value and, hence, their effects should be
most readily apparent in those bands having the smaller values of K.
Unfortunately, in most of the evaluations of the level schemes of the strongly
deformed nuclei such terms have not been considered. We would encourage
evaluators to include them, where appropriate, in their future work.

The analysis of the level energies of a given rotational band to deduce
realistic values for the band parameters is not always a trivial task or an
obvious procedure. In doing this, the following points should be kept in mind.

(i) Eqg.(1) is useful in describing rotational bands only when the number of
parameters needed to describe the level spacings is small. Since it is in
reality an expansion in powers of J(J+1)-K2, rather than a closed
expression, it is possible to fit "exactly" the energies of an arbitrarily
large number of band members simply by including a correspondingly large
number of terms. However, such a procedure would not produce physically

t For even-A nuclides, a relative displacement of the odd-spin band members
with respect to those of even spin. For odd~A nuclides, a relative displacement

of the band members for which J+} = even with respect to those for which J+i =
odd.



(1)

(iii)

(iv)

meaningful results beyond those obtained from fitting a few terms, and
would most likely have rather little predictive power (i.e., ability to
predict the energies of the next levels),

Consequently, one should generally try to use the smallest number of
parameters consistent with achieving a reasonable overall fit to the level
energies. These parameter values should be determined from the smallest
possible number of the lowest-spin members of the band (recognizing that
the energies predicted for the higher-spin band members may then differ
somewhat from the observed values). In particular,in most cases it is
probably not meaningful to carry out a least-squares analysis of the

energies of a rotational band in order to obtain a set of "best" values for
the band parameters.

Careful attention needs to be given to the choice of which parameters are
chosen to give the "best" description of the band. The parameter A, of
course, (and, for K=1/2 bands, a) should always be included but, beyond
this, the choice is not always clear. If only a small number of band
members are known, and the customary choice of A and B to describe the band
leads to unreasonable results (e.g., the contribution of the "B term" to
the level energies is comparable to that of the "A term"),the deduced
parameters are not meaningful and thus should not be quoted. In these
situations, one should repeat the fit using Ajx instead of B and compare
the quality of the results from the two fits. If this Tatter fit appears
to provide a "reasonable" description of the level energies, those deduced
parameters can be given; otherwise it is perhaps better to list no
parameter values (and to point out this fact).

In some cases,the differences among the sets of parameter values derived
from the use of different combinations of level energies are large. These
can occur, for example, where the coupling to other bands is strong (and
the assumptions on which eq.(1l) is based are thus not valid) or where the
band parameters being used to describe the band are not the best ones. In
these latter cases, it is again important to consider choosing different
parameters keeping A (and, where K = % bands are involved, a) in an attempt
to get a better description of the band.



Low Rotational Frequencies and Strong Band Mixing

There are a number of situations in which application of eq.(1) to
determine rotational parameters for a band yields "unreasonable" values.
These include those in which the bands are strongly Coriolis mixed with
other bands. These strongly coupled bands are associated with the low
K-value orbitals originating from the "unique-parity" spherical shell-model
states, namely the 113/2 neutron state and the h11/2 proton state in

the rare-earth region and the j15/2 neutron state in the actinide

region. Also included among such bands are some of the K=0 and 1 octupole
vibrations in the rare-earth region (the two-quasiparticle makeup of these
excitations contains significant contributions from these unique-parity
orbitals).

In these cases, the use of eq.(l) to describe the rotational properties of
the band is not justified. To treat them correctly requires the carrying
out of a detailed analysis of the Coriolis mixing. While such analyses
have proven quite successful in describing even rather unrecognizably
distorted rotational band structures (see, for example, [11-13]), they are
usually quite time-consuming and lie outside the customary scope of a
mass-chain evaluation. Here, though, the evaluator can use the existence
of the strong distortion of the band structure as evidence for the presence
of strong Coriolis mixing and hence of the intrinsic configurations
involved. This knowledge alone can frequently serve as a guide in the
choosing of reliable Jw assignments for the levels.

High Rotational Frequencies

The focus of the discussion thus far has been on situations where K is, at
least approximately, a good quantum number and eq.(l) applies, i.e., the
rotational band structure at low energies, the energy region historically
explored by radioactive-decay studies and nuclear reactions initiated by
relatively low-energy projectiles. Here the basic nuclear model involves
individual particle (or, quasiparticle) or collective motion in a slowly



rotating, deformed nuclear potential well.

With the availability of high-energy beams of heavy ions it has become
possible to produce and study nuclear systems possessing very large amounts
of angular momentum. This has Ted, over the past decade or so, to the
production of an extensive body of information on the properties of
rotational bands up to quite high spins.
subject is given in Ref.[14].

An excellent review of this

In many cases it has been possible to connect the high-spin band structures

with their lower-spin portions, previously established using the more

conventional techniques. In some instances, one observes already at

relatively low spins sizeable departures from a simple J(J+1) spectrum and

the splitting up of the band into two distinct bands, one having J+}% = odd

and the other having J+i = even. However, in other instances, a much more

normal band structure (i.e.,approximately J(J+1) with a relatively small
amount of such "staggering”) is found to persist up to rather Targe spin
values. '

There is a tendency for the evaluator to apply to these higher-spin states
the same nuclear-model considerations that are customarily applied to those
band members that are located near the band head. However, such an
approach is neither correct nor meaningful and, if applied strictly, can
lead to unphysical conclusions. Among the reasons for this is the fact
that, as the rotational frequency increases, K ceases to be a good quantum
number. The Coriolis effects, which can be either neglected or
incorporated as "small" corrections to the rotational motion at low
frequencies, now become dominant. These significantly affect the band
structure in a number of ways, for example, through the occurrence of
backbending. Further, the jdentification of the higher-spin states with a
specific Nilsson orbital is not especially meaningful, since these states
are in general expected to contain comparable contributions from a number

of such orbitals.

For a description of these states, the appropriate symmetry operation is
rotation of the nuclear system through 180° about an axis (x-axis)



perpendicular to the nuclear symmetry axis (z-axis) [14]. The associated
quantum number is denoted as the "signature", r, which, together with the
parity, provides a means of classifying the nucleonic states in a rotating
nuclear potential. More commonly used for this purpose, instead of r, is a
quantity of, where o is defined through the relation r = e~ima,

The following relations exist between o and the total angular momentum, J:

a =0 (r2+1), d =0, 2, 4,...

a =1 (r =-1),d=1, 3, 5,...

a = +1/2 (r = -1), J = 1/2, 5/2, 9/2...
a = =1/2 (r = +i), 3 = 3/2, 7/2, 11/2...

How, then, should the evaluator proceed in dealing with these situations? As
regards the experimental situation, since essentially all the data currently
available on these states come from in-beam y-ray (and, occasionally,
conversion-electron) spectroscopy, there are several things

that remain unchanged. First, the arrangement of the observed energy levels
into rotational bands can still be carried out with considerable confidence,
based on their y-decay patterns, when these y-ray placements are

supported by coincidence data. Second, where y-ray angular distribution
data exist and cover a sufficient number of angles that the distribution
function can be considered to be well determined, there exists a reasonable
basis for assigning J™ values. The angular distribution functions for
"stretched" quadrupole transitions (i.e.,Ad = 2) and “"stretched" dipole
transitions (AJ = 1) are distinctive and when these are observed the
appropriate spin differences (2 and 1, respectively) can be regarded as
being well established. [However, the angular distribution for a dipole
transition with no spin change (AJ = 0) has the same form as that of a
stretched quadrupole and one must thus be careful to consider this
possibility.] Where the experimental situation is such that the high-spin
band structure cannot be reliably tied in with its lower-spin counterpart
(where, for example, the connecting transitions are low in energy and
unobserved or where there is uncertainty in the placement of these y

t o is also frequently referred to as the signature.



rays), then only the relative energies and J™ values can be estab-

Tished. Their absolute values are not; and the whole high-spin band
structure must be left "floating" in the level scheme. On the other hand,
where these connections to the (presumably) well established Tower-spin

band members are firmly established, then the energies and J7 values
for all the band members can be determined.

From the theoretical point of view, however, the fact that the
nuclear-structure considerations are different at high spins than they are
at the lTower spins means that the evaluator must cope with a certain degree
of ambiguity. While it is possible, and useful, to quote in the customary
fashion values for the band parameters and to make nucleonic-configuration
assignments to describe the band head and the low-frequency portion of the
band, these are generally inappropriate for discussing the higher-spin
states. Furthermore, the transition from the regime of spins (or, perhaps
better, rotational frequencies) where one coupling scheme is useful to that
where the other is more appropriate is not a sharp one. It seems best,
therefore, to adopt the following approach in cases where enough of the
band stkucture js.established that both low-spin (at and/or near the band
head) and high-spin members of a rotational band are observed. The
nucleonic configuration (e.g., Nilsson orbital, two~-quasiparticle
configuration, vibrational excitation) that is believed by the evaluator to
best describe the band head should be given, together with the appropriate
set of rotational-band parameters. These latter should be those believed
to be the most appropriate for description of the energy relationships
among the low-1ying members of the band and should, of course, be derived
from the energies of a small number of these states. Those states used to
determine these parameter values should be indicated. In addition, the
values of the signature parameter, «, and the parity appropriate for each
band member should be given. This could conveniently be done by providing
two separate band-(or configuration-) assignment footnotes for each such
band. These would 1ist not only the intrinsic configuration assigned to
the band but also which of the two possible signature values was

appropriate for the various states.

10



Strongly Deformed Nuclides with Reflection-Asymmetric Shapes

In the discussion thus far, it has been assumed that the strongly deformed
nuclei under consideration possess equilibrium shapes that are symmetric
under reflection in a plane (xy) perpendicular to the nuclear symmetry axis
(z). This shape is, thus, described by deformations of even multipole
order (quadrupole, hexadecapole, etc); and it is well established that this
assumption is correct for the vast majority of the strongly deformed
nuclides. Recently, however, evidence has confirmed the theoretical
expectation that nuclei having reflection asymmetric ("octupole") shapes do
occur. A significant number of nuclides among the light isotopes of the
elements Ra-Pa are now believed to be characterized by sizeable octupole
deformations, in addition to those of even multipoie order. (We refer the
reader to Ref. [1], where several of the relevant references are given.)
Among the more prominent features associated with octupole deformation are
the existence of "parity-doublet" bands in the level schemes of odd-mass
nuclides and, among the higher-spin yrast states in a number of the doubly
even Ra and Th nuclei, a band of states of alternating parity connected by
strongly enhanced E1 transitions.

As regards the evaluation of nuclear-structure data for these nuclides,
most of the considerations mentioned above regarding the analysis of
rotational-band structure still apply. The presence of the static
quadrupole deformation leads to well developed rotational-band structures,
which can still be analyzed in terms of the usual approaches. There are,
also, a number of new considerations to be kept in mind. These include:

(i) The presence of parity-doublet bands in the low-energy spectrum of an
odd-mass nuclide means that, for each band of a given K-value, there
will be "nearby" another band with the same value of K, but of
opposite parity. Since these bands represent projections into the
laboratory frame from a single "intrinsic" state of mixed parity, a
number of their properties are expected to be closely related. This
knowledge may help the evaluator as he considers various possibilities
for assigning Jm values and grouping levels into rotational bands.

11



(i) The presence of octupole deformation can significantly rearrange the

(iii)

(iv)

expected ordering and energies of the one~quasiparticle states.
Consequently, the spectrum of "Nilsson" states encountered in an
odd-mass octupole-deformed nucleus (independent of the parity
doubling) may be considerably different from that expected in the
absence of octupole deformation.

It is difficult to associate a given one-quasiparticle state in these

nuclides with a specific Nilsson orbital. This situation is rendered

even more difficult by the fact that the quadrupole deformations of
those nuclides thus far identified as being "octupole deformed" are
generally smaller than for the rare-earth nuclides, so that the

asymptotic quantum number labelling is even less "good" here than for

the rare-earth nuclides. Thus, while the evaluators should feel free

to derive and quote band parameters and K values, as customary, for
bands in these nuclei, associating a specific Nilsson orbital (with
the usual asymptotic quantum number Tabelling) with a given rotational

band is more difficult to justify and, in the absence of compelling
evidence to the contrary, should be avoided.

In the presence of reflection-asymmetric shapes, the "signature"
symmetry is no longer valid. The only valid symmetry now is

reflection in the nuclear yz-plane; and the associated quantum number

is referred to [15] as the simplex, s. The Jm values that occur in
rotational bands characterized by the different values of the simplex

are:
for s = +1, Ju = 0+, 1-, 2+, 3-,...,
for s = =1, Jn = 0-, 1+, 2~, 3+,...,
for s = +i, Jn = 1/2+, 3/2-, 5/2+, 1/2-,...and

for s = -i, Jw = 1/2-, 3/2+, 5/2-, 7/2+,...

Thus, for example, for the "actupole-deformed" doubly even isotopes of
Ra and Th, the yrast (ground-state) bands, above a certain J value,
contain alternating even-spin and odd-spin members, with even ?nd odd
parity, respectively. They would be assigned a value of the simplex,
s. of +1. The simplex occupies the same position for the
r;flection-asymmetric nuclides as the signature does for'the
reflection-symmetric nuclides; and it is suggested that it be e
incorporated into nuclear-data evaluations in the same way as nas

suggested above for the s}gnature.



The nuclide 225Ra, which is discussed in some detail in Sect. III below,

is believed to be a good example of an "octupole-deformed" nucleus. Its
level structure is significantly influenced by the octupole shape, although
the evaluation considerations presented there are quite broad in their
applicability and do not rely specifically for their validity on the
existence of a stable octupole deformation. Octupole deformation is
expected [16] to occur in other mass regions in addition to the light
jsotopes of Ra-Pa and, if such phenomena are indeed found there, then these
jdeas will have a much broader applicability than simply to this rather
small portion of the Nuclide Chart.

Additional Considerations

In addition to the relative simplicity of the energy relationships among
the members of a rotational band, the strongly deformed nuclei possess a
number of other features that can significantly assist the evaluator of

nuclear-structure data in making reliable Jw assignments. Among these,

we mention the following.

1) Occupation and relative alignment of Nilsson orbitals.

In contrast with the situation in the "spherical" nuclei, in strongly
deformed nuclei each single-particle (or one-quasiparticle) "Nilsson" state
can contain at most two (quasi)particles. In most situations of concern to
the evaluator, the Jw value of the band head of a given rotational band

will be equal to the Kn value of the intrinsic configuration upon which
the band is built.

In considering the possible bands that can be formed from the coupling of
two (or more) particles in a strongly deformed nucleus, it should be noted
that the projections of the intrinsic spins (=1/2) of the particles on the
nuclear symmetry axis can be either +1/2 or -1/2. Consequently the K
values (and, hence, the band-head J value) for the states consisting of two
particles in Nilsson orbitals having K values of K1 and K2 can have

only the two possibilities Ki+Kz and |Ki-Kz]. Further, as

discussed by Gallagher and Moszkowski [17], of the two possible relative
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orientations of the single-particle orbitals occupied by the two odd
particles in a doubly odd nucleus, the configuration resulting from the
parallel coupling (£ = zi+zz = 1) of the intrinsic spins of the odd
particles should lie lower than that resulting from thejr antiparallel

(2 = 0) coupling. The only presently known exception to this rule in the
doubly odd strongly deformed nuclei is 1¢6Ho, where the Kv = O-

coupling of the two states 7/2-(523]p and 7/2+[633]n lies below their K=
= 7- (2 = 1) coupling. Even here, though, the energy separation of these
two band heads is only ~6 keV, and a detailed treatment of the

contribution of additional residual interactions can account for this
shift.

Consequently, the evaluator can frequently rather severely restrict the
number of Jw values to be considered for levels in deformed odd-odd
nuclides using this "rule". While Jn assignments based solely on these
considerations should probably not be regarded as being based on "strong"
arguments, the evaluator can have confidence in adopting values based on

such considerations, especially if additional evidence is available which
helps support them.

For the two-quasiparticle states in the doubly even nuclei, it is expected
that the band with the £ = 0 coupling of the two particle states will Tie
lower than that having £ = 1 (see, e.g.,Ref. [3].) Although this appears
to be correct in a number of well studied cases, the situation is less
clear than in the odd-odd nuclides. This is due in large measure to the
fact that these bands occur relatively high up (above the pairing gap, or
2 1-1.5 MeV), where the density of states is rather high and it is often
difficult to establish configurations for the bands and to identify both
the £=0 and =1 couplings of the two orbitals. A further complication

in these cases is the occurrence of vibrational and other collective
degrees of freedom in the general vicinity of these two-quasiparticle
states; and this can significantly alter the energies of those bands whose
Kr values are the same as those of these collective states.

For doubly odd nuclides, the residual neutron-proton interaction can give

14



rise to an "odd-even" shift of the levels of K=0 bands, as discussed by
Newby [18]. Special care should be exercised in dealing with such bands,
especially in attempting to quote realistic values of the band parameters
for them.

Allowed-Unhindered (au) Beta Transitions

Where present in a decay scheme, allowed-unhindered (au) B transitions™
can be one of the most powerful tools available to an evaluator in deciding
upon Jr and nucleonic-configuration assignments for nuclear states. The
term "allowed-unhindered" denotes an allowed (i.e., AJ = 0, +1 with no
change in parity) g transition for which there is also no change in the
asymptotic quantum numbers (i.e., N, n,, A) between the initial and
final states of the transforming nucleon. Two such orbital pairs are of
importance in the rare-earth region, namely 7/2-[523]p and 5/2-[523],

in the lower-mass portion of this region and 9/2-[514]p and 7/2-[514],
in the upper-mass portion. No such orbital pairs are as yet observed to
play a similar role among the strongly deformed actinide nuclides and,

thus, au B decay is not yet an important process for the evaluator of
these data.

The identifying characteristic of an au B transition is its small log ft
value. It is not possible to establish a 1imit which uniquely separates
all allowed-unhindered transitions from transitions that are not au.
Certainly, all transitions having log ft values <5.0 can be considered to
be au. In addition, a number of au transitions have log ft values as large
as 5.2 or 5.3. However, there are also some instances where transitions
that are not au have log ft values as small as ~5.2. Thus, some care is
required in establishing whether or not B transitions whose log ft values
are >5.0 but <5.5 are in fact au.

Once, however, it is established that a given B transition is indeed au,
one is justified in concluding that one or the other of these orbital pairs
is involved. This usually enables one to make quite well founded Jm and

t Unless otherwise specified, the symbol 8 is used to denote both the

R~ and the e.c./pt decay process.
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configuration assignments for the initial and final states. With these

established, it is frequently possible from them to establish Jw
assignments for other states as well.

Perhaps more interesting, however, is the situation in which one of the
states involved in the g-decay process has a more complicated structure.
Here, the observation of an au g transition makes it possible to
convincingly establish the presence of such a structure. For example, in
the g decay of '®3Tb (Jw = 3/2+, with a 3/2+[411] Nilsson-orbital
assignment), a state at 884 keV in 53Dy is observed to be populated

via a 87 transition having log ft = 5.0. This transition is clearly au
and thus must take place between 5/2-[523],, and 7/2-[523]p. As

discussed in, e.g., Ref. [4], the only possibility for this is that the
final state has Kv = 1/2+, with (at least a sizeable component of) the
three-quasiparticle configuration 3/2+[411]p + 5/2-[523], - 7/2-[523]p.
This three-quasiparticle configuration can be regarded as the two
proton-quasiparticle configuration 3/2+[411]p - 7/2-[523]p coupled to

the neutron state 5/2-[523]. Since this two-proton configuration is
predicted [19] to be the dominant component of the Kr = 2- octupole
phonon in this region of the deformed nuclei, this Km = 1/2+ state can be
interpreted [4] as being a Kr = 2- octupole vibration built on the

183Dy ground state, 5/2-[523],. Since the 2- octupole-vibrational band
is found to occur at relatively low energies in the doubly even nuclides in
this mass region (at 1.148 MeV in 62Dy [20], for example), the low value
(884 keV) for the energy of such an excitation in '#3Dy is reasonable.

Note that, while the available data on this final state are certainly
consistent with J,Km = 4,3+, it, together with the configuration
assignment, could have been made solely on the basis of the existence of
the au p~ transition (and, of course, the *®3Tb ground-state Jr

va]u;;. Again, the question of whether such an assignment can be regarded
as being based on a "strong" or on a "weak" argument can be debated. We
feel, however, that an evaluator would be well justified in considering it
to be “definitely" established.

Alpha Transitions

The so-called "favored" o traniétions (those for which the hindrance



factor lies between 1 and, say, 4 cf. Ref. [5]) take place between
nuclear states having essentially identical configurations. Thus they make
it possible to establish both Jwr values and nucleonic configuration
assignments for a given final (initial) state if those of the initial
(final) state are known. In the doubly even actinides, the favored
transition is the ground state to ground state transition, and the
transitions to the members of the ground-state rotational band are
characterized by monotonically increasing, yet still relatively small,
values of the hindrance factor.

In the odd-mass nuclei, the band head fed by the favored o transition
need not be, and in most cases is not, the ground state. Again, however,
the members of this band (the favored band) will be fed by o transitions
having relatively small o hindrance factors, simplifying their
identification. If the Jm value of the parent-nuclide ground state is
known, then those of the favored band are established as well. Such a
group of states in the daughter nucleus having "well established" Jr
values usually makes it possible to firmly establish Jv values for many
of the other observed states as well.

Other instances in which states may have rather low values of the a
hindrance factor include B-vibrational (Kv = 0+) states built on the
favored band and, for "octupole-deformed" nuclei, the parity-doublet band
associated with the favored band [21]. It should also be kept in mind that
Coriolis mixing (See II.C.5. below) with members of the favored band may
cause some states to have a-hindrance factors that are much smaller than
would otherwise have been expected (for the unmixed state).

Intensity Relationships

An interesting aspect of the states in the strongly deformed nuclides is
the existence of simple "geometrical" (Clebsch-Gordan-coefficient)
relationships among the intensities of g and y transitions between
states that are members of rotational bands. While these so-called Alaga
rules [22] are of considerable interest for nuclear-structure physics,
these relationships are often obscured or modified by other effects to such
an extent that their simple predictions are frequently not realized in
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actual nuclei. Since these confounding influences must be explicitly taken
into account and since this is frequently a rather complicated and
time-consuming task, the Alaga-rule relationships are not usually of much
help to an evaluator. The B transitions, for example, frequently involve
more than one angular-momentum value. Further, Coriolis mixing of a given
band with one which is populated by an au B transition introduces an
admixture which, through its inherently large g-decay matrix element, can
significantly distort the predicted pattern of g feeding.

For y-ray transitions, the relative intensities of the El transitions

from a given one-quasiparticle state to various members of the rotational
band built on another such state are known [4] to deviate significantly
from the simple Alaga-rule predictions. On the other hand, collective El
transitions appear to obey them quite well. Here, however, such
transitions most commonly take place between octupole vibrational bands and
their associated ground-state bands; and the strong Coriolis mixing between
octupole-vibrational bands introduces strong changes in the observed

y-ray intensities which must be explicitly taken into account
(see,e.g.,Refs.[13] and [23]) before the simple underlying intensity
patterns can be recovered.

Relative Ml transition probabilities from a given initial state to various
members of a rotational band can frequently be well accounted for, but the
contribution to the observed y-ray intensities from the possible E2
admixtures need to be taken into account in interpreting such data.
Relative interband E2 transition probabilities are strongly dependent on
Coriolis (or other) mixing, which may introduce the very large matrix
elements associated with the rotational E2 transitions. The E2 transitions
within a rotational band are generally well described by the Alaga rules.
They can thus be used to calculate Ml admixtures in mixed intraband M1+E2
transitions. While this information is of considerable interest for
nuclear structure its use as a means of providing Jw assignments is
generally not great, since it is usually necessary to establish these
quantities before carrying out this analysis.

The role of Alaga-rule considerations in making Jv assignments thus seems
to be rather limited. The evaluator should definitely exercise careful
18



judgment in applying them to specific situations. Carefully applied, they
can occasionally, perhaps frequently, provide corroboration of assignments
arrived at from other considerations.

Rotation-Paftic]e (Coriolis) Mixing

The influence of rotation-particle (Coriolis) coupling in the low-energy
level structure of strongly deformed nuclides is frequently important in
arriving at meaningful Jr and rotational-band assignments(see e.g.,[4]).
While, in principle, a detailed Coriolis-mixing analysis should be carried
out for any level scheme for which Jm assignments are being proposed,

such a procedure is not practical for the mass-chain evaluator (and for
most other nuclear physicists as well!). However, there are some simple
qualitative considerations that frequently can be useful to the evaluator
in interpreting level-scheme information.

The Coriolis interaction couples states having the same values of Jr and
K-values that differ by 1 unit. The matrix element for this interaction
can be written [4]

He ka1 (9) = H gqq ¢(9) =

= (R 7230y ity e LK@ TE, K 3 (4,2)
= 2 1 1 J-4 = 1
= (-h /23) P%’% A% 3 (-1) (J+1), K=z - (4,b)

(For interactions involving a K=0 band, an additional factor
[1+5K,0]1/2 = v/2 needs to be included in eq. (4,a).)

Here, ﬁz/Z:r serves as a sort of rotational constant, giving an overall
scale for the interaction, and is generally given a value equal, or close,
to the rotational constant, A, of the rotating core. PK,K+1 is a pairing
factor, which is frequently not too different from unity. The strength of
the Coriolis mixing is seen to be strongly J-dependent (as might be
expected).

The dependence of the interaction strength on the nature of the nuclear
19



states involved enters through the term AK,K+1- Numerical tabulations of
these matrix elements appropriate for different types of nuclear states
have been published [4,5,24]; and these make it possible to carry out
quantitative estimates of the effects of Coriolis mixing in many simple
situations. However, there are a number of features of the Coriolis
interaction that are frequently helpful in providing useful qualitative
insights. First, the interaction strength depends strongly on the j-value
of the spherical shell-model state (113/2, h11/2’ etc.) from which the
Nilsson orbitals originate. Within a given j-shell, the AK,K+1 varies
approximately as [(j-K)(j+K+1)]%. Consequently, within the so-called
"unique-parity" states (113/2 neutrons and h11/2 protons in the
rare-earth region and j15/2 neutrons in the actinide region) the
Coriolis-mixing effects are expected, and observed, to be quite Tlarge,
especially among the orbitals with the smaller K values, In terms of the
asymptotic quantum numbers of these orbitals, the following selection rules
indicate those bands for which this coupling is "unhindered":

AN = 0; aK = £1; An, = -An = 7.
Among the "non-unique-parity" states, these rules are still quite useful,
in that the largest intrinsic Coriolis matrix elements tend to occur
between Nilsson states originating from the same spherical shell model
state. However, in these cases, there is generally a considerable amount

of deformation-dependent j-mixing, which diminishes this selectivity to
some extent.

In the doubly even nuclides, the octupole-vibrational bands all contain
sizeable components of the unique-parity orbitals in their
two-quasiparticle makeup. Hence, they are expected [24], and indeed found,

to possess large values of AK,K+1-

In addition to the pronounced effects on the energy-level structure of
rotational bands when the Coriolis-mixing matrix elements are large, such
mixing, even when rather weak, can significantly affect certain level
properties when the admixture carries with it a large matrix.e1ement for
that process. Some examples of this are the following. In interpreting
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the intensities of B transitions feeding members of a given rotational
band, it is tempting to ignore the possibility of small admixtures of other
configurations; and this is justified if the transition probability to the
admixed configuration is comparable in magnitude to that of the principal
configuration. However, if one of the possible admixed configurations is
connected to the B-decaying state via an allowed-unhindered matrix

element, then it may have a pronounced effect on the g intensities and

thus needs to be considered in order to understand the data.

Similarly, in analyzing a-transition intensities, Coriolis mixing of
various states, especially if expected to be weak, can usually be
neglected. However, if the mixing can introduce even small amounts of the
"favored" band into the states under consideration, then it is important to
take such mixing into account. In fact, the observation of "unexpectedly"
small values of the a hindrance factors in bands where only large values
are expected is frequently strong evidence for the presence of such mixing;
and this may provide the evaluator with helpful information when
considering Jn and configuration assignments (as illustrated for 22%5Ra

in the following section).

Interband E2 transition probabilities, especially, can be greatly
influenced by Coriolis mixing. When two bands are mixed by the Coriolis
interaction the admixtures in each state give rise to the very large E2
matrix elements associated with the nuclear rotational motion. Since the
intrinsic "single-particle" interband E2 transition probabilities are
usually small, the observed E2 transition probabilities may be dominated by
the contributions from the Coriolis-mixed configurations. (Since the
intraband M1 transition probabilities do not show such a collective
enhancement, Coriolis mixing, especially when weak, usually does not
significantly affect them.)

Consequently, when analyzing nuclear-structure data on the strongly

deformed nuclei, it is important to consider the effects of Coriolis
mixing.
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ITI.

An Example: Rotational Bands in 225Ra

As an example of how some of the considerations presented in Sects. I and
Il can be applied to the analysis of a "real-life" case, we discuss some of
the features of the rotational-band structure of 225Ra. A portion of the
low-energy level scheme of this nuclide is shown in Fig. 1.
taken from a recent study [1] of the a-decay of 22°Th.

These data are

A. The Km = 3/2+ Band at 149.8 keV.

The Jw = 3/2+ and 5/2+ assignments for the 149.8- and 179.7-keV levels,
respectively, appear well established [1]. From the spacing of these two
Tevels we compute the value A = 5.97 keV, using the expression By = AJ(J+1).
Then, we calculate 221.5 keV as the expected position of the Ju = 7/2+
member of this band. This is quite close to the position of a level at
220.5 keV (although it aiso is not too far from a level at 226.9 keV), and
it is thus tempting to assign this level as the expected 7/2+ state (as has
tentatively been done in Ref.[25]). From these two energy-level spacings,
we use eq.(1l) to obtain the following values for the parameters A and B:

A =6.16 keV and B = -23.9 eV. From these, we calculate the position of
the 9/2+ member of this band to be 267.2 keV, quite close to the energy of
an observed level at 267.97 keV. Thus, from this analysis, it appears that
we are dealing with a rather "well behaved" Kr = 3/2+ band whose band
members up to 9/2+ are identified and whose level energies are well fit
using a simple two-parameter formula with parameter values of A = 6.16 keV
and B = -23.9 eV.

However, there are problems associated with this simple picture; and for
reasons they present, the authors of Ref.[1] have proposed a quite
different set of Jv assignments. Briefly, due to Coriolis mixing with
the near-lying "favored" Kv = 5/2+ band, the a-hindrance factor to the
7/2+ member of this band should be rather small, in contrast to the
observed value of 270 to the 220-keV level. Also the y-decay pattern

of the nearby 226.9-keV state is not what one would expect for a J,Kw =
7/2, 3/2+ state.
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The nearest candidate for the 7/2+ band member (which, because of its
expected small o hindrance factor, should be populated) is a level at
243.50 keV, which has an o hindrance factor of 14 and a y-decay pattern
that is quite consistent with Ju = 7/2+. Such an assignment implies a
quite different band structure than the "simple" one presented above. To
see to what extent it is reasonable, the rotational-parameter analysis
proceeds as follows. From the 5/2+ - 3/2+ and 7/2+ -~ 5/2+ level spacings,
values of 5.97 keV and 9.11 kev, respectively, are computed for the
parameter A. This large difference indicates a rather distorted band.

In view of these quite different A values,it is not reasonable to "fit" the
Tevel energies by including a B term in the analysis. Rather, it appears
more reasonable to try the terms A and As in eq.(l). Doing this, we
obtain A = 7.02 keV and As = -174 eV. Using these, we calculate the
energy of the 9/2+ band member to be 275.4 keV, not too far from an
established level at 272.27 keV, whose y-decay properties are not
inconsistent with Ja = 9/2+ (cf. Fig.1l). Assuming that this latter

state is the Jn = 9/2+ member of the band, wé can compute values for 3
parameters. Including a B term, we compute A = 7.13 keV, As = -180 eV

and B = -9.08 eV. Although we have no extensive "systematics" help judge
whether or not this value of As is reasonable, we note that, since the

Kw = 3/2+ band can be directly Coriolis coupled to Kr = 1/2+ bands and
since these usually have nonzero decoupling parameters, it may be
relatively large. The value inferred for B is now rather small and, thus,
not unreasonable. [An objection to assigning the 272-keV state as the 9/2+
member of this band is the rather large value (~200) of the hindrance
factor of the o transition feeding this state. Since the J,Km = 9/2,

3/2+ state should be Coriolis mixed with the 9/2+ member of the "favored"
Kr = 5/2+ band, whose bandhead Ties at 236.7 keV, a considerably smaller
value of this a hindrance factor is expected.]

The evaluator would be justified, in our opinion, in assigning the

243.50-keV level as the 7/2+ member of this Kw = 3/2+ band and

tentatively assigning the 272.27-keV state as the Jm = 9/2+ band member.

The band parameters given for the band should be A and As, with

respective values of 7.02 keV and -174 eV (or -0.174 keV), with a comment
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that they were computed from the energies of the first three band members.
Since the 9/2+ assignment can be regarded as only tentative, it would
probably not be appropriate to list a value for B (although, since it is

small, the evaluator can have some confidence that the listed band
parameters are not unreasonable).

The foregoing analysis serves to illustrate a number of important points.
First, the use of the most obvious, and simple, rotational-band
energy-spacing considerations, without other information on the level
properties, led to a picture of the structure of the 3/2+ band that
appeared quite plausible, with "reasonable" values for the parameters A and
B. Second, however, the consideration of additional information that was
available led to a quite different picture of the structure of this
rotational band. Had these additional data not been available, the
evaluator could have quite reasonably been led to make "incorrect" Jw and
band assignments that would have been considered to have been based on
“reasonable" considerations. Third, it should be emphasized that the
question of which, if indeed either, of these two pictures of the
rotational band structure of this 3/2+ band .is correct is open at this time
(although the "A,As - approach" is definitely favored by the authors of
Ref. [1]). As such, this situation serves again to illustrate the quandry
which the evaluator faces when he or she attempts to resolve apparently
discrepant data in order to arrive at the "correct" conclusion. However,
here, as is so frequently the case in the strongly deformed nuclei, the
relative simplicity of the angular momentum coupling scheme permits these
questions to be considered at a deeper level of sophistication than would
be possible in nuclides where these simplifying features did not occur.

The Kw=1/2+ Ground-State Band

We now consider the ground-state band, which has Kx = 1/2+. The spins of
the states up through 9/2+ (see Fig.l) appear well established at this time
[1]. The band structure departs markedly from a simple J(J+1) energy-level
spacing pattern, indicating in this case a large, and positive, value fOT
the decoupling parameter. For this distorted band structure, the following
questions naturally arise: (1) what are the band parameters; and (2? are
higher-spin members of this band excited in the 22°Th a decay and, if

so, what are their energies? 2



Starting with the customary two-parameter expression for K=1/2 bands [cf.
eq.(3)],

E(J,1/2)-E(1/2,1/2) = A[J(J+1) + (-1)9*1/2(3+1/2)a]-A(3/4-a),  (5)

and using the energies of the Jm = 3/2+ and 5/2+ band members (namely,
42.75 and 25.41 keV), one computes 5.39 keV and +1.65, respectively, for A
and a. From these, the energies of the Jn = 7/2+ and 9/2+ members of the
band are calculated to be 125.5 keV and 93.8 keV, respectively. The
agreement between these calculated values and the observed level energies
of 111.57 and 100.5 keV, respectively, is not very good, particularly in
view of the fact that the difference in the calculated 7/2+ and 9/2+ level
energies is ~32 keV, while the observed separation is only ~11 keV.

If, instead, one uses the observed 1/2+,7/2+ and 9/2+ level energies to
determine values for A and a, he obtains A = 5.28 keV and a = +1.23. With
these parameter values, the energies of the 3/2+ and 5/2+ levels are
calculated to be 35.3 keV and 29.2 keV, respectively, which is not very
good agreement. (This is reflected, of course, in the significantly
different value of the decoupling parameter from this calculation.)

It might be argued the absolute differences between the calculated and
observed level energies of the 3/2+ and 5/2+ states are really not all that
large (only 7.4 and 3.8 keV, respectively) and consequently one should not
worry about them. However, the spacing between these two states (a
reflection of the contribution from the rotational energy) is poorly

predicted (6 keV calculated vs. 17 keV observed), especially considering
the low energies involved.

The use of the term BX2 (the one customarily assumed to be next in
importance in a K = 1/2 band) does not help the situation. For example, if
one uses the energies of the 1/2+ through 7/2+ states to determine the
parameters A, B and a, he obtains the following values:

States used Deduced parameter Jr and energy (in keV) of state

in the fit values not included in the fit

A(keV) a B(eV) calculated observed
1/2+ - 7/2+ 6.17 +1.38 -97.1 9/2+: 55.9 100.5
1/2+,3/2+, 5.26 +1.70 +17.9 7/2+: 127.7 111.6
5/2+,9/2+
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On the other hand, if one uses the 1/2+, 3/2+, 5/2+ and 9/2+ states to
determine the parameter values, a quite different set of values is
obtained, as shown above. Not only are these sets "unacceptably" different
but also, rather than obtaining a better fit, the fit is considerably
worsened. Furthermore, it can be shown that including a CX® term in the
analysis does not really "solve" the problem. In this case, the four
parameters can fit the four energy spacings exactly, but the resulting
parameters, namely B = +280 eV and C = -8 eV, are so large that they can be
regarded as being physically unreasonable.

It is interesting to note that the magnitude of the 7/2+ - 9/2+ level
spacing is smaller than that of the 3/2+ and 5/2+ states. This situation
cannot be reproduced, for any choice of parameters in the simple
two-parameter formula (eq.(5)). If one wants to account for this fact,
phenomenologically at Teast, another term must be considered which, Tike

the decoupling parameter, has an alternating dependence on level spin. The
Bi term, viz.

(-1)9+1/2(g+1/2)B1x,

is the logical choice for consideration. If one includes it and excludes
the BX? term (that is, one uses A, a and Bi), he finds a good fit to
the 1/2+ - 9/2+ level energies. Using, for example, the 1/2+ - 7/2+ level
energies to determine the three parameters and then computing the energy of
the 9/2+ state, one finds that the predicted 9/2+ energy is 104.8 keV, vs.
the 100.5 keV observed. With the recognition of the importance of a
“81 term" in the analysis, we can proceed to use the energies of the
1/2+ - 9/2+ states to determine values for the four parameters A, a, B, and
Bi. The values obtained are as follows:

A =5.11 keV; a = +1.89; B = -8.5 eV and B1 = -178 eV.
Note that, now, the deduced value of B is much smaller (and more
reasonable) than before and also that the decoupling parameter is
different. Of course, the energies of the 1/2+ through 9/2+ states are now
fit exactly. The resulting four-parameter rotational energy-level formula
predicts the energies of some of the higher-spin members of this band to be
11/2+, 197.6 keV; 13/2+, 227.7 keV; and 15/2+, 283.8 keV. While the
calculation of the higher levels with these parameter values may not be
justified, it might be hoped that this prediction is good enough to be
useful. There is as yet no evidence for a state near 197.6 keV that can be

26



identified as 11/2+; and, although there is a state at 284.4 keV (not shown
in Fig.l), near the expected position of the 15/2+ state, its decay
properties [1] clearly indicate that it does not have Jn=15/2+. There

js, however, a state at 226.9 keV which is an excellent candidate for the
Jn = 13/2+ band member. Its y-decay pattern (only one de-exciting ¥y

ray, to the 9/2+ state) is just what one would expect for a 13/2+ state.
Consequently, we feel justified in making a Jr assignment of 13/2+ to the
226.93 keV state. Whether this Jn = 13/2+ assignment should be regarded
as being based on "strong", or on "weak", considerations is, perhaps, a
matter of taste but, in the view of the authors of Ref. [1], a prudent
evaluator would be well justified in making it. Note, in particular, that
in regions of the Nuclide Chart where strongly deformed nuclear shapes do
not occur, and eq.(l) is thus not applicable, there would have been
essentially no real basis for concluding that the 226.9-keV state had Jw

= 13/2+.

The Km = 1/2- Band

The negative-parity states below 130 keV in 22°Ra (cf. Fig.l) can be
interpreted quite readily as members of a Kr = 1/2- band, built on the

Jm = 1/2- state at 55.13 keV. Here, in contrast with the 1/2+ band,
values deduced for the various parameters in the rotational energy-level
expression are much less dependent on which levels are chosen to determine
them. A "Bi term" is found to be necessary here also. With the

energies of the 1/2- — 7/2- levels used to determine values for the
parameters A, a and Bi, the calculated energy for the 9/2- member of

the band is 220.8 keV. This is quite close to the energy of an observed
level at 220.5 keV. The y-decay properties of this state agree quite

well with those expected for a Jm = 9/2- state. [As discussed in Sect.
ITI. A, above, this level had been tentatively assigned in some studies as
the 7/2+ member of a Kmn = 3/2+ band, but such an assignment is most

1ikely incorrect.]

With the 220.51-keV level thus identified as the Jm = 9/2- member of this
Kr = 1/2- band, one can use these four energy-level spacings to determine
values for the four band parameters A, a, B and Bi. The values thus
obtained are

A =5.11 keV, a = -2.56, B = -3.8 eV and B1 = +64.3 eV.
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From these, the following energies are calculated for the Jn=11/2- — 15/2-
states: 11/2-, 151.1; 13/2-, 348.2; and 15/2-, 276.3. Although no evidence
for any of these states is (not unexpectedly) reported in the y-decay

study of Ref.[1], it is proposed from a recent (t,a)-reaction study

[26], that the 15/2- state occurs at 274 keV, in excellent agreement
(especially in light of the experimental uncertainties) with the calculated
value of 276 keV. This lends some support to the results of the
rotational-band analysis. It also, perhaps, strengthens the evaluator's
confidence in assigning Jn = 9/2- to the 220.5-keV level. In our

opinion, an evaluator would be well justified in making such an assignment
to the 220.5-keV level and in 1isting as parameters for the Km = 1/2-

band the four values given above.

The Kn = 5/2+, "Favored" Band

The Km = 5/2+ band at 236.7 keV is the "favored" band in the a decay of
229Th and, as such, is probably the most firmly established band in
225Ra, Because of the small values of the hindrance factors of the a
transitions feeding the 236.7- and 267.9-keV levels, we feel that the J
‘assignments of 5/2+T and 7/2+, respectively, are "certain" and that the
9/2+ and 11/2+ assignments, respectively, to the 321.8- and the 390.3-keV
levels are well established.

The determination of realistic values of the rotational band parameters for
this band, however, presents difficulties. There is a considerable amount
of "staggering" within this band, as evidenced by the fact that the 7/2+ -
5/2+ and 9/2+ - 7/2+ energy differences give rise to predicted values for A
of 4.47 keV and 5.98 keV, respectively. If one, recognizing this, uses a
two-parameter form of eq.(l), including the parameters A and As, to
describe the band, he obtains from the energies of the 5/2+ — 9/2+ states
the values A = 4.85 keV and As = -3.14 eV. Although these cannot be
regarded as being unreasonable (note, in particular, that the magnitude of
As is considerably smaller than that deduced for As in III. A

above), they predict a value of 346.1 keV for the energy of the 11/2+
member of the band, whereas the observed energy of this state is 390.3

T The ground state of 22°Th has Jw = 5/2+, with the most probable
Nilsson-orbital assignment being 5/2+[633].
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keV. If one ignores for the moment the need for an As term (or some

term with an alternating dependence on J) and uses only A and B parameters
to describe this band, the energies of the 5/2+ — 9/2+ states yield
values of 3.34 keV and +94.1 eV, respectively, for A and B. This value of
B is regarded as being unreasonably large,on the grounds that the resulting
value of the term BX® is not very much smaller than that of AX. For
exampie, for E7/2 - E5/2, it is roughly one-third the size of AX and,

for Eg/2 - E5/2, it is ~60% as large. For the use of eqg.(l) (with

only a small number of parameters) to be justified, the contribution of the
B (and successively higher order) terms must be much smaller than that of
the A term.

One can, of course, use all three of these parameters and fit the energies
of the 5/2+ through the 11/2+ band members exactly. This yields the
following values: A = 3.78 keV, B = +66.9 eV and As = -0.91 eV. Again,

the value of B appears unreasonably large, and, of course, with these three
values the ability of eq.(1l) to predict the energies of higher-spin members
of this band is highly questionable.

Thus, while the Jm assignments of the first four members of this band
appear quite well established, the energy relationship among the band
members cannot be described using reasonable values of the rotétiona]
parameters. This may reflect the presence of strong Coriolis mixing of
this bands with other positive-parity bands in 225Ra. To explore this
possibility in detail, however, lies outside the usual scope of an A-chain
evaluation. Consequently, it is recommended that the evaluator simply

point this out and not attempt to "adopt" any rotational-parameter vatues
for this band.

Concluding Remarks

In the preceding discussion in this Section, we have illustrated some of
the strengths and potential pitfalls in using eq.(1) fo analyze the
energy-level structure of rotational bands (at low rotational frequencies)
in the strongly deformed nuclei. This approach has led [1] to a proposed
picture of the low-energy rotational band structure of 225Ra that differs
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considerably from that available previously. It has not led to any new
proposals regarding the Kr = 5/2+ band, but it has served to point out
that a more detailed analysis of this band and its couplings to other bands
is needed before any conclusions can be drawn regarding the origin of the
problems encountered in trying to obtain reasonable values of its band
parameters.

It should be noted, in passing, that the evaluation procedure described in
this Section has not explicitly relied for its validity on the correctness
of the assumption that 225Ra is an "octupole-deformed" nucleus. However,
the experimental evidence thus far available on 22%Ra is consistent with
this hypothesis. The fact that the ground-state band has Kr = 1/2+, for
example, is strongly suggestive of a stable octupole deformation, since,
otherwise, the Towest 1/2+ band in 2?5Ra is expected to occur rather high
up in the level scheme (0.8 MeV). Similarly, the low energy of the Kr

= 1/2- band finds a natural explanation as the parity-doublet partner of
the 1/2+ band. The values of the decoupling parameters of these two bands
are, as expected for a parity doublet, comparable in magnitude but opposite
in sign. Further, they are quite different from the values that would be
expected for any of the reflection-symmetric K = 1/2 bands. In this
regard, the use of a "Bi-term" in the analysis has led to "better"
estimates of these two decoupling-parameter values, especia]]y'for the 1/2+
band, than would have been obtained by neglecting it; and these two values
are considerably closer together than the earlier estimates. However, the
octupole-deformed coupling scheme has explicitly affected the conclusions
drawn from the analysis, in that no "Nilsson" orbital assignments have been
proposed for any of the bands.

In any event, it is hoped that this discussion will be helpful to the
mass-chain evaluator in using these ideas as one potentially powerful tool
for choosing among alternative Jm values in the evaluation of complicated
energy-level schemes in the strongly deformed nuclides.
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APPENDIX
SUMMARY

The level schemes of strongly deformed nuclei possess a number of features that
can materially assist the evaluator in making Jwv and nucleonic-configuration
assignménts. The existence of well developed rotational bands, with their
inherently simple relationship between level energy and spin, the extensive
systematics and relatively simple make-up of the intrinsic states upon which
these bands are built, and a number of simplifying features of the
angular-momentum coup}ing scheme that occur because of the existence of the
deformation all combine to permit the knowledgeable evaluator to deduce quite
reliable Jr assignments from data sufficiently meager that one could draw
almost no conclusions from them if the nuclide for which they were available was
not deformed.

It is difficult to frame a compact set of rules for Jn assignments that can be
applied without exception in these situations. However, it is possible to lay
out general considerations to assist the evaluator in the task of arriving at
reliable Jr assignments for levels in the strongly deformed nuclides. Below,
we summarize some of these. Those features of the nuclear structure of the
strongly deformed nuclei upon which they are based are discussed in the earlier

sections of this document.
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A. Level Energies and Quantum Numbers

The following expression is recommended for use in describing the Tevel energies
within a rotational band at low rotational frequencies:
E(J,K) = Eg + AX + BX +---

((-1)9*1/2(343) (A1 + BaX +-°} for K = 1/2
(-1)9*13(J+1){A2 + BaX +--°} for K = 1
* 9 (-1)9+3/2(3-4) (J+4) (J+3/2){As + BsX +---} , for K = 3/2
(-1)9(J-1)J(I+1) (J+2) {As + BuX +--} , for K = 2,
L etc.,

where X = J(J+1)-K2.

For K = 1/2 bands, the decoupling parameter, a, is related to the parameter
A1 through the expression A1 = Aa.

For "well-behaved" rotational bands, the coefficients B and C are expected to be
small, of the order of magnitude B/A ~ 1073 and C/B ~ 1073. Typical

values for the rotational constant A, are ~ 12 keV in the rare-earth region

and 6 keV in the actinide region, although sizeable departures from these are
observed. Other than that they are of the order of magnitude of unity, no
general statement can be made regarding "typical" values of the decoupling
parameter. They depend strongly on the configuration of the K = 3 band under
consideration; and, in fact, knowledge of the decoupling parameter gives a good
insight into the configuration assignment of the band. The parameters Ay are
expected to decrease rapidly with increasing K-value, but no extensive
systematics of such values is available at present. Evaluators should be
encouraged to give more attention in their analyses of rotational-band structure
to the influence of Ao¢-type terms, especially for those bands having smaller

values of K (say, 5/2 or less), where the influence of such terms is more
pronounced.

In the analysis of "high-spin" states (those generally accessible only to
in-beam spectroscopy or heavy-ion-induced Coulomb excitation), use of the
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rotational energy-level formula above to deduce band parameters is generally not
justified and can lead to "unphysical" conclusions. At the high rotationatl
frequencies associated with such states, the appropriate quantum number is no
longer K but rather the "signature", o (together with the parity). The
following relations exist between a and the total angular momentum, J:

a= 0, J=0,2,4,.,

a = 1, J =1, 3, 5,.,
a = +1/2, d = 1/2, 5/2, 9/2...,
a =-1/2, Jd = 3/2, 7/2, 11/2....

For nuclides that are believed to have reflection-asymmetric ("octupole-deformed")
shapes, the quantum number associated with the appropriate nuclear symmetry is,
instead of the signature, the "simplex", s. The Jm values that occur in
rotational bands characterized by the different values of the simplex are:

s= 0, Jr = 0+, 1-, 2+, 3-, ...,

s= 1, Ju=0-, 1+, 2=, 3+ ...,

s = +i, Jdw=1/2+, 3/2-, 5/2+, 7/2-..., and
s = -i, Jdm=1/2-, 3/2+, 5/2-, 7/2+....

. Gallagher-Moszkowski Rules

In predicting the relative ordering of the two configurations resulting from the
parallel (£ = 1) and antiparallel (£ = 0) coupling of the intrinsic-spin
projections of the two odd (quasi)particles in doubly odd deformed nuclides, the
Gallagher-Moszkowski rules indicate that the £ = 1 coupling should 1ie lower. In
doubly even nuclides, the opposite should be the case. In the doubly odd nuclides,
only one exception to these "rules" is presently known. Consequently, in analyzing
the Tevel structure of these nuclides, the evaluator can, with some degree of
confidence assume, in the absence of other information, that the

z = 1 coupling will 1ie lower. There are, however, a number of complicating
factors in the level structure of doubly even nuclei which, in the absence of other
information, make these considerations of relatively limited use in the evaluation
of data on these nuclides. '
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C. Allowed-Unhindered Beta Transitions

Allowed-unhindered (au) g transitions are ones in which the asymptotic quantum
numbers of the initial-and final-state orbitals of the transforming nucleon are
the same. Their systematic occurrence thus far appears confined to the
"rare-earth" region and uniquely establishes the presence of either the orbital
pair 7/2-[523]p, 5/2-[523]n or 9/2-[514]p, 7/2-[514]n. With this knowledge, and
the relatively simple angular-momentum coupling rules that apply, it is usually
possibie not only to make definitive Jm assignments but also to provide

entirely reliable configuration assignments to the states involved. Beta
transitions in this region having log ft values of 5.0 or less can be
confidently assigned as being au. In addition, many au transitions are observed
which have log ft values as large as ~5.5. However, as regards Jw and
configuration assignments, some caution must be exercised in classifying as au
newly encountered B transitions whose log ft values lie between ~5.0 and

5.5, since a few cases are known were B transitions with log ft values as

Tow as 5.2 do not take place between one or the other of these two orbital
pairs.

D. Favored Alpha Transitions

"Favored" o transitions involve no change in nucleonic configuration between

the initial and final states. In the doubly even nuclides such transitions take
place between the ground states of the parent and daughter nucleus, while in the
odd-A and doubly odd nuclides the final state is generally an excited state.

The characteristic feature of favored a transitions in these latter two
categories of nuclei is an o hindrance factor in the range from unity to

4, The observatjon of a favored o transition is, thus, a strong basis for
making both Jr and nucleonic-configuration assignments. Further, the members

of the so-called "favored" band (the band built on the state fed by the favored
tranition) are fed by a transitions whose hindrance factors, although

increasing monotonically with final-state spin, are nonetheless still relatively
small and, hence, usually readily identifiable. In analyzing a-hindrance-factor
information provide Jw and nucleonic-configuration assignments, however, it needs
to be kept in mind that other phenomena can also give rise to small hindrance
factors. These include Coriolis mixing with the favored band, the presence of
octupole deformation and g vibrational excitations built on the favored band.
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E. Alaga-Rule Considerations

The Alaga rules, which relate the relative values of the reduced transition
probabilities of various decay processes from an initial state to various final
states that are members of the same rotational band, are usually of little use
to the evaluator in arriving at Jm assignments. This results primarily
because the essential simplicity of the ideas underlying them is frequently
masked by other effects which are difficult to take explicit account of.
Consequently, their usefulness usually lies in providing corroboration to
assignments proposed from other considerations. The intraband E2 transitions
represent one exception to this statement. It is found that the reduced
transition probabilities of these transitions are well described by the
Alaga-rule predictions; and the evaluator can use this observation to infer
E2/M1 mixing ratios for intraband cascade transitions (for which aJ = 1) when
both the cascade y ray and its corresponding crossover (Ad = 2) v ray are
observed. Another potential exception may be the El transition probabilities
when collective effects (e.g., octupole vibrations, reflection asymmetry) are
important. Careful attention should be given to the analysis of such

situations, but an emerging body of evidence suggests that one can use the Alaga

rules to draw correct conclusions in such situations.

F. Rotation-Particle (Coriolis) Coupling

In evaluating nuclear structure data for strongly deformed nuclei, it is
important to keep in mind that rotation-particie (Coriolis) coupling may have a
significant effect on certain level properties. Although a proper analysis of
such effects requires calculations utilizing large computer-based codes, there
are simple qualitative considerations which can frequently provide sufficient
insight to permit the evaluator to draw meaningful conclusions from the data
without the necessity of such calculations. The Coriolis interaction mixes
states having the same Jm values and K values that differ by one unit, and

this mixing increases with decreasing separation of the states. It is strongest
among states that originate from the same spherical shell-model state, and
increases with increasing j value (and for a given j, decreasing K value). It
js, thus, especially strong among the so-called "unique-parity" states (i.e.,
113/2 neutrons and h11/2 protons in the rare-earth region and j15/2 neutrons
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in the actinides). In these cases the selection rules in the asymptotic quantum

numbers for "unhindered" Coriolis coupling are aN = 0, An, = -AA = 1. In

addition to the large distortions that are produced in the level structure of rotational
bands through strong Coriolis mixing, even weak mixing can produce pronounced effects on
various nuclear properties when the mixing brings in a large matrix element for the
associated process. Examples of these include a-hindrance factors, g-decay log ft
values and B(E2) values when the mixing introduces the unusually large matrix elements
associated with favored o decay, au B transitions and intraband E2 transitions,
respectively.
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Figure 1. Partial level scheme of 225Ra, as reported in a recent study of
the 229Th o decay (Ref. [1]).
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4-DECAY HINDRANCE FACTORS

M. R. Schmorak
Oak Ridge National Laboratory

(June 1987)

1. THE CONCEPT OF o HINDRANCE FACTOR

The probability for a decay depends primarily on two factors: (a)
the difference in the nuclear structure configurations between the
parent and the daughter nuclear states, and (b) the energy of the a
particle. The dependence on energy is very strong (for example, for
ground-state to ground-state decays of even-even isotopes, changing the
energy from E =4 MeV to E_ = 8 MeV reduces the partial o half-life,

1/z(a), by 20 orders of magnltude) Our main interest in the Nuclear
Data Network is in the effects of nuclear structure on o decay (J and
configuration assignments); therefore, it is useful to define the con-
cept of %E which is related to the experimental & intensity I, but
with the energy dependence (as well as the weaker Z and A dependence)
removed. This is quite similar to the procedures adopted for B decay
(the use of log ft's) and vy decay (the use of Weisskopf units for reduced
transition probabilities).

In even-even nuclei the strongest o transitions are the 0+ -» 0+
g.s. - g.s. transitions (they range from 65% to over 99% of total
decay). By definition, HF = 1 for these o branches. All other o HF's
are calculated relative to the 0+ - 0+ HF's (for example, in the mass
region A >214 the HF's for 0+ - 2+ first excited state vary smoothly as
a function of A from 0.9 to 4.0, see ref. 2).

In odd-A and odd-odd nuclei, the HF is defined relative to the HF's

for g.s. > g.s. transitions in the neighboring even-even nuclei (see
section 3).

2. THE USE OF OE IN NUCLEAR DATA EVALUATIONS
The o HF's exhibit remarkable regularities.z’3 These systematic
features are the basis for their usefulness in evaluations (again in

close analogy to the use of log ft's and reduced transition probabilities



as well as of spectroscopic factors). The main uses are for (a) JT and

configuration assignments and (b) estimation of unknown a-decay branches.

a. JT assignments. The Summary of Bases for Spin and Parity Assignments1 in

NDS contains two strong rules (#33 and #34) based on a decay for J™ assignments;
however, more arguments could be suggested based on the systematic trends
discussed in references 2 and 3.

It is clear from ref. 2 that in the deformed actinide region, all ro-
tational bands have very characteristic GHF'S. For favored bands i.e., the
same configuration in parent and daughter levels (It is assumed that the bands
are not strongly mixed.), the aHF'S may be calculated easily using the ro-
tational model. The agreement with experiments is usually within a factor of
3 (for L = 2 transitions the agreement is usually better than 50%). Con-
sidering the “4 orders of magnitude spread in measured aHF's, this agreement
as well as the systematic trends in non-favored transitions (effects of L-
transfer, spin flip, Nilsson configuration changes, Coriolis coupling) are
very useful for J" and configuration assignments. Clearly, our J7 rules #31
and #32 for rotational bands should be updated; aHF'S are no less useful than
level energies in establishing assignment of a level to a rotational band.

The systematic trends in the closed-shell lead region3 are no less
impressive. For example, ®-decay HF's from parent 3pl/2 to daughters 3pl/2,
3p3/2 and 2f5/2 are the same to within "“20% for Po, Rn, and Ra isotopes.

Similar agreement is apparent: in the 2f5/2 parents decays to 201?0, 203Po

and 205?0; in the 2g9/2 parents decays to 209Pb, 209?0, 211Rn, 213Ra; and in

207T1, 209T1, 207Bi, 21181, 213Bi, and 215At.
The consistency is not as good, but still impressive in the odd-odd nuclei:
the decay of (mh9/2)(V2g9/2)1- and ("1h9/2) (v2g9/2)9- parents. Clearly, our

JT assignment weak argument #4 can be strengthened when supporting o

s

the 1h9/2 parents decays to

HF
information is available.

b. Estimation of unknown o decay branches. The same systematic trends of «

decay that were pointed out in references 2 and 3 can also be used to estimate
unknown o branches. One type of application is to estimate an intensity of a

single @ branch which was not measured but may be of importance to the mass-

chain evaluation. For example, we estimated the 209Po ¢ branch to the 5/2

g.s. of 2Ost at 20%. Experimentally it was not possible yet to resolve this



branch from the favored 80% o to the 1/2- state. This estimate is relevant to
the calculation of Qa of 209?0 as well as to the degree of usefulness of 209Po
as an o energy standard. Another example is the estimate of Ia to 2+ states
in a number of heavy elements based on interpolation of the very smooth
variation of aHF's in this region. This estimate is essential for the correct
calculation of the radius parameter used to calculate aHF's for the whole
region (see section 3).

The second type of application is the estimate of %o, i.e., the total a-
decay branching of ground states or isomers in cases where this branching is
not known experimentally. The key to these estimates is the systematics of
favored o transitions, which are usually by far the most intense and determine
to a large extent the total a-decay branching. (The exceptions are cases
where the favored level in the daughter is very high in energy.)

In the case of even-even ground-state o decays, the smooth systematic
trends of the radius parameter (section 3) determine the main 0+ - O+ Ia' The
second strongest transition usually is the 0+ to first-excited 2+ state; this
can be estimated quite reliably from the systematic trend of 2+ HF's. Often
the above 2 branches account for over 99% of the total o decay.

For odd-A and odd-odd nuclei, the estimates of %a can be quite reliable
provided that the level energy of the favored configuration in the daughter is
known. In odd-A nuclei, such estimates may be reliable to *20% when Qa is
well known. In odd-odd nuclei (where less good data are available), the
reliability may be +50%. For example, in the mass region A = 191 through 213
for all 50 cases of odd-A favored o's, HF's vary from 1.1 to 1.6 for J#1/2
and from 1.4 to 2.2 for J=1/2. For odd-odd nuclides the favored aHP's vary
from 1.5 to 2.5 (except for 5+ states which are probably of mixed config-
uration). In transition regions (where the deformation changes rapidly),
there are significant differences between the parent and the '"favored"
daughter configurations; as a result, the "favored" aHF’s are larger.

Uncertainties in Q, of 200-400 keV correspond to an order of magnitude
uncertainty in a calculated Tl/z(a). Even in cases of such large uncertain-
ties, the estimate of %a may still be useful. For example, the estimate
% << 1 syst may indicate that %c ~ 100; thus, log ft's could be calculated.

Table 5 of reference 3 lists the % and Q, values for 186 < A < 223; "'syst"



indicates the values derived from systematics of UyE and of Qu, respectively.
(For graphical representation of Qa values see, for example, reference 4.) In
a few cases, T1/2 could be estimated for ground states and isomers. Table 6 of
reference 3 lists the individual HF values, including the ones derived from
the systematic trends, and the Ia values deduced from the HF values. In cases
of strong configuration mixing, the estimates are less reliable; however, for
strong o branches, the sensitivity of Oyp (and therefore of Ia) to configura-
tion mixing is much smaller than the corresponding sensitivity of log ft

values, of reduced transition probabilities, and in many cases of magnetic
moments.

3. CALCULATION OF Oyp
The calculation of aye in NDS is based on the spin-independent equations
of Preston5 and is essentially the same as the calculations done for the sixth

and seventh editions of the Table of Isotopes6 (1967 and 1978).

a. For even-even nuclei, the HF's of excited states are inversely propor-
tional to Ia and are normalized to the7va1ue HF = 1 for the 0+ - 0+ g.s. to
g.s. transition. The computer program Tremoves the energy dependence (which
is calculated from the input Qa and E(level) in the daughter). The uncer-
tainties in the parent T1/2’ a branching, and Qa cancel out, because of the
method of normalization. If the level energies are accurate (say, AE < 5
keV), the uncertainty in HF will be the same as the fractional uncertainty
in I,

In addition to HF, the computer program calculates the parameter, RO’
(roughly equivalent to the nuclear radius) from Qa, Tl/z(a), and Ia to the
g.s. (Z and A also enter in). It is useful for evaluators to keep track of
the RO systematics in the region of their responsibility. In my experience
(in the lead and actinide regions) the RO values for each element lie on
fairly smooth curves, the exception being sharp breaks at the closed shells
N = 126 and N = 152.

b. For odd-A and odd-odd nuclei, the HF's are also inversely proportional to

I,, but the normalization is to the neighboring nuclei. The RO parameter



has to be included in the input to the computer program. Usually for odd-A
isotopes, the R0 will be the average of the two nearest even-even neighbors,
and for odd-odd isotopes the average of the four nearest even-even neighbors.
If the Ro's for some (or all) of the neighbors are not known, then interpola-
tion or extrapolation is needed. Our experience at Oak Ridge is that human
interpolations (or extrapolations) are preferable to computer algorithms for

this purpose. The uncertainties in a,. are usually much larger than in the

case of even-even nuclei for the folloiing reasons: There is the additional
uncertainty in R0 parameter; the uncertainties in Qa and T1/2 (parent) as well
as in the a-branching of the parent, do not cancel out. Typical uncertainties
are, for example, 3 keV in Qa of 5 MeV resulting in 4% uncertainty in HF, ARO
of 0.01 resulting in ~20% uncertainty in HF, and of course linear dependence
on uncertainties in Ia and Tl/z(a).

In contrast to most calculations of log ft's, we do not have to worry

here about unplaced transitions. In fact, 's can be calculated from Ea’

a

HF
Ia’ and Z without any knowledge of the decay scheme. However, the interpreta-
tion of the results of “4E calculations demands considerable experience and

detailed knowledge of nuclear structure.
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