

TABLE OF MAGNETIC DIPOLE ROTATIONAL BANDS

AMITA and ASHOK KUMAR JAIN

Department of Physics, University of Roorkee

Roorkee - 247667, India

and

BALRAJ SINGH

Department of Physics & Astronomy, McMaster University

Hamilton, Ontario L8S 4M1, Canada

The experimentally observed level structures which appear to support the newly proposed magnetic rotation phenomenon in weakly deformed nuclei are classified according to their intrinsic structures and other measured properties such as B(M1)/B(E2) values, lifetimes, etc. A total of 120 magnetic dipole-rotational bands are observed in 56 nuclei spread over four mass regions, namely, A = 80 (Z = 35-37), 110 (Z = 48-51), 135 (Z = 54-64), and 195 (Z = 80-86); 42 such bands are observed in Pb isotopes alone. Interpretation of these bands in terms of shears mechanism and other possibilities are briefly discussed. A number of high-spin features such as signature splitting, signature inversion, and backbending are also discussed. The literature cutoff date for the data is August 1999. © 2000 Academic Press

CONTENTS

INTRODUCTION	284
Salient Features of Magnetic Dipole Rotational Bands	284
Physical Mechanism of Magnetic Rotation	286
Application of Tilted-Axis Cranking Model	287
Electromagnetic Properties of Magnetic Dipole Rotational Bands	288
Moments of Inertia, Alignment, and Backbending	289
Regular and Irregular Bands	289
Signature Splitting	290
Identical Bands	291
Conclusions	291
POLICIES	294
EXPLANATION OF TABLE	295
TABLE. Magnetic Dipole Rotational Bands	296
REFERENCES FOR TABLE	326

INTRODUCTION

Experimental observation of features like rotational bands and enhanced transition probabilities usually signify the presence of nonsphericity in nuclei. Normally one observes enhanced electric quadrupole transitions connecting $\Delta I = 2$ levels in a rotational band. Observation of quasirotational bands based on configurations which are known to be nearly spherical is therefore quite unexpected. Nuclear structure physics has in recent times been witness to the observation of many such groups of levels which appear to have rotational character and display enhanced magnetic dipole transitions connecting $\Delta I = 1$ levels. Such bands have therefore been termed in the literature "magnetic dipole" or "magnetic rotational" bands and subsequently also "shears" bands. Observation of such structures has given rise to much excitement, and one hopes that many new and exotic coupling schemes may be identified [1]. In this paper we present a Table of the established as well as the most likely candidates of magnetic rotation (MR) bands. The literature cutoff date for the data is August 1999.

Most MR-band nuclei are either even–even or odd–A; only a few odd–odd nuclei are known to have such bands. The largest aggregate of data occurs in the $A \approx 195$ mass region, where 12 lead isotopes having $191 \le A \le 202$ display as many as 42 MR bands. All the nuclei included in the compiled Table are shown in Fig. 1. Each nucleus is assigned a box that exhibits the total number of

MR bands, the minimum excitation energy, the minimum and maximum spins assigned in these bands, the corresponding parities, and the number of bands which exhibit backbending. It should be noted that a critical evaluation of the experimental data is not the aim of this paper and most of the information has been gleaned from the references cited for each band; a total of 81 references have been cited.

Salient Features of Magnetic Dipole Rotational Bands

Based on observations made so far and on theoretical calculations, MR bands are expected to display the following properties:

1. The bands exhibit a $\Delta I = 1$ structure rather than a $\Delta I = 2$ structure and have a somewhat rotational character.

2. They are typically observed in nearly spherical nuclei, most having a very small oblate deformation, although many are also known to have small prolate deformation.

3. The bandhead lies at a high excitation energy (a few MeV) and has a high spin ($I \sim 10-15 \hbar$) and a high value of *K* (the projection of *I* on the symmetry axis), both indicative of a multi-quasiparticle character.

4. Intraband transitions are predominantly magnetic dipole (M1) in nature, with B(M1) values being of the order

FIG. 1. Isotope chart of Z vs N for the magnetic dipole rotational bands included in this compilation. See key (inset) for the interpretation of the entries in each box.

of several Weisskopf units. Crossover E2 transitions are either very weak or absent, so that B(E2) values are ≤ 0.1 (eb)². The ratio B(M1)/B(E2) is therefore quite large, with values $\sim 10-100 \ (\mu_N/eb)^2$. In normal rotational bands this ratio is less than $1 \ (\mu_N/eb)^2$. In a number of MR bands in the A = 110 and 195 mass region, a decrease in the B(M1) values with increasing spin has been observed.

5. These bands have generally weak connections to other yrast states.

6. These bands carry a dynamical moment of inertia of the order of $\mathfrak{I}^{(2)} = 10-25 \ \hbar^2 \text{MeV}^{-1}$, smaller than the dynamical moments of inertia of normal-deformed and superdeformed nuclei. The ratio $\mathfrak{I}^{(2)}/B(\text{E2})$ is larger than 150 $\hbar^2 \text{MeV}^{-1}(\text{eb})^{-2}$ here, in comparison to a value of 15

 $\hbar^2 \text{MeV}^{-1}(\text{eb})^{-2}$ in well-deformed nuclei and 5 $\hbar^2 \text{MeV}^{-1}(\text{eb})^{-2}$ in superdeformed nuclei.

Keeping these characteristics in mind, we have been able to extract from the published literature on experimentally observed level structures 120 MR bands in 56 nuclei. These are spread over four mass regions, namely A = 77-85, 105–113, 124–144, and 191–205. While most of these bands have been assigned oblate many-quasiparticle configurations, several prolate configurations have also been assigned to bands in the lighter mass regions.

We find that in addition to the above-mentioned characteristics, the experimentally observed bands also exhibit the following features:

1. Some of these cascades do not display an I(I + 1) behavior and are irregular in their structure.

- 2. Many MR bands display signature splitting.
- 3. A large number of cases display backbending.

Physical Mechanism of Magnetic Rotation

The largest number of MR bands has been identified in Pb nuclei, and these, therefore, constitute the foremost testing ground for the various physical mechanisms which could give rise to rotation-like features with strong magnetic dipole transitions connecting $\Delta I = 1$ states. A configuration assignment for the bands has been possible in most of the cases in Pb nuclei based on considerations such as (i) the excitation energies and angular momenta, (ii) comparisons with the known excitations in neighboring nuclei, and (iii) estimates from model calculations. Unlike the superdeformed bands, the linking transitions have been seen in a large number of cases; the excitation energies and the angular momenta are therefore known with greater certainty in many instances.

The low-lying excitations of neutron-deficient Pb isotopes are known to consist of spherical states arising from neutron hole excitations, and further higher-lying excitations are formed on weakly oblate states built on brokenpair proton (particle-hole) excitations across the core. As an example, the 0^+ state at 931 keV in ¹⁹⁴Pb, having a small oblate deformation [2], is built on the $\{\pi 9/2^{-}[505]\}^{2}$ configuration of the $h_{9/2}$ orbital. Two high-spin isomeric excitations are observed at 2438 and 2934 keV, having $I^{\pi} = 8^+$ and 11^{-} , respectively [3]; these are interpreted as (2p2h)broken proton-pair shell model configurations given by $[\{\pi h_{9/2}, 9/2^{-}[505]\} \otimes \{\pi h_{9/2}, 7/2^{-}[514]\}]_{K^{\pi}=8^{+}}$ and $[\{\pi h_{9/2}, 9/2^{-}[505]\} \otimes \{\pi i_{13/2}, 13/2^{+}[606]\}]_{K^{\pi}=11^{-}}.$ Both these configurations are also known to be associated with a small oblate deformation $\beta_2 \sim -0.18$ as suggested by some calculations. However, no regular collective bands built on these states have been observed.

The $\Delta I = 1$ bands observed in the lead isotopes have been assigned configurations consisting of the $K^{\pi} = 11^{-1}$

excitation coupled to low- Ω one/three quasineutrons (in odd-A nuclides) or two/four quasineutrons (in even-A nuclides). Since the protons occupy high- Ω states, their density distribution is like a torus with angular momentum pointing along the symmetry axis. The low- Ω neutron hole states, on the other hand, have a dumbbell-like density distribution, with angular momentum pointing along a direction perpendicular to the symmetry axis [4, 5]. Maximum overlap between the two density distributions is therefore obtained when the angular momenta of proton particle and neutron hole are perpendicular to each other, and the resultant angular momentum lies somewhere between the proton and the neutron angular momenta, as shown in Fig. 2a. Frauendorf [4, 6, 7] suggested that these two angular momenta are like the two blades of a pair of shears, and that the unusual properties of MR bands, such as the generation of high angular momenta at such low deformation, predominance of regular M1 transitions, lack of signature splitting, etc., can be explained if the two blades simultaneously align toward the resultant total angular momentum to generate higher angular momentum states (cf. Fig. 2b). This mechanism has hence been named the "shears mechanism." A tilted-axis version of the Cranking model (TAC) was proposed [4] which incorporates this shears mechanism guite successfully and gives a good estimate of the excitation energies, spins, and B(M1)/B(E2) values of many such bands.

A similar mechanism is seen to work in the A = 110and 135 mass regions although different orbitals are involved. In the A = 110 mass region the active orbitals are high- Ω proton $g_{9/2}$ holes, driving the nucleus toward a slightly prolate shape of $\beta_2 \sim 0.13$, and low- Ω neutron $h_{11/2}$ particles [7]. Due to the shape of their density distribution, the proton angular momentum vector aligns itself toward the nuclear symmetry axis while the neutron angular momentum vector aligns toward an axis perpendicular to it. In the A = 135 mass region, $h_{11/2}$ proton particles and $h_{11/2}$ neutron holes are involved in the configuration of MR bands [8]; sometimes $g_{7/2}$ protons are also assigned a role. The coexistence of prolate and oblate shapes is predicted in different bands in a few nuclei. However, the interpretations are not as firm in these mass regions as in the A = 195 mass region. It may be noted that the high-*j* intruder orbitals, which are known to play an important role in many highspin phenomena such as superdeformation, also play an important role in generating MR bands.

Recent calculations based on the spherical shell model with a reasonable configuration space for protons and neutrons have also been able to reproduce regular MR bands and confirm the shears mechanism of generating magnetic dipole rotational bands [9].

A suggestion has recently been made that the shears mechanism may arise due to a residual interaction between the protons and neutrons in the two blades [10]. An interaction of the $P_2(\theta)$ kind can be mediated through the core by particle-vibration coupling acting in second order. This

FIG. 2. Schematic coupling scheme of shears mechanism for a small oblate deformation in the Pb region at (a) small rotational frequency and (b) large rotational frequency. For details see text.

kind of physical mechanism may not require the presence of a deformed mean field for nearly spherical nuclei.

Application of Tilted-Axis Cranking Model

A general TAC Hamiltonian for a single particle is given by [4]

$$h'_{TAC} = h_{sp} - \omega(j_1 \sin \theta \cos \varphi + j_2 \sin \theta \sin \varphi + j_3 \cos \theta),$$
(1)

where h_{sp} is the single particle Hamiltonian in a deformed field (e.g., a deformed oscillator or a deformed Woods–

Saxon potential); ω is the rotational frequency, and (θ, φ) are the tilting angle and the azimuthal angle of the total angular momentum, respectively; and (j_1, j_2, j_3) are the components of particle angular momentum *j* along the (1, 2, 3) axes, respectively, where the 3-axis is the symmetry axis.

Detailed calculations have been reported in the literature for the MR bands, where, using the multiparticle version of the TAC, pairing and residual interactions have also been included (for example see [11, 12] and references therein). Within the pairing plus quadrupole–quadrupole model, the quasiparticle Routhian is given by [5]

$$h' = h_{sp} - \hbar \omega_0 \beta \left(\cos \gamma q_0 - \frac{\sin \gamma}{\sqrt{2}} (q_2 + q_{-2}) \right)$$
$$- \Delta (P^+ + P) - \lambda n - \omega (j_1 \sin \theta + j_3 \cos \theta), \quad (2)$$

where $\varphi = 0^{\circ}$ has been substituted to reduce the threedimensional problem to a planar one. Here, $\hbar \omega_0 = 41 A^{-1/3}$; β and γ are the usual deformation parameters; and q_0, q_2 , and q_{-2} are the expectation values of the respective components of the quadrupole tensor Q. The operator P^+ creates the pair field, the strength of which is fixed by the gap parameter Δ . The Fermi level λ is fixed to give the correct particle number. As an example, we have performed calculations for the MR band in ¹⁰⁵Sn by using the TAC code [13]. The proton pairing was neglected in these calculations because the proton Z = 50 shell is closed. For the neutrons, pairing was taken into account using a constant $\Delta_{\nu} = 0.80$ MeV. The neutron Fermi level λ was calculated to give the appropriate particle number. We have done calculations for a series of deformation parameters to minimize the total energy in the lab frame and found that the most suitable deformation in this case is $\beta = 0.137$ and $\gamma = 10^{\circ}$. Single proton and single quasineutron Routhians were then calculated. Taking the bandhead spin and parity into consideration, we chose the configuration $\pi(g_{9/2}^{-1}g_{7/2}) \otimes \nu[h_{11/2}^2(g_{7/2}d_{5/2})^1]$ and calculated the total quantities (like spin, energy, equilibrium tilt angle θ). In order to compare the experimental results with the calculated ones, we transform the experimental energies E(I) into rotational frequencies by using the relation

$$\hbar\omega(I) = E(I) - E(I-1). \tag{3}$$

The results of our calculations along with the experimental results [14] are shown in Fig. 3, where the total angular momentum I vs $\hbar\omega$ is plotted. The TAC curve differs slightly from the observed values but exhibits the same trend. The observed values also show a backbending that has been attributed in [14] to the alignment of a $(g_{7/2}d_{5/2})$ neutron pair. The wavefunctions so obtained can be used to calculate the electromagnetic transitions and other properties, as discussed in the following section.

FIG. 3. Angular momentum vs rotational frequency for ¹⁰⁵Sn using the TAC model for the configuration $\pi(g_{9/2}^{-1}g_{7/2}) \otimes \nu[h_{11/2}^2(d_{5/2}g_{7/2})^1]$ and the deformation parameters $(\beta, \gamma) = (0.137, 10^\circ)$ along with the experimental curve for the dipole band in ¹⁰⁵Sn.

Electromagnetic Properties of Magnetic Dipole Rotational Bands

A $\Delta I = 1$ structure and large intraband B(M1) values immediately suggest that the MR bands are based on high-*K* proton configurations. In the strong coupling limit [15],

$$B(M1, I \to I') = \frac{3}{4\pi} K^2 (g_K - g_R)^2 |\langle I'K10|IK\rangle|^2, \quad (4)$$

where g_K is the proton *g*-factor and $g_R \approx Z/A$. When both *K* and $(g_K - g_R)$ are large, the *B*(M1) value increases. However, the trend of the *B*(M1) values with rotational frequency distinguishes a high-*K* band from a MR band.

The coupling scheme for the bandhead in a tilted axis representation is shown in Fig. 2a, with the proton angular momentum vector close to the nuclear symmetry axis (deformation-aligned) and the neutron angular momentum vector close to an axis perpendicular to it (rotation-aligned). Such a coupling gives rise to a large perpendicular component of the magnetic moment, $\mu^{\perp} = \mu_{\pi}^{\perp} + \mu_{\nu}^{\perp}$. Higher angular momentum states are generated by a gradual alignment of the neutron and proton blades with the total angular momentum \vec{I} . As \vec{I} increases, μ^{\perp} decreases. Since the B(M1) values are proportional to $|\mu^{\perp}|^2$, the shears mechanism predicts decreasing B(M1) values with increasing spin along the band. The B(M1) and B(E2) values can be calculated in the TAC model by using the expressions [4, 6],

$$B(M1) = \frac{3}{8\pi} \left[\sin \theta \{ g_{l,\pi} \langle j_{\pi,3} \rangle_{\omega} + (g_{s,\pi} - g_{l,\pi}) \langle s_{\pi,3} \rangle_{\omega} \right. \\ \left. + g_{s,\nu} \langle s_{\nu,3} \rangle_{\omega} \} - \cos \theta \{ g_{l,\pi} \langle j_{\pi,1} \rangle_{\omega} \right. \\ \left. + (g_{s,\pi} - g_{l,\pi}) \langle s_{\pi,1} \rangle_{\omega} + g_{s,\nu} \langle s_{\nu,1} \rangle_{\omega} \} \right]^2$$
(5)

and

$$B(E2) = \frac{15}{128\pi} (eQ_0 \sin^2\theta)^2,$$
 (6)

where the average values of the components of j, the spin s, and the intrinsic electric quadrupole moment Q_0 are calculated from the TAC model configurations. The g's are the usual gyromagnetic factors. In Fig. 4, we show the results of our calculations for B(M1) and B(M1)/B(E2) values for the ¹⁰⁵Sn nucleus discussed in the previous section. We find that both B(M1) and B(M1)/B(E2) values decrease with increasing rotational frequency and hence with increasing angular momentum, thus proving the validity of the shears mechanism in the mass A = 110 region.

A comparison of the calculated values with the recently measured B(M1) values in a series of Pb isotopes with A = 193-197 has confirmed the decrease in B(M1)with increasing angular momentum [11]. This constitutes the strongest argument in favor of the shears mechanism in lead nuclei. It may be emphasized that whereas the ratios such as B(M1)/B(E2) may be explained on the basis of principal axis cranking, the behavior of B(M1) with angular momentum confirms that it is a new mode of excitation which requires the TAC.

Measurement of the *g*-factor is another sensitive test of a configuration. For example, the *g*-factor of the 2584keV bandhead in ¹⁹³Pb was measured [16] to be 0.68 \pm 0.03, which matches very well with the calculated value 0.71 \pm 0.04 for the assigned configuration $[(\pi h_{9/2} \otimes i_{13/2})_{K^{\pi}=11^-} \otimes (\nu i_{13/2})^{-1}]_{K^{\pi}=29/2^-}$; other configurations do not reproduce the measured value.

Another useful quantity which is reported more often and which highlights the large strength of the M1 transitions is the ratio B(M1)/B(E2). It can be obtained from experiment by using the expression [17]

$$B(M1)/B(E2) = \frac{0.6968E_{\gamma 2}^5}{\lambda E_{\gamma 1}^3(1+\delta^2)},$$
 (7)

where E_{γ_1,γ_2} are the respective γ -ray energies in MeV corresponding to the M1 ($\Delta I = 1$) and E2 ($\Delta I = 2$) transitions from a state I, λ is the γ -ray intensity ratio $[I(\gamma_2)/I(\gamma_1)]$, and δ is the mixing ratio for the $\Delta I = 1$ transition. Since observed M1 transitions are much stronger than the E2 transitions, it may be assumed that the $\Delta I = 1$ transitions are pure M1 transitions and therefore the mixing ratio may

FIG. 4. The *B*(M1) (upper panel) and *B*(M1)/*B*(E2) values (lower panel) vs rotational frequency from the TAC model calculations for the configuration shown in Fig. 3.

be ignored. We tabulate this B(M1)/B(E2) ratio in the Table for a large number of cases. It turns out to be of the order of $10-100 \ (\mu_N/eb)^2$ as compared to a value less than $1 \ (\mu_N/eb)^2$ in normally deformed nuclei.

Moments of Inertia, Alignment, and Backbending

The kinematic moment of inertia $\mathfrak{I}^{(1)} = \hbar I/\omega = \hbar^2 I/E_{\gamma}(I \rightarrow I - 1)$ and the dynamic moment of inertia $\mathfrak{I}^{(2)} = \hbar dI/d\omega = \hbar^2/\Delta E_{\gamma}(I)$ are plotted in Fig. 5 for some

typical cases from the A = 80, 110, 135, and 195 mass regions. Here $\Delta E_{\gamma}(I) = E_{\gamma}(I \rightarrow I - 1) - E_{\gamma}(I - 1 \rightarrow I)$ I - 2). We notice many similarities in the four plots from each mass region. The $\mathfrak{I}^{(1)}$ values (solid lines) generally decrease with increasing angular momentum, a trend opposite to what one observes in normal deformed rotational bands where $\mathfrak{I}^{(1)}$ generally rises with increasing angular momentum. This is indicative of a large contribution to the total angular momentum from a source other than collective. Also the $\mathfrak{I}^{(2)}$ values are typically considerably smaller than $\mathfrak{I}^{(1)}$, again indicating a large contribution to the total angular momentum from alignment; the very large fluctuations in $\mathfrak{I}^{(2)}$ values shown in some MR bands are due to a backbending in these bands. More recently, the behavior of $\mathfrak{T}^{(1)}$ and $\mathfrak{T}^{(2)}$ as a function of angular momentum has also been shown to be consistent with the $P_2(\theta)$ type of residual interaction between protons and neutrons [18].

For rotational bands in normal deformed nuclei, the moment of inertia is directly proportional to the B(E2) values, and hence the ratio $\Im^{(2)}/B(E2)$ is expected to be roughly constant. For MR bands, this ratio is, on average, more than a factor of 10 larger than in well deformed nuclei, which shows that only a fraction of the inertia is generated by the rotation of the deformed core. It should be noted, however, that ratios $\Im^{(2)}/B(E2)$ as large as 10 can also come about for a normal rotor in the presence of pairing and having a small deformation.

A kind of singularity or sharp rise is observed in the value of $\mathfrak{I}^{(2)}$ at angular momenta where backbending occurs, which is normally attributed to a bandcrossing with a further alignment of the $i_{13/2}$ quasineutron pair in Pb nuclei and an alignment of the $h_{11/2}$ neutron pair in the mass 110 and 135 regions. For example an upbend at $\hbar \omega \sim 0.38$ MeV in band 2 of ¹⁹⁶Pb having configuration $\pi(h_{9/2} \otimes i_{13/2}) \otimes$ $\nu(i_{13/2})^{-2}$ is attributed to a second $i_{13/2}$ quasineutron pair crossing [19]. Thus after the crossing, the configuration becomes $\pi(h_{9/2} \otimes i_{13/2}) \otimes \nu(i_{13/2})^{-4}$. A similar bandcrossing is also noticed in band 3 of ¹⁹⁸Pb but at a higher frequency; the shift in frequency may be interpreted as this band having some pairing prior to crossing. It is also possible to interpret the backbending as the crossing of two shears bands. When a second shears band crosses the first shears band, the shears angle opens up again from a small value (near 0°) to a large value (near 90°). The experimental evidence in favor of such a crossing would be a sudden rise in the B(M1) value near the crossing frequency. It would be very interesting to make such measurements.

Regular and Irregular Bands

While most of the bands are nearly regular (not considering backbending as an irregularity), some of the bands appear quite irregular. It may be pointed out that with better statistics in experiments, the order of transitions has been

FIG. 5. Kinematic (solid lines) and dynamic (dashed lines) moments of inertia vs spin plotted for five nuclei from the A = 80, 110, 135, and 195 mass regions.

changed in many cases, thereby making some irregular bands regular. Also, it may be noted that signature splitting in a band must be distinguished from the irregular nature of a $\Delta I = 1$ band. This distinction may be achieved by dividing a $\Delta I = 1$ band into two $\Delta I = 2$ bands, then analyzing the levels within the $\Delta I = 2$ subbands for regularity and bandcrossing. For example, band 3 of ¹⁹⁶Pb, which otherwise looks quite irregular, on dividing into two bands can be interpreted as a rotational structure with alignment taking place around the 1237-keV level [19].

Signature Splitting

The TAC model mixes states of good signature. It is therefore expected that MR bands may not have a signature splitting. We find that 14 of the 42 MR bands experimentally observed in the Pb nuclei display a signature splitting. We did not include a few other cases because it was difficult to make a judgment in those cases where only three or four transitions are known. In Fig. 6, we plot $\Delta E_{\gamma}(I)$ vs *I* for 6 of the 14 cases; a signature splitting is evident in all the cases. It is interesting to note that 2 cases, namely band 2 of ¹⁹⁵Pb and band 4 of ¹⁹⁹Pb, also exhibit a signature inversion. Such phenomena of signature splitting and signature inversion have been observed and studied in normal deformed even–even [20], odd–*A*, and odd–odd nuclei [21] and can be explained by using the particle-rotor model [22, 23].

An odd-odd nucleus with the odd proton and the odd neutron in appropriate orbitals is the simplest system for simulating the shears mechanism. Accordingly we have used the two-quasiparticle-plus-rotor model for a deformation-aligned proton particle in an $h_{9/2}$, 9/2[514] orbit and a rotation-aligned neutron hole in an $i_{13/2}$,

FIG. 6. Signature splitting in some MR bands in Pb isotopes as observed in the experimental data. The spins are uncertain in the three cases in the bottom panels.

1/2[600] orbit at a small oblate deformation ($\epsilon = -0.1$), and calculated energies and the aligned angular momenta, etc. Our calculations [24] show that the band based on this configuration develops a strong signature splitting at I =16. The signature splitting persists even for the band based on the $h_{9/2}$, $9/2[514] \otimes i_{13/2}$, 7/2[604] configuration. However, this signature splitting disappears when the deformation is increased to, say, $\epsilon = -0.25$. These calculations also indicate that the shears mechanism is more valid at small deformations. Similar conclusions regarding the validity of the shears mechanism have also been reached by Macchiavelli et al. [25]. Since signature splitting is also prominent at small deformation, it is not unusual to observe signature splitting in MR bands, which is a small deformation phenomenon. In Fig. 7, we show the geometry of the particle angular momenta and their alignments at lower spins where splitting is absent and at higher angular momenta where splitting is present. The diagrams reveal that the shears mechanism is active at the lower spins. At higher spins (I > 16), the states belonging to different signatures clearly align along different directions, thus diluting the shears mechanism. We may therefore infer that the presence

of a large signature splitting may be linked with a dilution of the shears mechanism.

Identical Bands

Observation of identical bands in superdeformed nuclei brought this phenomenon, which is also present to some extent in normal deformed nuclei [26, 27], into sharp focus. Some MR bands also appear to have identical transition energies. An example is band 2 of ¹⁹⁹Pb and band 1 of ²⁰⁰Pb. The bands differ in their configuration by a quasineutron orbital $f_{5/2}$, 1/2[521]. An interpretation in terms of a decoupling of a pseudo-spin $\tilde{\Lambda} = 0$ quasineutron originating from $p_{3/2}$ and $f_{5/2}$ Nilsson orbitals has been suggested [5]; it requires a decoupling parameter a = 1. However, no identical band has been found in a similar situation in ²⁰¹Pb and ²⁰²Pb. This phenomenon therefore remains to be investigated in MR bands.

Conclusions

In this paper, we have presented experimental data and other evidence taken from the literature which appear to

FIG. 7. Geometry of particle angular momenta at I = 8 and 16 (upper panel), and at three consecutive angular momenta for I = 20, 21, and 22, which lie in the region of signature splitting (lower panel), for small oblate deformation $\epsilon_2 = -0.1$.

support the recently proposed concept of magnetic rotation. A total of 120 bands in 56 nuclei from four mass regions have been compiled from the literature. Some additional cases, namely ⁸³Y [28, 29], ⁸³Zr [30], ¹⁰⁶Cd [31], ^{103,105,107,109}In [32, 33], ¹¹⁷I [34], ¹²⁸Ba [35], and ¹³⁹Pm [36], are also likely candidates of MR bands but have not been included in this Table due to the uncertain nature of the bands and insufficient information. The bands in the A = 80 and 135 regions and Hg nuclides included in the Table should also be treated with caution. The energies, spin, parity, configuration assignments, electromagnetic properties, and other important details of MR bands are listed in the Table. We have discussed very briefly the shears mechanism and experimental as well as theoretical evidence in its favor. Many

other features of MR bands such as signature effects are also discussed. Preliminary results from the two-particle-rotor model are given to check the applicability of the shears mechanism when signature splitting occurs. It may be pointed out that MR is just one of the several new modes of rotation that are being talked about [1]. For example, it is possible to construct both blades of the shears from the same type of particles (either protons or neutrons). While a regular pattern of levels would still be formed, these will be connected by weak E2 transitions (antimagnetic rotation). Observation of a "pure" MR band based on a perfectly spherical configuration is another challenge for the experimentalists. Another mode where the blades of the shears close with decreasing excitation rather than open has also been predicted. It would indeed be interesting to observe these new modes of rotation in experiments.

Acknowledgments

We thank Professor S. C. Pancholi for many useful discussions and comments. We are also grateful to Professor S. Frauendorf for providing the TAC code and literature, and making several useful comments. Financial support from the Department of Science and Technology (DST, India), from the Council of Scientific and Industrial Research (CSIR, India), and from the Natural Sciences and Engineering Research Council (NSERC, Canada) is gratefully acknowledged.

References for Introduction

- R. M. Clark and R. Wadsworth, Physics World 11, 25 (1998)
- 2. P. Van Duppen et al., Phys. Rev. Lett. 52, 1974 (1984)
- 3. M. G. Porquet et al., J. Phys. G 20, 765 (1994)
- 4. S. Frauendorf, Nucl. Phys. A 557, 259c (1993)
- 5. G. Baldsiefen et al., Nucl. Phys. A 574, 521 (1994)
- 6. S. Frauendorf, Z. Phys. A 358, 163 (1996)
- 7. S. Frauendorf, in *Proceedings of the Workshop on Gammasphere Physics, Berkeley, 1995* (World Scientific, Singapore, 1996), p. 272
- 8. C. M. Petrache et al., Nucl. Phys. A 617, 249 (1997)
- S. Frauendorf, J. Reif, and G. Winter, Nucl. Phys. A 601, 41 (1996)
- 10. A. O. Macchiavelli et al., Phys. Rev. C 58, R621 (1998)
- 11. R. M. Clark et al., Phys. Lett. B 440, 251 (1998)
- 12. D. G. Jenkins et al., Phys. Rev. Lett. 83, 500 (1999)

- 13. S. Frauendorf, TAC code, private communication
- 14. A. Gadea et al., Phys. Rev. C 55, R1 (1993)
- A. Bohr and B. R. Mottelson, *Nuclear Structure* (Benjamin, New York, 1975), Vol. II
- 16. S. Chmel et al., Phys. Rev. Lett. 79, 2002 (1997)
- H. Ejiri and M. J. A. de Voigt, Gamma Ray and Electron Spectroscopy in Nuclear Physics (Oxford Univ. Press, Oxford, 1987), p. 504
- A. O. Macchiavelli et al., Phys. Rev. C 58, 3746 (1998)
- 19. E. F. Moore et al., Phys. Rev. C 51, 115 (1995)
- 20. A. Goel and A. K. Jain, Phys. Lett. B 337, 240 (1994)
- 21. A. K. Jain and A. Goel, Phys. Lett. B 277, 233 (1992)
- 22. A. Goel and A. K. Jain, Nucl. Phys. A 620, 265 (1997)
- 23. A. K. Jain et al., Rev. Mod. Phys. 70, 843 (1998)

- 24. Amita, A. K. Jain, A. Goel, and B. Singh, Pramana-J. Phys. 53, 463 (1999)
- 25. A. O. Macchiavelli et al., Phys. Lett. B 450, 1 (1999)
- 26. A. K. Jain, Z. Phys. A 317, 117 (1984)
- 27. C. Baktash et al., Annu. Rev. Nucl. Part. Sci. 45, 485 (1995)
- 28. F. Cristancho et al., Nucl. Phys. A 540, 307 (1992)
- 29. C. J. Lister et al., Z. Phys. A 329, 413 (1988)
- 30. D. Rudolph et al., Z. Phys. A 338, 139 (1991)
- 31. P. H. Regan et al., Nucl. Phys. A 586, 351 (1995)
- 32. S. K. Tandel et al., Phys. Rev. C 58, 3738 (1998)
- 33. J. Kownacki et al., Nucl. Phys. A 627, 239 (1997)
- 34. M. P. Waring et al., Phys. Rev. C 48, 2629 (1993)
- 35. I. Wiedenhover et al., Phys. Rev. C 58, 721 (1998)
- 36. N. Xu et al., Phys. Rev. C 36, 1649 (1987)

POLICIES

- *Level Energies* The listed level energies are taken from the first reference given for a band. In cases where values given by the original authors are relative to the energy of an isomer, we have added the energy of the isomer (taken from the Evaluated Nuclear Structure Data File database at Brookhaven National Laboratory) to each of the energy levels.
- *Band Intensity* The quoted value represents the approximate intensity (as a percentage) of the population of a band in a reaction channel leading to that nucleus. The value is taken from the cited reference if quoted explicitly by the authors. Otherwise an approximate value is deduced by us from the authors' relative γ -ray intensity data (either numeric or graphic).
- *References* The references are listed in chronological order in terms of eight digit key numbers as assigned in the Nuclear Science References database at Brookhaven National Laboratory.

EXPLANATION OF TABLE

TABLE.	Magnetic Dipole R	otational Bands
	${}^{A}_{Z}X_{N}$	Denotes the specific nuclide with X chemical symbol A mass number Z atomic number N neutron number A single blank row marks the end of entries for each band. The number in the first column
	$\mathrm{E}_{\mathrm{level}}$	Level energy in units of keV. Energies in parentheses denote tentative levels. Labels X, Y, Z, etc., indicate that absolute excitation energies are unknown due to lack of knowledge about linking transitions to the lower levels.
	I^{π}	I denotes the level spin for each band member. π denotes the parity (+ or -). I^{π} given in parentheses denotes uncertain spin and/or parity assignments.
	$E_{\gamma}(M1)$	γ -Ray energies in units of keV for the M1 ($\Delta I = 1$) transition $I \rightarrow I - 1$.
	$E_{\gamma}(E2)$	γ -Ray energies in units of keV for the E2 ($\Delta I = 2$) transition $I \rightarrow I - 2$.
	B(M1)/B(E2)	The ratio of reduced transition probabilities in units of $(\mu_N/eb)^2$ given with the uncertainties in the last digits in parentheses [Eq. (7), $\delta = 0$]. In some bands where only upper limits for the intensities of the E2 transitions are given the lower limits for $B(M1)/B(E2)$ are given.
	References	The references follow key numbers as assigned in the Nuclear Science References database at Brookhaven National Laboratory. The data for a band have been taken from the first reference cited (printed bold). Information taken from other references is given under the column "Configurations and Comments."
	Configurations and	
	Comments	The quasiparticle configuration for a band is given wherever assigned by the original authors. π here is for protons and ν is for neutrons. s, p, d, f, g, h, and i are the orbitals. A positive integer in the superscript of the orbital denotes the number of particles while a negative integer denotes the number of holes in that orbital.
		The abbreviations in this item are explained below: DSM deformed shell model TAC tilted-axis cranking CSM cranked shell model TRS total Routhian surface PSM projected shell model IBFM interacting Boson–Fermion model FAL Fermi aligned HF Hartree–Fock BCS Pairing theory of Bardeen, Cooper, and Schrieffer CWS Cranked Woods–Saxon
	(β_2, γ) Backbending	Deformation parameters. In a rotational band, the transition energies increase with increase in spin reflecting the $I(I + 1)$ behavior, but in some cases, e.g., in band 1 of ¹⁰⁸ Cd, the moment of inertia increases drastically after the spin 16 ⁻ , and the transition energy decreases and again starts rising after 18 ⁻ . This phenomenon is known as backbending and is usually attributed to the crossing of two rotational bands due to the alignment of a pair of either kind of quasiparticles.
	Regular band	A band where the excitation energy varies more or less smoothly with spin, though not necessarily as $I(I + 1)$.
	T 1 1 1	

Irregular band A band where energy variation with spin is quite abrupt.

	E _{ievel} keV	I ^π	E _γ (M1) keV	E _γ (E2) keV	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	References
1	2931.6	17/2-				1993Do14
	3219.6	$(19/2^{-})$	288.0			1993Sy03
	3609.9	(21/2)	390.3			1995Ta21
	4149.8	(23/2)	539.9			

	₃₅ Br ₄₄					
	Elevel	I ^π	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	References
	keV		keV	keV	(μ _N /eb) ²	
1	2393.1	13/2-				1988Sc13
	2580.4	15/2	187.3			1995Ta21
	2773.9	$17/2^{-1}$	193.5			
	3088.3	19/2	314.4			
	3535.8	$21/2^{-1}$	447.5			

79 -

	$^{81}_{35}{ m Br}_{46}$					
	Elevel	I ^π	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	References
	keV		keV	keV	$(\mu_N/eb)^2$	
1	2549.4	(13/2)				1986Fu04
	2668.5	$(15/2^{-})$	119.1			1995Ta21
	2942.1	$(17/2^{-})$	273.6			
	3333.5	$(19/2^{-})$	391.4			
	3798.7	$(21/2^{-})$	465.2			

	⁷⁹ ₃₆ Kr ₄₃					
	Elevel	Iπ	$E_{\nu}(M1)$	$E_{v}(E2)$	B(M1)/B(E2)	References
	keV		keV	keV	$(\mu_N/eb)^2$	
1	2857.0	$(17/2^{-})$				1990Sc07
	3214.3	19/2-	357			1994Jo08
	3585.5	$21/2^{-1}$	371.2			1995Ta21
	4133.0	23/2-	547.5			

Configurations and Comments:

- 1. Tentatively assigned as $\pi(g_{9/2}) \otimes v\{g_{9/2} \otimes (p_{1/2}p_{3/2}f_{5/2})^1\}$ from the alignment and DSM calculations.
- 2. Regular band.
- 3. Nuclear reactions: ⁷⁵As (α ,2n γ), E(α)= 27 MeV, ⁷³Ge (⁷Li, 3n γ) and ⁷⁴Ge (⁷Li, 4n γ), E(⁷Li)= 35 MeV.

Configurations and Comments:

- 1. Tentatively assigned as $\pi(g_{9/2}) \otimes \nu[g_{9/2}(p_{3/2}f_{5/2})^1]$
- 2. Regular band.
- 3. Nuclear reaction: ⁷⁷Se (α , np γ), E(α)= 27 MeV, Band intensity ~ 6%.

Configurations and Comments:

- 1. Tentatively assigned as $\pi(g_{9/2}^2 p_{3/2})$, but this may only be just one component.
- 2. Regular band.
- 3. Nuclear reaction: ⁸⁰Se (α , p2n γ), E(α)= 35-48 MeV.

- 1. Tentatively assigned as $\pi[g_{9/2} \otimes (p_{3/2}f_{5/2})^1] \otimes v(g_{9/2})$.
- 2. Regular band.
- 3. Nuclear reactions: ⁷⁷Se(α , 2n γ), ⁷⁸Se(α , 3n γ), and ⁶⁸Cu(¹⁸O, 3pn γ).

	⁷⁹ ₃₇ Rb ₄₂					
	E _{level} keV	I ^π	$E_{\gamma}(M1)$ keV	E _γ (E2) keV	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	References
1	3309.4	(19/2)				1993Ho15
	3687.5	$(21/2^{-})$	378.1			1995Ta21
	4152.2	$(23/2^{-})$	464.7	842.8		1996Sm07
	4686.4	$(25/2^{-})$	534.2			
	5287.4	$(27/2^{-})$	601			

$^{81}_{37}$ Rb₄₄

	3/ 44					
	E _{levet} keV	I ^π	E _γ (M1) keV	E _γ (E2) keV	$B(M1)/B(E2) (\mu_N/eb)^2$	References
1	2636.0	$(15/2^{-})$				1994Do18
	2697.2	$17/2^{-1}$	61.0			1995Ta21
	2997.7	$19/2^{-1}$	300.5			
	3427.5	$21/2^{-1}$	429.8			
	3993.1	23/2-	565.6	(996)		
	4529	(25/2)	599			

⁸²**Rb**...

	E _{level} keV	I ^π	E _γ (M1) keV	E _γ (E2) keV	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	Reference
1	2616	11(-)				1999Sc14
	3027	12(-)	411			1999Do02
	3499	13 ⁽⁻⁾	473	883		
	4046	(14)	548	1018		
	4714	(15)	668	1215		
	5483	(16^{-})	769	1437		

⁸³₂₇ Rb₄₆

	3/ = -~ 40					
	E _{level} KeV	I ^π	E _γ (M1) keV	E _γ (E2) keV	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	References
1	2314.0	$(13/2^{-})$				1980Ga17
	2414.4	$(15/2^{-})$	100.5			1995Ta21
	2596.7	$(17/2^{-})$	182.0			
	2958.9	$(19/2^{-})$	362.2			
	3363.8	$(21/2^{-})$	404.9			

Configurations and Comments:

- 1. Tentatively assigned as $\pi(g_{9/2}) \otimes v[(g_{9/2}) \otimes (pf)^1]$ by comparison with the isotone ⁷⁷Br.
- 2. Regular band.
- 3. 601 keV M1 transition is from 1996Sm07.
- Nuclear reactions: ⁶³Cu(¹⁹F, 2pnγ) and ⁶⁵Cu(¹⁸O, 4nγ), E(¹⁹F) and E(¹⁸O) = 65 MeV, Band intensity < 2%.

Configurations and Comments:

- 1. Tentatively assigned as $\pi(g_{9/2}) \otimes v[(g_{9/2}) \otimes (pf)^1]$
- 2. Regular band.
- 3. Nuclear reactions: ⁷⁹Br(α , 2n γ), E(α)= 27 MeV and ⁶⁸Zn(¹⁹F, α 2n γ), E(¹⁹F) = 72 MeV.

Configurations and Comments:

- 1. Tentatively assigned as $\pi[(g_{9/2})^2 \otimes (p_{3/2}f_{5/2})^1] \otimes \nu(g_{9/2}).$
- 2. $(\beta_2, \gamma) = (0.16, 20^\circ)$ from TAC calculations.
- 3. Regular band.
- 4. B(M1)/B(E2) values range from 10-25 $(\mu_N/eb)^2$.
- 5. Nuclear reaction: ⁷⁶Ge (¹¹B, 5n γ), E(¹¹B)= 50 MeV, band intensity ~ 20%.

- 1. Tentatively assigned as a three qp band.
- 2. Regular band.
- 3. Nuclear reactions: ${}^{81}Br(\alpha, 2n\gamma), E(\alpha)= 19-25$ MeV, ${}^{80}Se({}^{6}Li, 3n\gamma), E({}^{6}Li)= 23-29$ MeV, ${}^{70}Zn({}^{16}O, p2n\gamma), E({}^{16}O)= 52$ MeV and ${}^{74}Ge({}^{12}C, p2n\gamma), E({}^{12}C)= 35-49$ MeV.

	⁸⁴ ₃₇ Rb ₄₇					
	Elevel	Iπ	E _γ (M1)	Ε _γ (Ε2)	B(M1)/B(E2)	References
	keV		keV	keV	(µ _N /eb) ²	
1	3393	11(-)				1999Sc14
	3720	12(-)	327			
	4166	13 ⁽⁻⁾	445	772		
	4714	14 ⁽⁻⁾	548	996		
	5372	15 ⁽⁻⁾	657	1206		
	6094	16 ⁽⁻⁾	722	1381		
	6861	17 ⁽⁻⁾	766	1489		

⁸⁵ Rb48

	3/~ 48					
	E _{level}	Iπ	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	References
	keV		keV	keV	$(\mu_N/eb)^2$	
1	3198.2	17/2(-)				1995Sc04
	3813.1	19/2 ⁽⁻⁾	614.9			1995Ta21
	4356.1	21/2 ⁽⁻⁾	543.5			
	4940.0	$(23/2^{-})$	583.9			

$^{108}_{48}$ Cd₆₀

	Elevel	Iπ	E _γ (M1)	$E_{\gamma}(E2)$	B(M1)/B(E2)	References
	keV		keV	keV	$(\mu_N/eb)^2$	
1	(5590.7)	(11`)				1993Th05
	5641.0	12-	(51)			1994Th01
	5762.2	13-	121.2			
	6078.2	14	316.0		>25	
	6600.1	15	521.9		>118	
	7277.0	16	676.9		>164	
	7742.5	17	465.5		>218	
	8104.0	18-	361.5		>91	
	8586.5	(19`)	482.5		>35	
	9176.7	(20^{-})	590.2			
	(9881.2)	(21)	(704.5)			
2	(7863.7)	(16)				1993Th05
	(8187.0)	(17)	323.3			
	(8545.7)	(18)	358.7			
	(8966.5)	(19)	420.8			

Configurations and Comments:

- 1. Tentatively assigned as $\pi[(g_{9/2})^2 \otimes (p_{3/2}f_{5/2})^1] \otimes v(g_{9/2}).$
- 2. $(\beta_2, \gamma) = (0.14, -15^\circ)$ from TAC calculations.
- 3. Regular band.
- 4. B(M1)/B(E2) values range from 5-20 $(\mu_N/eb)^2$.
- 5. Nuclear reaction: ⁷⁶Ge (¹¹B, $3n\gamma$), E(¹¹B)= 50 MeV, band intensity ~ 20%.

Configurations and Comments:

- 1. Tentatively assigned as $\pi(g_{9/2}^{-1}) \otimes \nu(g_{9/2}^{-1}f_{5/2}^{-1})$.
- 2. Irregular band.
- Nuclear reaction: ⁸²Se(⁷Li, 4nγ), E(⁷Li)= 32 MeV.

Configurations and Comments:

1.	Tentatively assigned as $\pi(g_{9/2})^{-2}_{K=8} \otimes \nu[h_{11/2}(g_{7/2})]^{-2}$
	or $d_{5/2}$) ³ before and $\pi (g_{9/2})^{-2}_{K=8} \otimes v(h_{11/2})^{-3} (g_{7/2})^{-2}$ or
	$d_{5/2})^{1}$ after the band crossing.
2.	Small prolate deformation suggested

- Small prolate deformation suggested.
 Lower limits on B(M1)/B(E2) are from the unobserved ∆I= 2 (E2) transitions.
- 4. Regular band with backbending at 17.
- 5. Mean lifetimes of 14⁻ and 15⁻ levels are <3 ps from 1994Th01.
- 6. Nuclear reaction: 96 Zr (16 O, 4n γ), E(16 O)= 74, 75 MeV, Band intensity ~ 3% and from 1994Th01: 100 Mo (12 C, 4n γ), E(12 C)= 54 MeV.

Regular band.

2. Band intensity < 2%.

	$^{10}_{48}Cd_{61}$					
	E _{level}	I ^π	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	Reference
	keV		keV	keV	$(\mu_N/eb)^2$	
1	3354.5	21/2				1994Ju05
	3549.5	23/2-	195.0			
	4030.5	$25/2^{-1}$	481.7			
	4630.5	$27/2^{-1}$	600.0			
	5279.5	29/2 ⁻	649.0	1249.0		
	5441.1	31/2-	161.6			
	5731.0	33/2-	289.9			
	6164.3	35/2-	433.3			
	6795.8	37/2-	631.5			
	7554.8	(39/2)	759			
2	5560.9	(27/2)				1994Ju05
	5862.0	(29/2)	301.1			
	6241.0	(31/2)	379.0			
	6704.0	(33/2)	463.0			
	7244.6	(35/2)	540.6			
	7822.4	(37/2)	577.8			
	8429.4	(39/2)	607			

 $^{110}_{48}$ Cd₆₂

109 0 1

	Elevel	Iπ	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	References
	keV		keV	keV	(µ _N /eb) ²	
1	5759.7	13-				1994Ju04
	5985.3	14-	225.6			
	6355.3	15	370.0			
	6963.8	16-	608.5		>58	
	7576.2	17	612.4		>317	
2	6584.2	14				1994Ju04
	6879.2	15	295.0			
	7280.6	16	401.4			
	7758.5	17	477.9			
3	8015.8	17				1994Ju04
	8277.0	18	261.2			1999Cl03
	8594.6	19	317.6			
	8966.9	20	372.3			
	9429.4	21	462.5		>48	
	9990.4	22	561		>63	
	10664.2	23	673.8		>60	
	11450.2	24	786			

Configurations and Comments:

- 1. Tentatively assigned as $\pi(g_{9/2})^{-2} \otimes v(h_{11/2})$ by comparison with the similar bands in ¹⁰⁸Cd and ¹¹⁰Cd.
- 2. $(\beta_2, \gamma) \sim (0.12, 3^\circ)$ from CSM calculations.
- 3. B(M1)/B(E2) values range from ~ 40 $(\mu_N/eb)^2$ to ~ 150 $(\mu_N/eb)^2$.
- 4. Regular band with a backbending at 31/2.
- Nuclear reactions: ¹⁰⁰Mo (¹³C, 4ηγ), E(¹³C)= 44 MeV and ⁹⁶Zr (¹⁸O, 5ηγ), E= 73 MeV, Band intensity ~ 4%.

1. Tentatively assigned as $\pi(g_{9/2})^{-2} \otimes v(d_{5/2} h_{11/2}^{-2})$ or $\pi(g_{9/2})^{-2} \otimes v(g_{7/2} h_{11/2}^{-2})$ from the properties of the band and its decay patterns.

- 2. B(M1)/B(E2) values $\ge 20 (\mu_N/eb)^2$ for the two levels at 33/2 and 35/2.
- 3. Regular band.
- 4. Band intensity ~ 2%.

•	1. Tentatively assigned as $\pi(g_{9/2}^{-2}) \otimes v(h_{11/2}g_{7/2})$ or $\pi(g_{9/2}^{-2}) \otimes v(h_{11/2}d_{5/2})$ by comparison with a
	similar band in ^{coc} Cd and from the alignments.
	2. Protate deformation.
	5. Lower limits on B(M1)/B(E2) values are from the unobserved $\Delta I= 2$ (E2) transitions.
	Regular band.
	5. Nuclear reactions: 96 Zr (18 O, 4n γ), E(18 O) = 73 MeV and 100 Mo (13 C, 3n γ), E(13 C) = 44 MeV,
	Band intensity ~ 5%.
	1. Tentatively assigned as $\pi(g_{9/2}^{-2}) \otimes \nu(h_{11/2}^{-2})$ or $\pi(g_{9/2}^{-1}p_{1/2}) \otimes \nu(h_{11/2}^{-2})$ depending on whether
	the band has positive or negative parity.
	2. Prolate deformation.
	3. Regular band.
	4. Band intensity $\sim 1\%$.
	1. Configuration may involve in addition to that of band 2, an aligned pair of neutrons in the
	g _{7/2} orbital.
	2. Prolate deformation.
	3. Lower limits on B(M1)/B(E2) values are from the unobserved $\Delta I= 2$ (E2) transitions.
	4. Regular band.
	5. Mean lifetimes of levels with spins from 20 to
	23, as given in 1999Cl are 0.184(+18-22),
	0.101(+15-18), 0.094(+14-18) and 0.092(+17
	-23) ps, respectively.
	6. B(M1) values for transitions from 372.3 to
	673.8 keV, as given in 1999Cl are 5.40(+65-53)
	5.13(+90-75), $3.06(+57-45)$ and $1.83(+46-34)$
	μ_N respectively.
	7. Band intensity $\sim 2.5\%$.

	¹¹¹ ₄₉ In ₆₂						
	E _{level}	I ^π	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	Reference	Configurations and Comments:
	keV		keV	keV	$(\mu_N/eb)^2$		
1	3461.0	19/2+				1998Va03	1. $\pi(g_{9/2}^{-1}) \otimes \nu(h_{11/2}^{-2})$ by comparison with a
	3588.4	$21/2^{+}$	127.4				similar band in ¹¹⁰ Cd .
	3707.2	$23/2^{+}$	118.8				2. Small prolate deformation.
	3911.3	$25/2^{+}$	204.1				3. B(M1)/B(E2) > 50-100 $(\mu_N/eb)^2$ from
	4282.6	$27/2^{+}$	371.3				unobserved $\Delta I = 2$ (E2) transitions.
	4795.8	$29/2^{+}$	513.2	884.3	70(11)		4. Regular band with small backbending at 23/2.
	5330.7	$31/2^{+}$	534.9	1048.4	34(3)		5. Nuclear reaction : 96 Zr(19 F, 4n γ), E(19 F)= 72
	5877.1	(33/2+)	546.4	1081.3	20(2)		MeV, Band intensity ~ 33%.
2	4932.0	$27/2^{+}$				1998Va03	1. $\pi(g_{9/2}^{-1}) \otimes \nu(h_{11/2}^2 g_{7/2}^2)$ by comparison with a
	5166.8	$29/2^{+}$	234.8				similar band in ¹¹⁰ Cd.
	5398.8	$31/2^{+}$	232.0				2. Small prolate deformation.
	5678.1	$33/2^{+}$	279.3				3. B(M1)/B(E2) > 50-100 (μ_N/eb) ² from
	6051.0	$35/2^{+}$	372.9				unobserved $\Delta I = 2$ (E2) transitions.
	6538.1	$(37/2^{+})$	487.1				4. Regular band with small backbending at 31/2.
	7175.2	$(39/2^+)$	637.1				5. Band intensity ~ 15%.
	7917.1	$(41/2^+)$	741.9				
	8681.1	(43/2+)	764.0				
3	Х	$(31/2^{-})$				1998Va03	1. Tentatively assigned as $\pi(g_{9/2}^{-1}) \otimes \nu(h_{11/2}g_{7/2}d_{5/2})$
	390.5+X	$(33/2^{-})$	390.5				(configuration of a band in ¹¹⁰ Cd) coupled to
	794.7+X	$(35/2^{-})$	404.2				an aligned $g_{7/2}$ or $h_{11/2}$ neutron pair.
	1244.3+X	$(37/2^{-})$	449.6				2. I^{π} and level energies are lower limits as
	1774.1+X	$(39/2^{-})$	529.8				estimated from intensity and feeding
	2354.6+X	$(41/2^{-})$	580.5				considerations.
							3. X~ 5500 keV.
							4. B(M1)/B(E2) > 50-100 (μ_N /eb) ² from unobserved $\Delta I= 2$ (E2) transitions.

5. Regular band.
 6. Band intensity ~ 9%.

Configurations and Comments

- 1. Tentatively assigned as $\pi(g_{9/2}^{-1}) \otimes \nu(g_{7/2}^{-1}h_{11/2})$.
- 2. Small prolate deformation ($\beta_2=0.09$).
- 3. Parity assignment is based on comparison with neighboring nuclei.
- 4. Irregular band.
- Fully aligned configuration gives rise to I^π= 27/2⁻; I^π beyond this value is attributed to some collectivity.
 Nuclear reaction : ¹¹⁰Pd(⁷Li, 4nγ), E(⁷Li) = 40
- 6. Nuclear reaction : 110 Pd(7 Li, 4n γ), E(7 Li) = 40 MeV, Band intensity ~ 31%.
- 1. Tentative Configuration $\pi(g_{9/2}^{-1}) \otimes \nu(h_{11/2}^{-2})$.
- 2. Small prolate deformation ($\beta_2=0.09$)
- 3. Parity assignment is based on comparison with neighboring nuclei.
- 4. Regular band.
- 5. Band intensity ~ 15%.

113	Ĭn
49	111 64

	Elevel	Ιπ	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	Reference
	keV		keV	keV	$(\mu_N/eb)^2$	
1	2233.2	(15/2)				1997Ch01
	2396.4	$(17/2^{-})$	163.2			
	2663.9	(19/2)	267.5			
	2853.6	$(21/2^{-})$	189.7			
	3023.1	$(23/2^{-})$	169.5			
	3280.0	(25/2')	256.9			
	3972.6	$(27/2^{-})$	692.6			
	4715.0	$(29/2^{-})$	742.4	1434.9	8(2)	
	5392.7	$(31/2^{-})$	677.7	1418.6	17(6)	
2	3122.1	$(21/2^{+})$				1997Ch01
	3213.9	$(23/2^+)$	91.8			
	3397.2	$(25/2^+)$	183.3			
	3788.1	$(27/2^+)$	390.9			
	4377.5	$(29/2^{+})$	589.4	980.2	24(6)	
	5062.1	$(31/2^+)$	684.6	1274.2	71(14)	
	5790.3	(33/2+)	728.2		· · ·	

	50 ^{OH} 55					
	E _{level} keV	Ι ^π	E _γ (M1) keV	E _γ (E2) keV	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	Reference
1	7043	$29/2^+$				1997Ga01
	7343	$31/2^{+}$	300			
	7730	33/2 ⁽⁺⁾	388			
	8196	35/2 ⁽⁺⁾	466			
	8682	37/2(+)	486			
	9137	39/2 ⁽⁺⁾	456			
	9692	41/2 ⁽⁺⁾	555			
	10287	43/2(+)	596			

$^{106}_{50}$ Sn $_{50}$

105 Cm

	30 30						
	E _{tevel}	Iπ	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	References	Configura
	keV		keV	keV	$(\mu_N/eb)^2$		
1	8011	15				1999Je07	1. $\pi(g_{7/2}g_9)$
	8558	16	547			1999JeAA	calculat
	9101	17	543			1998Je03	2. $(\beta_2, \gamma) =$
	9551	18-	450		>160		3. Level er
	10039	19	488		>250		1999JeA
	10631	20	592		>200		4. Mean li
	11412	21	781		>35		0.30(3),
	12046	22-	634				0.22(+1
							5. B(M1) v
							599 keV
							0.54(+2
							respecti
							6 Regular
							the band
							7. Nuclear
							243 Me
2	9236.1	17				1998Je03	1. $\pi(g_{7/2})$
	9637.8	18-	401.7				calculat
	10117.0	19 ⁻	479.2		>155		2. $(\beta_2, \gamma) =$
	10672.4	20-	555.4		>290		3. Regular
	11292.7	21-	620.3		>220		e
	11971.5	22-	678.8				

Configurations and Comments:

1.	Tentatively assigned as $\pi(g_{9/2}^{-1}g_{7/2}) \otimes \nu(h_{11/2}^{-2})$
	$(d_{5/2}g_{7/2})^1$) from TRS calculations.

- 2. Prolate deformation ($\beta_2=0.137$)
- 3. B(M1)/B(E2)>100(μ_N /eb)² from the unobserved $\Delta I = 2$ (E2) transitions.
- 4. Regular band with a backbending at 37/2.
- 5. Nuclear reaction : ${}^{50}Cr({}^{58}Ni, 2pn\gamma)$, E(${}^{58}Ni$)= 210 MeV, Band intensity ~ 20%.

tions and Comments:

- $(\chi_2^{-1}) \otimes v((g_{7/2}d_{5/2})^3 h_{11/2})$ from TAC ions.
- (0.11, -13°).
- nergies, spins and parities are from ****Α.
- fetimes of the five uppermost levels are 0.43(5), 0.51(15), 0.22(2) and -3) ps, respectively.
- values for the transitions from 450 to are 2.06(+22-26), 1.12(+15-13), $(0-13), 0.54(+5-7) \text{ and } 1.17(17) \mu_N^2,$ vely.
- band with backbending at the top of 1.
- reaction: 54 Fe(58 Ni, $\alpha 2p\gamma$), E(58 Ni) = V.

	1998Je03	1. $\pi(g_{7/2} g_{9/2}^{-1}) \otimes \nu((g_{7/2} d_{5/2})^3 h_{11/2})$ from TAC calculations.
>155		2. $(\beta_2, \gamma) = (0.11, -13^\circ).$
>290		3. Regular band.

	$^{108}_{50}$ Sn $_{58}$					
	Elevel	Iπ	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	References
	keV		keV	keV	$(\mu_N/eb)^2$	
1	6665	12				1998Je03
	6885.0	13-	220.0			1999Je07
	7182.7	14-	297.7			
	7606.4	15	423.7	720	30.0(25)	
	8116.3	16 ⁻	509.9	934	23.5(40)	
	8634.5	17^{-1}	518.2	1028	26.0(35)	
	9169.6	18-	535.1	1053	19.5(40)	
	9719.8	19	550.2	1085	23(4)	
	10355.3	20-	635.5	1184	24(4)	
2	8103	16				1998Je03
	8351.2	17	248.2			
	8695.8	18-	344.6	(592)		
	9105.8	19 ⁻	410.0	753	15.4(40)	
	9579.4	20*	473.6	885	14.1(40)	
	10062.8	21-	483.4	956	20.2(50)	
	10572.2	22-	509.4	992	22.7(70)	

 $^{108}_{51}{
m Sb}_{57}$

	01 07						
	Elevel	I ^π	E _γ (M1)	$E_{\gamma}(E2)$	B(M1)/B(E2)	Reference	Configurations and Comments:
	keV		keV	keV	$(\mu_N/eb)^2$		
1	2154.6	7-				1998Je09	1. $\pi[(g_{7/2}, d_{5/2})^2 g_{9/2}^{-1}] \otimes v(h_{11/2})$ from TAC
	2246.0	8-	91.4				calculations.
	2438.3	9'	192.3	283			2. $(\beta_2, \gamma) = (0.116, 30^\circ)$ from TAC calculations.
	2719.9	10-	281.6	474			3. B(M1)/B(E2) values range from ~ 5 $(\mu_s/eb)^2$
	3032.4	11-	312.5	595			to ~ 20 $(\mu_N/eb)^2$.
	3376.8	12-	344.4	657			4. Regular band.
	3764.7	13-	387.9	732			5. Nuclear reaction: ⁵⁴ Fe (⁵⁸ Ni, 3pny), $E(^{58}Ni) =$
	4173.6	14	408.9	797			243 MeV, Band intensity $\sim 47\%$.
	4613.3	15-	439.7	849			
	5101.9	16-	488.6	929			
	5611.5	17-	509.6	999			
	6150.0	18-	538.5	1049			
	6719.6	19-	569.6	1109			
2	2753.4	10				1998Je09	1. $\pi(h_{11/2} g_{7/2} g_{9/2}) \otimes \nu(g_{7/2}, d_{5/2})$ from TAC
	3057.4	11	304.0				calculations.
	3376.4	12	319.0	623			2. $(\beta_2, \gamma) = (0.116, 10^\circ)$ from TAC calculations.
	3722.5	13-	346.1	665			3. B(M1)/B(E2) values range from ~ 5 $(\mu_N/eb)^2$
	4177.9	14-	455.4	801			to ~ 25 $(\mu_N/eb)^2$.
	4597.3	15	419.4	874			Regular band with backbending at 15.
	5064.4	16	467.1	886			5. Band intensity ~ 19%.
	5561.8	17	497.4	964			
	6092.3	18-	530.5	1028			
	6645.2	19	552.9	1084			
	7216.3	20	571.1	1124			

Configurations and Comments:

١.	$\pi(g_{7/2} \ g_{9/2} \ ^{-1}) \otimes \nu((g_{7/2} d_{5/2})^1 \ h_{11/2})$ from a calculations.	TAC
2.	Prolate shape $(\beta_2, \gamma) = (0.08, 0^\circ)$ from	1999Je

3. The mean lifetimes of levels with spins from 15 to 19 as given in 1999Je are 0.66(2), 0.23(1), 0.29(1), 0.44(+5-2) and 0.56(2) ps, respectively.

4. B(M1) values for the transitions from 424 to 550 keV are 1.05(3), 1.63(8), 1.16(5), 0.64(+4 -8) and 0.48(3) μ_N^2 , respectively.

5. Regular band.

1. $\pi(g_{7/2} g_{9/2}^{-1}) \otimes \nu(g_{7/2}^{-2} (g_{7/2} d_{5/2})^1 h_{11/2})$ from TAC calculations.

2. Prolate shape $(\beta_2, \gamma) = (0.11, 0^\circ)$ from 1999Je.

^{6.} Nuclear reaction: 54 Fe(58 Ni, 4p γ), E(58 Ni) = 243 MeV.

	$^{112}_{51}$ Sb ₆₁					
	E _{level}	Iπ	E _y (M1)	$E_{\gamma}(E2)$	B(M1)/B(E2)	Reference
	keV		keV	keV	$(\mu_N/eb)^2$	
1	1675.1	7				1998La14
	1747.5	8-	72.4			
	1949.7	9-	202.2			
	2275.2	10-	325.5	527.7	24(2)	
	2629.1	11	353.9	679.1	16.0(8)	
	3009.7	12	380.6	734.6	14.2(7)	
	3402.1	13-	392.4	773.5	13.3(7)	
	3809.0	14-	406.9	799.7	6.8(4)	
	4295.3	15	486.3	893.2	10.6(8)	
	4798.3	16	503.0	989.8	9.9(9)	
	5326.2	17-	527.9	1030.8		
2	Х	(10 ⁺)				1998La14
	378.2+X	(11^{+})	378.2			
	750.8+X	(12^{+})	372.6	750.6	7.5(5)	
	1077.6+X	(13 ⁺)	326.8	699.7	15.3(12)	
	1372.5+X	(14^{+})	294.9	621.7	56(7)	
	1690.3+X	(15^{+})	317.8	613.0	200(180)	
	2046.1+X	(16^{+})	355.8	673.9	30(3)	
	2437.7+X	(17^{+})	391.6	747.6	26(3)	
	2851.9+X	(18^+)	414.2			
	3284.4+X	(19 ⁺)	432.5			

Configurations and Comments:

1. $\pi(g_{9/2}^{-1}) \otimes \nu(h_{11/2})$ from TRS calculations.

- 2. Regular band.
- 3. Nuclear reaction: 103 Rh (12 C, 3n γ), E(12 C)= 60 MeV and 90 Zr (31 P, 2 α n γ), E= 150 MeV, Band intensity ~ 30%.

1. $\pi(g_{9/2}^{-1}) \otimes \nu((d_{5/2}g_{7/2})^{1}h_{11/2}^{-2})$ from TRS calculations and by comparison with similar bands in neighboring isotopes.

2. Regular band with backbending at 12.

3. Band intensity $\sim 6\%$.

$^{124}_{54}$ Xe₇₀

	E _{level}	I ^π	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	Reference
	keV		keV	keV	$(\mu_N/eb)^2$	
1	5051	(12)				1999Sc20
	5292	(13)	241			1997Lo12
	5554	(14)	262	502		
	5830	(15)	276	537		
	6156	(16)	326	602		
	6556	(17)	400	726		
	6987	(18)	431	831		
	7436	(19)	449	880		
	7932	(20)	496	944		
	8368	(21)	436	932		
	8914	(22)	546	982		
	9486	(23)	572	1118		
	9929	(24)	443	1016		

- 1. Tentatively assigned as $\pi(h_{11/2}\otimes (d_{5/2}g_{7/2})^1)\otimes \nu(h_{11/2}\,g_{7/2}).$
- 2. The observed B(M1)/B(E2) values start from 23.3 (3.3) $(\mu_N/eb)^2$ and decrease with increasing spin before the backbend.
- 3. Irregular band with backbending at 8368 keV level and at the top of the band.
- 4. Nuclear reaction: ¹¹⁰Pd (¹⁸O, 4n γ), E(¹⁸O)= 86 MeV, Band intensity ~ 13%.

TABLE.	Magnetic	Dipole	Rotational	Bands
See	page 295 fo	or Explan	ation of Tab	le

	¹³² ₅₆ Ba ₇₆						
	E _{level} KeV	I ^π	E _γ (M1) keV	E _γ (E2) keV	$B(M1)/B(E2) (\mu_N/eb)^2$	Reference	Configurations and Comments:
1	4108.5 4312.3 4548.0 4883.0 5307.5	$(10^{+}) (11^{+}) (12^{+}) (13^{+}) (14^{+})$	203.8 235.7 335.0 424.5			1989Pa17	 Tentatively assigned as π(h_{11/2}g_{7/2}) ⊗ ν(h_{11/2}d_{3/2}) by considering the available orbits nearest to the Fermi surface. Oblate shape (γ~ -60°). Parities are from multipolarities of interband transitions. Regular band. Nuclear reaction: ¹²²Sn (¹³C, 3nγ), E(¹³C) = 57 MeV, Band intensity ~ 1%.
2	4863.9 5033.6 5249.2 5557.1 5964.1	(11 ⁻) (12 ⁻) (13 ⁻) (14 ⁻) (15 ⁻)	169.7 215.6 307.9 407			1989Pa17	 π(h_{11/2}g_{7/2}) ⊗ ν(h_{11/2}²) by considering the available orbits nearest to the Fermi surface. Oblate shape (γ~ -60°). Parities are from multipolarities of interband transitions. Mean lifetime of Bandhead = 12.5(3) ns. Regular band. Band intensity ~ 3%.

¹³¹₅₇La₇₄

	E _{level}	Iπ	$E_{\gamma}(M1)$	$E_{\nu}(E2)$	B(M1)/B(E2)	Reference
	keV		keV	keV	$(\mu_N/eb)^2$	
1	2476.7	(19/2)				1989Hi02
	2544.0	$(21/2^{-})$	67.3			
	2698.3	(23/2-)	154.3			
	2934.4	(25/2)	236.1	389.9		
	3242.6	(27/2)	308.2	544.1		
	3609.2	(29/2)	366.6	675.6		
	4023.1	$(31/2^{-})$	413.9	780.7		
	4478.5	(33/2)	455.4	869.8		
	4967.1	(35/2)	488.6	943.9		
	5489.3	(37/2)	522.2	1010		
	6037.1	(39/2-)	547.8	1069		
	(6605.6)	(41/2`)	(568.5)	(1115)		
	(7184.6)	(43/2)	(579)			
2	2120.5	21/2-				1989Hi02
	2548.0	(23/2)	427.5			
	3017.3	$(25/2^{-})$	469.3	896		
	3526.3	$(27/2^{-})$	509	978		

- 1. Tentatively assigned as $\pi(h_{11/2}) \otimes \nu(h_{11/2}^{-2})$ from CSM calculations.
- 2. Collective oblate structure ($\gamma = -60^{\circ}$).
- 3. B(M1)/B(E2) ratio is in the range of 10-50 $(\mu_N/eb)^2$ and rises with increasing spin.
- 4. Regular band.
- 5. Nuclear reaction: ${}^{116}Cd({}^{19}F, 4n\gamma), E({}^{19}F) = 76 \text{ to}$ 90 MeV, Band intensity ~ 7%.
- 2 1. Tentatively assigned as $\pi(g_{7/2}) \otimes \nu(g_{7/2}h_{11/2})$ by comparison with the neighboring ¹²⁸Ba and ¹³⁰Ce isotopes.
 - Oblate shape suggested because of strong connection to band 1.
 Deally a bit is to be a bit is the table of the strong of the stron
 - 3. Bandhead is isomeric with a half life of 38(2) ns.
 - 4. Regular band.

	¹³⁵ ₅₈ Ce ₇₇						
	Elevel	I ^π	E _γ (M1)	E _γ (E2)	B(M1)/B(E2)	Reference	Configurations and Comments:
	keV		KeV	keV	$(\mu_N/eb)^2$		
1	3229.8	23/2+				1990Ma26	1. Tentatively assigned as $\pi(h_{11/2}g_{7/2}) \otimes \nu(h_{11/2})$ by
	3431.9	$25/2^{+}$	202.1				comparison with the N=75 isotones.
	3699.9	$27/2^{+}$	268.0				2. Near prolate shape ($\gamma \sim 0^{\circ}$).
	4128.2	$29/2^{+}$	428.3	696	>8		3. Irregular band with backbending at $I^{\pi} = 31/2$
	4486.4	$31/2^{+}$	358.2	786.8	23(7)		and 35/2.
	4979.3	$33/2^{+}$	492.9	851	>9		4. Small signature splitting.
	5428.5	$35/2^{+}$	449.2	942	>14		5. Lower limits of $B(M1)/B(E2)$ are from the
	5942.5	$(37/2^{+})$	514	963			unobserved $\Delta I = 2$ (E2) transitions.
	6444.5	(39/2 ⁺)	502	(1016)			6. Nuclear reaction : ${}^{122}Sn({}^{18}O, 5n\gamma)$, $E({}^{18}O) = 85$ and 89 MeV, Band intensity ~ 17%.
2	4183.8	27/2 ⁻				1990Ma26	1. Tentatively assigned as $\pi(h_{11/2}^2) \otimes v(h_{11/2})$ by
	4460.9	29/2 ⁻	277.1				comparison with the N=75 isotones.
	4830.9	31/2-	370.0				2. Near prolate shape ($\gamma \sim 0^{\circ}$).
	5206.5	33/2-	375.6	746	>6		3. Irregular band with backbending at 37/2.
	5651.6	35/2-	445.1	821	>19		4. Small signature splitting.
	6086.5	37/2-	434.9	880	>24		5. Lower limits of $B(M1)/B(E2)$ are from the
	6526.5	39/2-	440.0	(875)	>13		unobserved $\Delta I = 2$ (E2) transitions.
	6994.5	41/2-	468.0	(908)	>6		6. Band intensity ~ 10%.
	7494.5	(43/2)	500	968			
3	4498.8	27/2-				1990Ma26	1. Tentatively assigned as $\pi(h_{11/2}g_{7/2}) \otimes$
	4637.9	29/2-	139.1				$v(h_{11/2}^2 s_{1/2}).$
	4816.4	31/2-	178.5		>4		2. Collectively rotating oblate structure
	5065.4	33/2-	249.0		>6		$(\gamma \sim -60^\circ).$
	5362.9	35/2-	297.5		>13		3. Limits on $B(M1)/B(E2)$ values are from the
	5755.1	37/2-	392.2		>18		assumption that the unobserved $\Delta I = 2$ (E2)
	6259.7	39/2-	504.6		>19		transitions are less than 1% intense as
	6843.3	(41/2)	583.6		>21		compared to the strongest transition in the level
	7473.3	(43/2)	630		>22		scheme.
							4. Regular band.
							5. Relative intensity $\sim 6\%$.

¹³⁶₅₈Ce₇₈

	Elevel	I ^π	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	Reference
	keV		keV	keV	$(\mu_N/eb)^2$	
1	5645.3	(14 ⁻)				1990Pa05
	5809.3	15	164			
	5995.3	16	186.0			
	6283.4	17	288.1			
	6663.3	18-	379.9			
	7099.8	19-	436.5			
	7586.3	(20)	486.5			
	(8101.3)	(21)	(515)			
	(8626.3)	(22)	(525)			

- 1. $\pi(g_{7/2}{h_{11/2}})\otimes\nu({h_{11/2}}^2)$ by comparison with the nearby odd Z and doubly odd nuclei.
- 2. E2/M1 mixing ratios ($\delta_{E2/M1}$) are negative for two gamma transitions, implying an oblate shape for the band ($\gamma = -60^\circ$). 3. B(M1)/B(E2) > 10(μ_N /eb)².
- 4. Regular band.
- 5. Nuclear reaction: 122 Sn(18 O, 4n γ), E(18 O) = 85 and 89 MeV, Band intensity ~ 25%.

	¹³³ ₅₉ Pr ₇₄						
	E _{level} keV	I ^π	E _γ (M1) keV	E _γ (E2) keV	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	Reference	Configurations and Comments:
1	2141.5 2290.7 2536.6 2863.6 3258.3 3706.1 (4202.5)	(23/2)	149.2 245.9 327.0 394.7 447.8 (496.4)			1988Hi04	 π(h_{11/2}) ⊗ ν(h_{11/2}²) by comparison with the similar band in ¹³¹La. Collective oblate band (γ = -60°). B(M1)/B(E2) ≥ 5 (μ_N/eb)², from estimates of upper limits for the ΔI = 2 (E2) transitions. Regular band. Nuclear reaction: ¹¹⁸Sn (¹⁹F, 4nγ), seven different E(¹⁹F) ranging over 72-104 MeV and ¹¹⁷Sn (¹⁹F, 3nγ), E(¹⁹F) = 86.5 MeV, Band intensity ~ 10%.
2	3309.7 3475.1 3726.3 4063.1 4472.4 4944.1		165.4 251.2 336.8 409.3 471.7			1988Hi04	 The properties of the band suggest mixed proton and neutron configurations with h_{11/2} neutrons. B(M1) values are expected to be large since no ΔI = 2 (E2) transitions are reported. Regular band. Band intensity ~ 5%.
3	X 196.1+X 440.1+X 736.7+X 1087.6+X 1491.3+X 1945.7+X (2444.1+X)		196.1 244.0 296.6 350.9 403.7 454.4 (498.4)			1988Hi04	 The properties of the band suggest mixed and neutron configurations with h_{11/2} neutrons. proton B(M1) values are expected to be large since no ΔI = 2 (E2) transitions are reported. Regular band. Band intensity ~ 3%.

¹³⁷₅₉ Pr₇₈

	E _{level} keV	I^{π}	E _γ (M1) keV	E _γ (E2) keV	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	Reference
1	3439.3	25/2-				1989Xu01
	3550.8	27/2-	111.5			
	3871.5	29/2-	320.7			
	4212.8	$31/2^{-1}$	341.3			
	4696.1	33/2-	483.3			
	5174.3	35/2-	478.2			
	5515.0	37/2-	340.7			
	5923.2	39/2-	408.2			
	6388.3	(41/2)	465.1			

- 1. Tentatively assigned as $\pi(h_{11/2})\otimes\nu(h_{11/2}{}^2)$ by comparison with a similar band in $^{131}La.$
- 2. Collective oblate shape ($\gamma \sim -60^\circ$) determined by large negative A_2/A_0 coefficients.
- 3. B(M1)/B(E2) values > $1(\mu_N/eb)^2$.
- B(W1)/B(22) values > I(B_N/C0) .
 Signature splitting with backbending at 35/2.
 Nuclear reaction: ¹²²Sn (¹⁹F, 4nγ), E(¹⁹F)= 81 MeV, Band intensity ~ 28%.

	$^{134}_{60} \mathrm{Nd}_{74}$						
	Elevel	I ^π	E _γ (M1)	E _γ (E2)	B(M1)/B(E2)	Reference	Configurations and Comments:
	keV		keV	keV	$(\mu_N/eb)^2$		
1	2294.2	8-				1997Pe07	1. A strong admixture of $v(h_{11/2}[9/2])$ with
	2721.1	9.	426.9				$v(g_{7/2}[7/2] \otimes h_{11/2}[7/2])$ is suggested from the
	3183.4	10-	462.3	888.9			PSM calculations.
	3654.7	11	471.3	933.2			2. Prolate shape ($\beta_2 = 0.17$).
	4131.2	12-	476.5	947.9			3. B(M1)/B(E2) values > 3 $(\mu_N/eb)^2$.
	4593.5	(13 ⁻)	462	938.8			 Regular band with backbending at the top of the band.
							5. Nuclear reaction: ¹¹⁰ Pd (28 Si, 4n γ), E(28 Si) = 130
							MeV, Band intensity ~ 6%.
2	4514.5	12(-)				1997Pe07	1. $\pi(h_{11/2}^2) \otimes \nu(g_{7/2}[7/2] \otimes h_{11/2}[7/2])$ from the
	4714.0	13 ⁽⁻⁾	199.5				PSM calculations.
	5000.7	14(-)	286.7				2. Prolate shape ($\beta_2 = 0.17$).
	5363.1	15 ⁽⁻⁾	362.4	648.6			3. B(M1)/B(E2) values are >10 $(\mu_N/eb)^2$.
	5790.4	16 ⁽⁻⁾	427.3	790			4. Regular band with backbending at the top of
	6271.3	17(-)	480.9	908.7			the band.
	6787.5	18 ⁽⁻⁾	516.2	997.1			5. Band intensity $\sim 6\%$.
	7293.2	19 ⁽⁻⁾	505.7	1022			
3	4985.5	14-				1997Pe07	1. $\pi(h_{11/2}[11/2] \otimes g_{7/2}[5/2])_{K}^{\pi_{=8}}$ coupled to a
	5201.4	15(-)	215.9				neutron pair in one of the following
	5457.1	16(-)	255.7				configurations: $v(h_{11/2}^2)[3/2, 5/2, K^{\pi}=1^+]$,
	5770.4	17(-)	313.3	569.3			$v(h_{11/2}^2)$ [1/2,5/2, $K^{\pi}=2^+$] and $v(h_{11/2}^2)$ [1/2,5/2,
	6138.4	18(-)	368.0	681.6			$K^{\pi}=3^{+}$]. The lowest lying of these mixed 4-qp
	6544.7	19(-)	406.3	774.4			configurations is assigned to this band.
	6936.5	20(-)	391.9	798			2. Oblate shape ($\beta_2 = -0.17$).
	7350.2	21 ⁽⁻⁾	413.6	806			3. B(M1)/B(E2) values >10 $(\mu_N/eb)^2$.
	7814.1	(22)	463.9	878.0			4. Regular band with backbending at spin 20.
	8331.2	(23)	517.1	981.6			5. Band intensity $\sim 6\%$.
	8896.9	(24-)	565.7	1082.6			
	9510.9	(25)	614	1180.0			
	10167.9	(26)	657	1270.9			
	10861.9	(27)	694	1351.3			

	$^{136}_{60}$ Nd ₇₆						
	E _{level} keV	I ^π	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	Reference	Configurations and Comments:
1	3782				(μ _N /cb)	1996Pe06	$1, \pi(h_{11/2}^2) \otimes v(h_{11/2} d_{3/2})$ from PSM
	4002	10(-)	220				calculations.
	4256	11(-)	254				2. The plotted $B(M1)/B(E2)$ values lie around
	4550	12(-)	294				$10 (\mu_N/eb)^2$ and decrease as the spin values
	4895	13 ⁽⁻⁾	345				increase.
	5306	14(-)	411				3. Regular band.
	5760	15(-)	454				4 Nuclear reaction: ¹¹⁰ Pd (30 Si 4nv) F(30 Si) =
	6261	16(-)	501				125 and 130 MeV.
2	6232	15 ⁽⁺⁾				1996Pe06	1. $\pi(h_{11/2}^2) \otimes (vh_{11/2} - vf_{7/2})$ associated with prolate
	6349	16 ⁽⁺⁾	117				shape, from PSM calculations.
	6580	$17^{(+)}$	231				2. Regular band with backbending at 20.
	6885	18 ⁽⁺⁾	305				3 Mean lifetimes of levels with spins 23 and 24
	7294	$19^{(+)}$	409				are $0.09(4)$ and $0.06(3)$ ns, respectively
	7670	20 ⁽⁺⁾	376				indicating enhanced B(M1) rates
	8051	$21^{(+)}$	381				4 The $B(M1)/B(F2)$ values range from about
	8467	$\tilde{2}^{(+)}$	416				4. The D(MT)/D(L2) values range from about $6.20 (\mu_1/ab)^2$
	8048	$22^{(+)}$	410				$0-20 (\mu_N / e0)$.
	0402	23 $24^{(+)}$	544				
	10002	24 ⁺⁺	544				
	10092	$23^{(+)}$	671				
	10763	20	0/1				
3	6010	16^{+}				1996Pe06	1. $\pi(h_{11/2}^2) \otimes (\nu h_{11/2} + \nu f_{7/2})$ associated with prolate
	6241	17^{+}	231				shape, from PSM calculations.
	6525	18+	284				2. Regular band .
	6870	19^{+}	345	629			3. The B(M1)/B(E2) values range from about
	7258	20^{+}	388	733			6-20 $(\mu_N/eb)^2$ and exhibit a rising trend as
	7688	21+	430	818			the spin increases.
	8151	22^{+}	463	893			•
	8655	23^{+}	504	967			
	9181	24^{+}	526	1030			
	9748	25^{+}	567	1093			
	10346	26^{+}	598	1165			
	10971	27^{+}	625	1223			
	11650	28^{+}		1304			
	12338	29 ⁺		1367			
4	3875	11-				1996Pe06	1. $\pi(h_{11/2}^2) \otimes v(h_{11/2}g_{7/2})$ or $\pi(h_{11/2}^2) \otimes (vh_{11/2} +$
	4105	12	230				$vd_{3/2}$) associated with oblate shape. from PSM
	4414	13-	309	539			calculations.
	4771	14	357	666			2. Regular band with backbending at spin 17.
	5173	15	402	759			3. The B(M1)/B(E2) values range from about
	5610	16-	437	839			$3-25 (\mu_N/eb)^2$.
	6037	17-	427	864			N 19 /
	6482	18-	445	872			
	6970	19	488	933			
	7481	20 ⁻	511	999			
	8030	21	549	1060			
	8654	22	624	1173			
5	8381	22 ⁽⁺⁾				1996Pe06	1. No definite configuration could be assigned
	8756	23 ⁽⁺⁾	375				to this band but from energy considerations
	9166	24(+)	410	785			$\pi(h_{1/2}^2 g_{7/2}^2)$ may be favored
	9619	25 ⁽⁺⁾	453	863			2. Regular hand.
	10110	$26^{(+)}$	491				
	10639	27(+)	529	1020			

	$^{137}_{60}\mathrm{Nd}_{77}$						
	E _{level}	I ^π	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	Reference	Configurations and Comments:
	keV		keV	keV	$(\mu_N/eb)^2$		
1	3896.2	27/2-				1997Pe06	1. $v(h_{11/2})^3$ from the IBFM calculations.
	4160.2	29/2-	264				2. Regular band with backbending at 37/2.
	4514.1	31/2	353.9	617.9			3. Nuclear reaction: ¹¹⁰ Pd (30 Si, 3ny), E(30 Si) = 125
	4909.9	33/2-	395.8	749.7			MeV and ¹²³ Sb (¹⁹ F, 5ny), $E(^{19}F) = 97$ MeV.
	5372.7	35/2-	462.8	858.6			Band intensity $\sim 10\%$.
	5813.1	37/2-	440.4	903.2			,
	6194.5	39/2-	381.4	821.8			
	6669.6	$41/2^{-1}$	475.1	856.5			
	7100.9	43/2-	431.3	906.4			
	7652.3	45/2	551.4	982.7			
	8349.3	47/2-	697	1248.4			
2	4822.5	31/2-				1997Pe06	1. $\pi(h_{11/2}^2) \otimes v(h_{11/2})$ from the IBFM calculations.
	5108.3	33/2-	285.8				2. Regular band with backbending at 43/2.
	5416.5	35/2-	308.2				3. Band intensity ~ 5%.
	5788.6	37/2*	372.1				·
	6263.9	39/2-	475.3				
	6795.4	41/2-	531.5				
	7314.7	43/2	519.3				
	7702.8	45/2-	388.1				
	8197.6	47/2	494.8				
	8745.7	(49/2)	548.1				
	9337.9	(51/2)	592.2				
3	5596.8	33/2+				1997Pe06	1. Tentatively assigned as $\pi(h_{11/2}^2) \otimes \nu(h_{11/2}^2)$
	5853.8	35/2	257				$\otimes v s_{1/2}(d_{3/2})$.
	6161.1	37/2	307.3				2. Regular band.
	6515.8	39/2	354.7				3. B(M1) values are of the order of 1 W.u.
	6916.2	41/2	400.4				4. Band intensity ~ 1%.
	7339.4	43/2	423.2				
	//9/.0	45/2	437.6				
	8323.2	$(47/2^{+})$	528.2				
	0722.1	(49/2)	390.9 646 5				
	10272 2	(31/2) $(53/2^{+})$	040.J 703.6				
	102/2.2	(33/2)	/03.0				

 $^{138}_{60}$ Nd $_{78}$

	E _{level} keV	Ι ^π	E _γ (M1) keV	E _γ (E2) keV	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	Reference
1	5577.6	14				1994De11
	5771.4	15	193.8			
	6002.2	16+	230.8			
	6288.5	(17)	286.3			
	6669.0	(18)	380.5			
	7048.1	(19)	379.1			
	7564.8	(20)	516.7			
	8489.5	(21)	924.7			

Configurations and Comments:

1. Tentatively assigned as $\pi(h_{11/2}^{-2}) \otimes \nu(h_{11/2}^{-2})$. 2. Small Prolate deformation ($\beta_2 \approx 0.12$). 3. Regular band with a small backbending at 19. 4. Nuclear reaction: ¹²¹Sb(¹⁹F, 4n\gamma), E(¹⁹F) = 75 MeV, Band intensity ~ 4%.

	$^{139}_{62}\mathrm{Sm}_{77}$					
	Elevel	I ^π	$E_{v}(M1)$	$E_{y}(E2)$	B(M1)/B(E2)	References
	keV		keV	keV	$(\mu_N/eb)^2$	
1	3327.2	25/2-				1996Ro04
	3445.8	$27/2^{-1}$	118.6			1996Br33
	3710.8	29/2-	265.0	384.2		
	4048.1	31/2-	337.3	601.9	4.6(21)	
	4457.5	33/2-	409.4	746.6	5.6(25)	
	4930.1	35/2-	472.6	882.3	4.8(22)	
	5443.6	37/2-	513.5	986.2		
	5934.9	(39/2)	491.3	1005.0		
	6494.9	(41/2)	560.0	1051.4		

 $^{142}_{64}$ Gd₇₈

	64 9 4 78					
	E _{level} keV	I ^π	E _γ (M1) keV	E _γ (E2) keV	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	Reference
1	4767	12				1997Su11
	4989	13	222			
	5182	14	193			
	5374	15	192			
	5608	16	234			
	5893	17	285			
	6267	18	374			
	6562	19	295	670	11.6(9)	
	7090	20	528		. /	
	7556	21	466	993	9.7(12)	
2	5416	16 ⁺				1997Su11
	5716	17^{+}	300			
	6076	18^{+}	360			
	6457	19 ⁺	381			
	6883	20^{+}	426			
	7016	21+	133			

Configurations and Comments:

1.	Tentativ	vely assig	ned in 199	6Br33	as $\pi(h_{11/2}^2)$ \otimes
	$v(h_{11/2})$	from CSN	A calculati	ons.	
•					

- 2. Nearly axially symmetric prolate shape $(\beta_2 = 0.116)$, from 1996Br33.
- 3. B(M1)/B(E2) are from 1996Br33.
- 4. Regular band with backbending at 39/2.

5. Mean lifetimes of levels with spin values $31/2^{-}$, $33/2^{-}$ and $35/2^{-}$ are 0.60(21), 0.40(14) and 0.25(8) ps, respectively from 1996Br33.

6. Nuclear reactions: ¹¹⁰Pd (³⁴S, 5nγ), $E(^{34}S) = 150$ and 165 MeV, Band intensity~ 11% and (1996Br33): ⁶²Ni (⁸¹Br, p3nγ), $E(^{81}Br) = 350$ MeV.

Configurations and Comments:

- 1. The band probably has $\pi(h_{11/2}^{2}) \otimes \nu(h_{11/2}^{-2})$ component in the configuration.
- 2. Irregular band.
- 3. Nuclear reaction: ¹¹¹Cd(³⁵Cl, 1p3nγ), E(³⁵Cl) = 170 MeV.

1. The band probably has $\pi(h_{11/2}^2) \otimes \nu(h_{11/2}^2)$ component in the configuration.

2. Regular band with backbending at 21.

 $^{144}_{64}$ Gd₈₀

	04 UU					
	E _{level}	Iπ	E _γ (M1)	E _γ (E2)	B(M1)/B(E2)	Reference
	keV		keV	keV	$(\mu_N/eb)^2$	
1	5370.7	14+				1994Rz01
	5723.6	15+	352.9			
	6214.2	16^{+}	490.6			
	6619.0	17^{+}	404.8			
	7014.6	18^{+}	395.6			
	7419.1	19^{+}	404.5			
	7923.5	20^{+}	504.4			
	8221.7	(21^{+})	298.2			
	8540.4	(22^{+})	318.7			
	8993.8	(23^{+})	453.4			

- 1. $\pi(h_{11/2}^{2})_{K=10}^{+} \otimes \nu(h_{11/2}^{-2})$ from the FAL Coupling scheme.
- 2. Negative E2/M1 mixing ratios ($\delta_{E2/M1}$) imply an oblate shape ($\beta_2 \sim -0.12$).
- 3. Irregular band.
- 4. Nuclear reaction: 108 Pd (40 Ar, 4n γ), E(40 Ar) = 182 MeV, Band intensity ~ 15%.

	$^{192}_{80}$ Hg $_{112}$					
	E _{level}	I ^π	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	References
	keV		keV	keV	$(\mu_N/eb)^2$	
1	6879	23(-)				1994Le08
	7036	24(-)	157			
	7273	25(-)	237	394		
	7517	26(-)	244	480		
	7788	27(-)	272	515		
	7927	28 ⁽⁻⁾	139	(410)		
	8265	29 ⁽⁻⁾	337	476		
	8545	30 ⁽⁻⁾	280	617		
	8992	31 ⁽⁻⁾	447	727		
	9446	32(-)	454	900		
	9936	33 ⁽⁻⁾	490	942		
	10467	34 ⁽⁻⁾	(532)	1021		
2	6304	(22 ⁺)				1996Wi09
	6433.8	(23 ⁺)	129.8			1994Le08
	6710.1	(24^{+})	276.3	405.9	1.7(+10-9)	
	7043.7	(25^{+})	333.6	611	0.6(+∞-6)	
	7435.6	(26^{+})	391.9	725.3	1.7(+42-10)	
	7960.0	(27^{+})	524.4	915.6	6.7(+39-56)	
	8303.4	(28^{+})	343.4	867.6	10.0(+∞ -1 06)	
	8712.5	(29^{+})	409.1	753.7	3.8(+∞-39)	
	8960.6	(30^{+})	248.1	659.2	6.4(+110-43)	
	9195.4	(31 ⁺)	234.8	483.2	8.7(+25-17)	
	9375.2	(32 ⁺)	179.8	414.6	7.4(+24-18)	
	9665.2	(33+)	290	470		
	10037.2	(34*)	372			

¹⁹³₈₀Hg₁₁₃

	••					
	Elevel	lπ	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	References
	keV		keV	keV	$(\mu_N/eb)^2$	
1	6418.7	(53/2)				1995Fo13
	6921.1	$(55/2^{-})$	502.4			
	7275.8	(57/2)	354.7	857.1		
	7698.7	(59/2)	422.9	777.6		
	7837.5	$(61/2^{-})$	138.8	561.8		
	8134.2	$(63/2^{-})$	296.7	437.5		
	8392.0	(65/2)	257.8	556.5		
	8748.1	$(67/2^{-})$	356.1	614.0		
	9218.7	$(69/2^{-})$	470.6	826.6		
	9673.1	$(71/2^{-})$	454.4	924.9		
	10287.6	$(73/2^{-})$	614.5	1068.9		
	10850.6	$(75/2^{-})$	(563)	1177.7		

Configurations and Comments:

1. $\pi(i_{13/2}h_{9/2}) \otimes \nu(i_{13/2}^4)$ or $\pi(i_{13/2}h_{9/2}h_{11/2}^2) \otimes \nu(i_{13/2}^2)$
based on 23° or 25° states from HF+BCS.
calculations. For the upper part of the band a
mixing with the $\pi(i_{13/2}h_{9/2}) \otimes \nu(i_{13/2})^{6}$
configuration is suggested.
2. Irregular band.
3. B(M1)/B(E2) ratios lie around $5.5(\mu_N/eb)^2$.
4. Nuclear reaction: 160 Gd (36 S, 4n γ), E(36 S) = 159
MeV, Band intensity ~ 10%.

1. $\pi(h_{9/2}^{-2}) \otimes v(i_{13/2}^{-4}), I=22^+ \text{ or } \pi(h_{11/2}^{-2}h_{9/2}^{-2}) \otimes$
$v(i_{13/2}^2)$, I=23 ⁺ from the HF+BCS calculations
(1994Le08).

2. Small oblate deformation (1994Le08).

3. Mean lifetimes of the states with spins between (23⁺) and (32⁺) are 14.9(+50-39), 20.4(+40-52), 1.0(+10-16), 3.6(+19-10), 1.7(+14-15), 0.7(7), 0.2(+7-2), 1.3(6), 3.5(+6-5) and 2.2(5) ps, respectively.

- 4. Irregular band.
- 5. B(M1) ~ 0.01 μ_N^2 in the lower spin region and jumps to 1.1 μ_N^2 in the high spin region of the band.
- 6. Band intensity ~ 12%.

- 1. Tentatively assigned as $\pi(h_{9/2}^2h_{11/2}^{-2}) \otimes v(i_{13/2}^{-3})$ in addition to $p_{3/2}$ neutrons because of its negative parity.
- 2. Small oblate deformation ($\beta_2 \sim 0.15$).
- 3. B(M1)/B(E2) values lie in the interval 2-4 $(\mu_N/eb)^2$.
- 4. Irregular band.
- 5. Nuclear reaction: 150 Nd (48 Ca, 5n γ), E(48 Ca) = 213 MeV, Band intensity ~ 20%.

2	5338.4 5714.2 6016.4 6400.3 6725.7 6978.0 7245.0 7559.7 7919.3 8330.3 8757.2	(47/2 ⁻) (49/2 ⁻) (51/2 ⁻) (53/2 ⁻) (55/2 ⁻) (57/2 ⁻) (61/2 ⁻) (63/2 ⁻) (65/2 ⁻) (67/2 ⁻)	(375.8) (302.2) 325.4 252.3 267.0 314.7 359.6 411.0 426.9	678.0 577.6 581.9 674.1 770.7 837.8	1995Fo13	 Tentatively assigned as π(h_{9/2}²h_{11/2}⁻²)⊗v(i_{13/2}⁻³) in addition to p_{3/2} neutrons because of its negative parity. Small oblate deformation (β₂ ~ 0.15). B(M1)/B(E2) values lie in the interval 2 - 4 (μ_N/eb)². Regular band with backbending at 57/2. Band intensity ~ 6%.
3	5546.9 5831.4 6067.0 6464.0 6839.4 7037.0 7197.4 7554.7 7924.4 8388.4 8388.3 9408.5 9922.6	$\begin{array}{c} 47/2^{(+)}\\ 49/2^{(+)}\\ 51/2^{(+)}\\ 55/2^{(+)}\\ 57/2^{(+)}\\ 59/2^{(+)}\\ 61/2^{(+)}\\ 63/2^{(+)}\\ 65/2^{(+)}\\ 67/2^{(+)}\\ 69/2^{(+)}\\ 71/2^{(+)}\\ \end{array}$	284.5 235.6 397.0 375.4 197.6 160.4 357.3 369.7 464.0 497.9 522.2 514.1	520.1 632.6 772.2 517.6 726.9 833.6 962.0 1020.3 1036.3	1995F013 1993De42 1993Ro03	 Tentatively assigned as π(h_{9/2}²h_{11/2}⁻²) ⊗ ν(i_{13/2}³) from the CSM calculations. Small oblate deformation (β₂ ~ 0.15). B(M1)/B(E2) values lie in the interval 2 - 4 (μ_N/eb)². Irregular band. Band intensity ~ 20%.

195	Ца
80	112115

	00 0113						
	E _{level}	Iπ	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	Reference	Configurations and Comments:
	keV		keV	keV	$(\mu_N/eb)^2$		
1	7412.2	57/2				1998Ne01	1. $\pi(h_{11/2}^{2}) \otimes \nu(i_{13/2}^{-4}f_{5/2}^{-1})$ from CSM calculations.
	7744.9	59/2-	332.7				2. Small oblate deformation.
	8067.5	61/2	322.6	654.5			3. B(M1)/B(E2) ratios ~ 2 $(\mu_N/eb)^2$.
	8456.7	63/2-	389.2	712.2			 Irregular band with backbending at 61/2.
	8892.1	65/2-	435.4	825.1			5. Nuclear reaction: 192 Os (9 Be, 6n γ), E(9 Be) = 80
	9331.2	67/2-	439.1	875.7			MeV, Band intensity ~ 5%.
	9785.2	69/2-	454.0	893.4			· · ·
	10220.6	71/2-		889.4			
2	5174.7	$43/2^{+}$				1998Ne01	1. $\pi(h_{11/2}^2) \otimes v(i_{13/2}^{-3})$ from CSM calculations.
	5308.1	$45/2^{+}$	133.4				2. Small oblate deformation.
	5411.3	$47/2^{+}$	103.2				3. B(M1)/B(E2) ratios lie around 2 $(\mu_N/eb)^2$.
	5687.7	$49/2^{+}$	276.4				4. Irregular band.
	5893.6	$51/2^{+}$	205.9	481.3			5. Band intensity ~ 15%.
	6300.1	$53/2^{+}$	406.5	611.5			,
	6652.1	$55/2^{+}$	352.0	758.3			
	7129.0	$57/2^{+}$	476.9	828.3			
	7538.2	$59/2^{+}$	409.2	886.1			
	8010.3	$61/2^{+}$	472.1	882.0			
	8383.3	$63/2^{+}$		845.1			
3	Х					1998Ne01	1. This band has tentatively been assigned to the
	171.8+X		171.8				nucleus.
	443.3+X		271.5				2. Irregular band.
	749.0+X		305.7	576.9			3. Band intensity ~ 3%.
							•

	$_{80}$ ng $_{116}$					
	E _{level}	I ^π	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	Reference
	keV		keV	keV	(µ _N /eb) ²	
1	6400+X	(22 ⁺)				1993Ce04
	6557+X	(23 ⁺)	157			
	6659+X	(24 ⁺)	102	259		
	6916+X	(25 ⁺)	257	359		
	7094+X	(26 ⁺)	178	435		
	7462+X	(27^{+})	368	547		
	7750+X	(28^{+})	288	656		
	8211+X	(29 ⁺)	461	749		
	8609+X	(30 ⁺)	398	859		

¹⁹¹₈₂ Pb₁₀₉

196 TT ---

	÷=					
	E_{ievel}	Iπ	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	Reference
	keV		keV	keV	$(\mu_N/eb)^2$	
1	2577.5+X	$(29/2^{-})$				1998Fo02
	2811.5+X	(31/2)	234.0			
	3195.1+X	$(33/2^{-})$	383.6			
	3604.4+X	$(35/2^{-})$	409.3	792.9	23(5)	
	4030.5+X	$(37/2^{-})$	426.1	835.5	20(5)	
	4377.2+X	$(39/2^{-1})$	346.7			
	4691.3+X	$(41/2^{-})$	314.1			
	4929.9+X	(43/2)	238.6			
	5207.1+X	$(45/2^{-})$	277.2			
		. ,				
2	2428.7	$27/2^{+}$				1998Fo02
	2765.9	$(29/2^{+})$	337.2			
	3141.4	$(31/2^+)$	375.5			
	3551.3	$(33/2^+)$	409.9			
		. ,				

$^{192}_{82}$ Pb $_{110}$

	Elevel	I ^π	E _γ (M1)	E _γ (E2)	B(M1)/B(E2)	Reference
	keV		keV	keV	$(\mu_N/eb)^2$	
1	4241.2	15-				1993Pl02
	4370.1	16-	128.9			
	4519.2	17	149.1		>2.38	
	4702.3	18-	183.1		>7.69	
	4989.6	19-	287.3		>6.67	
	5276.9	20-	287.3		>16.67	
	5559.5	21-	282.6		>11.11	
	5708.6	(22)	149.1	431.7	<20	
2	4963.0	18-				1993Pl02
	5087.1	19 ⁻	124.1		>50	
	5286.3	20-	199.2		>4	
	5531.7	21-	245.4		>11.11	
	5871.0	22-	339.3		>12.5	
	6232.1	23-	361.1		>5.88	
	6666.0	(24)	433.9		>4	
	7155.5	(25)	489.5		>5.88	

Configurations and Comments:

- 1. $\pi(h_{9/2}{}^{2}h_{11/2}{}^{-2}) \otimes \nu(i_{13/2}{}^{-2})$ from TRS calculations.
- 2. Small oblate shape $(\beta_2, \gamma) = (0.139, -72^{\circ}).$
- 3. $X \ge 0$ keV.
- 4. B(M1)/B(E2) values range from 0.5 3 $(\mu_{\text{N}}\text{/eb})^2$
- 5. Irregular band.
- 6. Nuclear reaction: 192 Os (9 Be, 5n γ), E(9 Be) = 65 MeV, Band intensity ~ 19%.

Configurations and Comments:

- 1. Tentatively assigned as $\pi(h_{9/2}i_{13/2}s_{1/2}^{-2})_{K=11} \otimes v(i_{13/2}^{-1})$ below, and $\pi(h_{9/2}i_{13/2}s_{1/2}^{-2})_{K=11} \otimes v(i_{13/2}^{-3})_{K=33/2}^{+}$ above the bandcrossing. 2. $X \sim 72$ keV.
- 3. All E_{level} given here are approximate since E_{level} of $13/2^+$ state is ~ 138 keV.
- 4. Regular band with backbending at 39/2.
- 5. Nuclear reaction: 173 Yb (24 Mg, $6n\gamma$), E(24 Mg) = 134.5 MeV, Band intensity ~ 10%.
- 1. Tentatively assigned as $\pi(h_{9/2}^{-2}s_{1/2}^{-2})_{K=8}^{+} \otimes v(i_{13/2}^{-1})$ or $\pi(i_{13/2}s_{1/2}^{-1})_{K=7}^{+} \otimes v(i_{13/2}^{-1})$. 2. All E_{level} given here are approximate since $\sum_{k=0}^{\infty} e^{\frac{1}{2}t_{k}^{2}/2} e^{\frac{1}{2}t_{k}^{2}/2} e^{\frac{1}{2}t_{k}^{2}/2} e^{\frac{1}{2}t_{k}^{2}/2}$
- E_{level} of $13/2^+$ state is ~ 138 keV.
- 3. Regular band.
- 4. Band intensity ~ 7.5%.

- 1. Tentatively assigned as $\pi(9/2[505] \otimes 13/2[606]) \otimes \nu(i_{13/2}^2)$ based on CSM-TRS calculations and by comparison with ¹⁹¹TI.
- 2. Small oblate deformation.
- 3. The limits on B(M1)/B(E2) are by assuming that the unobserved E2 transitions are at the most half intense than the 489.5 keV γ ray in band 2.
- 4. Regular band with backbending at spin 21.
- 5. Nuclear reaction: ¹⁷³Yb (^{24}Mg , $5n\gamma$), E(^{24}Mg) = 132 MeV.
- 1. Tentatively assigned as $\pi(7/2[514] \otimes 13/2[606])$ $\otimes v(i_{13/2}^2)$ from the CSM-TRS calculations and by comparison with ¹⁹¹Tl.
- 2. Small oblate deformation.
- The limits on B(M1)/B(E2) are by assuming that the unobserved E2 transitions are at the most half-intense than the 489.5 keV γ ray.
 Regular band.

	¹⁹³ ₈₂ Pb ₁₁₁						
	E _{level}	Iπ	$E_{\gamma}(M1)$		B(M1)/B(E2)	References	Configurations and Comments:
	keV		keV	keV	$(\mu_N/eb)^2$		
1	2584.8+X	29/2-				1996Du18	1. $\pi(9/2[505] \otimes 13/2[606])_{K=11} \otimes v(i_{13/2})$ by
	2686.9+X	31/2-	102.1			1996Ba54	Comparison with similar bands in neighbor
	2939.2+X	33/2-	252.3			1997Ch33	Pb nuclei.
	3320.7+X	35/2-	381.5	633.8	28(5)		2. Oblate deformation.
	3722.3+X	$37/2^{-1}$	401.6	783.1	22(4)		3. X ~ 100 keV from systematics.
	4136.1+X	39/2-	413.8	815.4	16(6)		4. For bandhead $T_{1/2} = 9.4(7)$ ns and g factor =
	4470.6+X	41/2-	334.5	748.3			0.68(3) (1997Ch33).
	4828.3+X	43/2	357.7	692.3			5. Regular band with backbending at 41/2.
	5218.6+X	45/2-	390.3				6. Nuclear reaction: 168 Er (30 Si, 5nv), E(30 Si) =
							MeV, Band intensity ~ 17%.
2	4297.7+X	(39/2 ⁺)				1996Du18	1. Tentatively assigned as $\pi(9/2 505] \otimes 13/2 6 $
	4387.7+X	$(41/2^{+})$	90.0			1998C106	$k = 11^{\circ} \otimes y(j_{12/2} p_{2/2})$ by comparison with sin
	4536 6+X	$(43/2^+)$	148 9				Bands in neighboring Ph nuclei
	4768 6+X	$(45/2^+)$	232.0				2 Oblate deformation
	5060 2+X	$(47/2^+)$	291.6				3. $X \sim 100$ keV from systematics
	5425 4+X	$(49/2^+)$	365.2	656.8	15(3)		4 The B(M1) values as given in 10000104 for
	5815 0±V	$(\frac{1}{2})^{2}$	380 6	7547	12(3)		transitions from 201 to 416 keV are 5 276
	6231 1+X	$(51/2^{+})$	416.1	805.6	12(3)		4.32(156.75) $4.01(105.76)$ and $2.82(24)$
	6657.0 V	$(55/2^+)$	476.1	842.2	15(2)		4.32(+30-73), 4.01(+93-76) and $2.83(34)$ (
	7080 0±V	(55/2)	420.1	042.2	15(5)		5 The mean lifetimes of levels having an in an
	$7009.9 \pm \Lambda$ (7516.0 \pm V)	(57/2)	(426.1)	0.00.0			5. The mean methods of levels having spin va from $45/2$ to $51/2$ as given in 1008C106 and
	(7010.0+X)	(57/2)	(420.1)				0.22(4) = 0.22(14, 2) = 0.21(14, 5) = 0.25(2)
	(7)52.(+A)	(01/2)	(410.1)				(0.35(4), 0.25(14-5), 0.21(14-5)) and $(0.25(5))$
							6 Regular hand with haakhanding at min 50/
							7. Dand intensity 70/
							7. Band intensity $\sim 1\%$.
3	4944.8+X	$(43/2^{+})$				1996Du18	$1 \pi (9/2[505] \otimes 13/2[606])_{1} \dots \otimes N(i_{1} \dots n^{2} f_{1} \dots) 1$
	5169 1+X	$(45/2^+)$	224.3				comparison with similar hands in neighbor
	5436 6+X	$(47/2^+)$	267.5				Ph nuclei
	5762 8+X	$(49/2^+)$	326.2				2 Oblate deformation
	6145 2+X	$(51/2^+)$	382.4				3 X = 100 keV from systematics
	0110.2	(31/2)	502.1				A Regular hand
							5. Rand intensity 29/
							5. Ballu intensity \sim 5%.
4	5092.7+X	(45/2-)				1996Du18	1. Tentatively assigned as $\pi(9/2[505] \otimes 13/2[6])$
	5331.8+X	(47/2-)	239.1			1996Ba54	$_{K=11} \otimes v(i_{13/2})^3$ by comparison with similar
	5597.4+X	(49/2)	265.6				bands in neighboring Pb nuclei.
	5926.9+X	(51/2)	329.5				2. Oblate deformation.
	6302.5+X	(53/2)	375.6				3. $X \sim 100$ keV from systematics.
	6715.4+X	(55/2-)	412.9				4. Regular band.
	7154.6+X	(57/2)	439.2				5. Band intensity $\sim 0.6\%$.
5	5825.3+X	(49/2)				1996Du18	1. Tentatively assigned as $\pi(9/2505) \otimes 13/26$
	6001.6+X	$(51/2^{-})$	176.3				$v_{-11} \otimes v_{(12/2)^3}$ or $\pi(9/2[505] \otimes 13/2[606]$
	6285.3+X	$(53/2^{-})$	283.7				$\otimes v(i_{13/2})$ from HE+BCS calculations
	6597 2+X	(55/2)	311.9				$2 \times 100 \text{ keV}$ from sustantias
	6927 6+X	$(57/2^{-})$	3304				2. A ~ 100 KeV from Systematics. 3. Parity assignment is based on three M1
	7312 1±V	(51/2)	384 5				J. I arry assignment is based on infee MI
	7713 6+V	(5)/2	401 5				4 Decular band
	//13.0+A	(01/2)	TU1.J				T. Rugulai Dallu.
							5. Band intensity ~ 0.6%.

	¹⁹⁴ ₈₂ Pb ₁₁₂						
	E _{level} keV	I ^π	$E_{\gamma}(M1)$ keV	E _γ (E2) keV	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	References	Configurations and Comments:
1	4963.5 5083.1 5228.3 5424.4 5685.8 6022.2 6398.3 6814.9 7239.0 7681 8109	16 17 18 19 20 21 22 23 (24) (25) (26)	119.6 145.2 197.1 260.4 336.4 376.1 416.6 424.1 442 428			1993Me12 1994Po08 1995Ka19 1998C106 1998Ka59	 Tentatively assigned as π(9/2[505]⊗13/2[606]) _{K=11} ⊗ v(i_{13/2}²) in 1994Po08 from the excitation energy, spin, mom. of inertia, alignments and from a comparison with the isotone ¹⁹²Hg. The two topmost transitions are from 1995Ka19 Regular band with backbending at the top of the band. The B(M1) values as given in 1998Cl06 for the transitions from 260 to 417 keV are 9.79(+255 -170), 5.86(+56-56), 5.13(+114-143) and 3.90 (87) (µ_N²), respectively. The mean lifetimes of levels having spin values from 20 to 23 as given in 1998Cl06 are 0.23(+4-6), 0.21(2), 0.18(+5-4) and 0.18(4) ps, respectively. Nuclear reaction: ¹⁵⁸Gd (⁴⁰Ar, 4nγ), E(⁴⁰Ar) = 178 MeV, Band intensity ~ 25%.
2	4376 4506.4 4643.4 4806.7 5109.7 5506.9 5883.5 6247.3 6508.3 6720.9 6948.6 7216.0 7523.2 7884.8 8278.4 8699 9141 9603 10088	13^{+} 14^{+} 15^{+} 16^{+} 17^{+} 18^{+} 19^{+} 20^{+} 21^{+} 22^{+} 23^{+} (24) (25) (26) (27) (28) (29) (30) (31)	130.4 137.0 163.3 303.0 397.2 376.6 363.8 261 212.6 227.7 267.4 307.2 361.6 393.6 421 442 462 485	773.4 740.0 (668) (754)	21(4) 13(3)	1998Ka59 1993Me12 1994Po08 1995Ka19	 Tentatively assigned as π(9/2[505]⊗13/2[606]) _{K = 11}⁻ ⊗ v(f_{5/2}i_{13/2}) before and π(9/2[505] ⊗ 13/2 [606])_{K = 11}⁻ ⊗ v(f_{5/2}i_{13/2}⁻³) after the bandcrossing from the spin, parity and from a comparison with the isotone ¹⁹²Hg. The ordering of levels up to 23⁺ is from 1998Ka59 with the exception that 212.6 is assumed between the 227.7 and 261 keV transitions. The ordering above this is taken from 1993Me12, 1994Po08 and 1995Ka19. Regular band with backbending at 19⁺. Nuclear reaction: ¹⁸²W(¹⁶O, 4nγ), E(¹⁶O)= 95 MeV.
3	4135.6 (4298.2) 4531.3 4819.3 5167.1 5541.4 5938.4	$16^{+} \\ 17^{+} \\ 18^{+} \\ 19^{+} \\ 20^{+} \\ 21^{+} \\ (22)$	(162.6) 233.1 288.0 347.8 374.3 397.0			1993Me12	 No definite configuration has been suggested for this band. From the decay pattern it appears that this is based on four-neutron excitation. Regular band. Band intensity ~ 4%.

	¹⁹⁵ ₈₂ Pb ₁₁₃						
	E _{level} keV	I ^π	E _γ (M1) keV	E _γ (E2) keV	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	References	Configurations and Comments:
1	2968.3 3098.0 3362.0 3734.7	27/2 ⁻ 29/2 ⁻ 31/2 ⁻ 33/2 ⁻	129.7 264.0 372.7	637.0	16(4)	1996Ka15 1995Fa19	 π(9/2[505] ⊗13/2[606])_k^π₌₁₁⁻ ⊗ ν(i_{13/2}) by comparison with the neighboring ¹⁹⁴Pb and ¹⁹⁵T1. Oblate shape
	4119.9 4566.2 4966.8	35/2 ⁻ (37/2 ⁻) (39/2 ⁻)	385.2 446.3 400.6	757.7 832.0	18(3) 13(3)		 Parities are from 1995Fa19. Irregular band with backbending at the top of the band. Nuclear reaction: ¹⁸⁴W (¹⁶O, 5nγ), E(¹⁶O) = 113 MeV, Band intensity ~ 5%.
2	5123.6 5270.4 5467.7 5702.5 5978.4 6308.1 6674.2 7090.8 7536.8	(39/2 ⁻) (41/2 ⁻) (43/2 ⁻) (45/2 ⁻) (47/2 ⁻) (49/2 ⁻) (51/2 ⁻) (53/2 ⁻) (55/2 ⁻)	146.8 197.3 234.8 275.9 329.7 366.1 416.6 (446.0)			1996Ka15 1995Fa19 1998Cl06	 π(9/2[505] ⊗13/2[606])_{k=11}^π ⊗ ν(i_{13/2}³) by comparison with the neighboring ¹⁹⁴Pb and ¹⁹⁵Tl. Oblate shape Parities are from 1995Fa19. Regular band. The B(M1) values as given in 1998Cl06 for the transitions from 276 to 366 keV are 7.01(+200 -125), 6.14(88) and 4.48 (+41-61) (μ_N²), respectively. The mean lifetimes of levels having spin values from 47/2 to 51/2 as given in 1998Cl06 are 0.28(+5-8), 0.21(3) and 0.22(+3-2) ps, respectively.
3	4465.6 4560.4 4693.9 4866.5 5108.1 5412.9 5770.9 6144.7 6529.5 6907.2 7281.2	(33/2 ⁻) (35/2 ⁻) (37/2 ⁻) (39/2 ⁻) (41/2 ⁻) (43/2 ⁻) (45/2 ⁻) (45/2 ⁻) (47/2 ⁻) (49/2 ⁻) (51/2 ⁻) (53/2 ⁻)	94.8 133.5 172.6 241.6 304.8 358.0 373.8 384.8 377.7 374.0	663.0 732.0 759.0 763.0	17(4) 23(5) 13(3) 10(3)	1996Ka15 1995Fa19	 π(9/2[505] ⊗13/2[606])_{K=11} ⊗ ν(i_{13/2}²(f_{5/2}/ p_{3/2})¹) at low spin and π(9/2[505] ⊗13/2[606])_{K=11} ⊗ v(i_{13/2}⁴(f_{5/2}/ p_{3/2})¹) at high spin, by comparison with a similar band of ¹⁹⁴Pb. Oblate shape (β₂ ~ -0.15). Regular band with backbending at the top of the band. Parities are from 1995Fa19. Band intensity ~ 15%.

	¹⁹⁶ ₈₂ Pb ₁₁₄						
	E _{level} keV	I ^π	E _γ (M1) keV	E _γ (E2) keV	B(M1) μ_{N}^{2}	References	Configurations and Comments:
1	X 164.4+X 372.9+X 622.8+X 931.9+X 1307.7+X 1712.2+X		164.4 208.5 250.3 309.1 375.1 404.4		EN	1996Ba53 1993Hu01 1995Mo01	 Configuration assignment could not be made as the spins and excitation energies could not be measured experimentally. Regular band. X ~ 5874 keV from systematics. Nuclear reaction (1993Hu01) : ¹⁷⁰Er (³⁰Si, 4nγ), E(³⁰Si) = 142, 146 and 151 MeV and ¹⁷⁶Yb (²⁶Mg, 6nγ), E(²⁶Mg) = 138 MeV,Band intensity ~ 9%.
2	5155.0 5262.6 5400.2 5604.3 5872.7 6205.1 6572.3 6964.4 7362.3 7770.7 8104.5 8476.4 8813.1 9171.7 9614.2	$16^{(+)} \\ 17^{(+)} \\ 18^{(+)} \\ 19^{(+)} \\ 21^{(+)} \\ 22^{(+)} \\ 23^{(+)} \\ 23^{(+)} \\ 23^{(+)} \\ 24^{(+)} \\ 25^{(+)} \\ (26) \\ (27) \\ (28) \\ (29) \\ (30) $	107.6 137.6 204.1 268.4 332.4 367.2 392.1 397.9 408.4 333.8 371.9 336.7 358.6 442.5	698.7 759.3 790.3 806.1	≥ 2.3 3.7(+49-16) 4.4(+39-18) 1.8(+7-4)	1995Mo01 1993Hu01 1996Ba53	 Tentatively assigned as π(h_{9/2}i_{13/2}) ⊗ v(i_{13/2}-²) from the CSM calculations. Oblate deformation. Regular band with backbending at spin 26. B(E2) values are from 1996Ba53. The mean lifetimes of levels having spin values from 23⁽⁻⁾ to 28⁽⁻⁾ are ≤0.4, 0.21(+15-12), 0.17(+12 -8), 0.39(11), 0.47(+10-14) and 0.23(9) ps, respectively. Top five transitions are from 1996Ba53. Above 25⁽⁻⁾ there is a forking with another path having 395.4, 422.1, 404.1 and 428.5 keV transitions. Band intensity ~ 15% from 1993Hu01.
3	Y 192.9+Y 507.5+Y 882.0+Y 1237.4+Y 1578.9+Y 1822.6+Y 2032.5+Y 2272.0+Y 2558.2+Y 2897.4+Y 3295.1+Y 3743.7+Y 4234.2+Y 4760.9+Y	25 26 27 28 29	192.9 314.6 374.5 355.4 341.5 243.7 209.9 239.5 286.2 339.2 397.7 448.6 490.5 526.7	507.6 689.2 730.0 696.8 585.2	3.9(+10-6) 3.2(+13-12) 3.0(+10-6) 2.0(+4-3) 1.9(+5-3)	1996Ba53 1993Hu01 1995Mo01 1998Cl06	1. The band is likely to be based on the $\pi(h_{9/2}s_{1/2})$ quasiproton configuration (1995Mo01). 2. Oblate deformation. 3. Spins are from 1998Cl06. 4. Regular band with backbending at 1237.4+X level. 5. The B(M1) values are from 1995Mo01. 6. The B(M1) values as given in 1998Cl06 for the transitions from 286 to 490 keV are 9.57(+201 -151), 7.05(+166-124), 5.28 (106), 4.52 (+70-104) and 2.59(58) (μ_N^2), respectively. 7. The mean lifetimes as given in 1995Mo01, of five uppermost levels are 0.35(+20-10), 0.41(8), 0.25(6), 0.27(4) and 0.23(5) ps respectively. 8. The mean lifetimes of levels having spin values from 25 to 29 as given in 1998Cl06 are 0.19(+3-4), 0.17(+3-4), 0.15(3), 0.13(+3-2) and 0.18(4) ps, respectively. 9. Band intensity ~ 30% from 1993Hu01.
4	Z 295.7+Z 638.5+Z 1018.4+Z 1431.1+Z 1863.5+Z		295.7 342.8 379.9 412.7 432.4			1995Mo01 1996Ba53	 Configuration assignment could not be made as the spins and excitation energies could not be measured experimentally. Regular band. Nuclear reaction (1995Mo01): ¹⁷⁰Er (³⁰Si, 4nγ) E(³⁰Si) = 142 MeV, Band intensity ~ 6%

	¹⁹⁷ ₈₂ Pb ₁₁₅						
	Elevel	I ^π	E _γ (M1)	E _γ (E2)	B(M1)/B(E2)	References	Configurations and Comments:
	keV	0.5 /0-	keV	keV	$(\mu_N/eb)^2$	10000 13	a a s s se a bi s
I	3283.8	27/2	152.5			1999P013	1. $\pi(h_{9/2}i_{13/2})_{K=11} \otimes \nu(i_{13/2})$ below and
	3430.3	29/2	132.3			19935835	$\pi(n_{9/2}I_{13/2}S_{1/2}) \otimes v(I_{13/2})$ above the band
	3/06.8	31/2	270.5	620.9	17(4)	1992Ku06	crossing, by comparison with the similar band
	4065.9	35/2	260.8	720.0	$\frac{1}{(4)}$	19940101	in heighboring PD and from the TAC model
	4435.7	3312	385.0	729.0	23(3) 15(2)	19980100	2 Regular hand showing a healthand at 41/2
	5185.0	30/2	365.0	750.2	15(2)		2. Regular band showing a backbend at $41/2$. 3. $B(M1)/B(E2)$ volves are from $1004C101$. Since
	5479 7	$\frac{33/2}{41/2}$	293.8	659.2	28(4)		we are choosing ordering from 1994Cl01. Since
	5707 3	$43/2^{-1}$	227.6	521.7	26(7)		B(M1)/B(F2) ratios of 1994C101 are left out
	5952.7	$45/2^{-1}$	245.4	473.2	20(7)		4 The mean lifetimes for the transitions from
	6237.9	$47/2^{-1}$	285.2	531.0			152.6 to 293.8 keV as given in 1994C101 are
	6565.1	49/2	327.2	612.4			3.1(7), 2.8(4), 1.3(3), 1.3(3), 1.1(3), 1.3(3) and
	6904.0	51/2-	338.9	666.1			1.3(3) ps, respectively and that for transitions
	7257.3	53/2-	353.3	692.1			from 285 to 353 as given in 1998Cl06 are
	7660.1	55/2-	402.8	756.0			0.40(2), 0.29(+3-2), 0.17(+2-1) and $0.17(+2-1)$
	8120.4	57/2-	460.3	862.8			ps, respectively.
	8635.5	59/2-	515.1	975.1			5. The B(M1) values as given in 1994Cl01 for the
	9198.1	$61/2^{-1}$	562.6	1077.4			transitions from 152 to 294 keV are 0.76(+22
	9794.1	63/2	596.0	1158.1			-14), $0.31(+6-5)$, $0.38(+11-8)$, $0.34(+11-7)$, 0.35
	10405.8	65/2-	611.7	1207.4			(+14-8), 0.34 $(+11-8)$ and 0.59 $(+17-12)$ W.u., respectively and that for transitions from 285
							to 353 keV as given in 1998Cl06 are $4.59(23)$
							4.53(+31-47), 7.05(+41-83) and 6.35 (+37-75)
							(μ_N) , respectively.
							MeV, Band intensity ~ 18%.
2	4794.6	$37/2^{+}$				1999Po13	1π (h i) $\Re \chi$ (i $-2f -1$) holow and
	4907.0	$39/2^{+}$	112.4			1995Ba35	$\pi(h_{3/2}h_{2/2})_{K=1} \otimes v(h_{3/2}h_{2/2})$ below and $\pi(h_{3/2}h_{2/2})_{K=1} \otimes v(h_{3/2}h_{2/2})$
	5058.3	$41/2^{+}$	151.3			1992Ku06	handcrossing from the TAC model
	5258.9	$43/2^{+}$	200.6			1993Hu08	calculations
	5525.6	$45/2^{+}$	266.7			1994Cl01	2. $B(M1)/B(E2)$ values are from 1994C101
	5862.3	$47/2^{+}$	336.7			1998C106	3. The mean lifetimes for the transitions from
	6266.2	49/2 ⁺	403.9	740.7	24(4)		151.3 to 266.7 keV as given in 1994Cl01 are
	6712.3	$51/2^{+}$	446.1	849.9	17(3)		1.8(8), 0.9(4) and 1.2(3) ps, and from 337 to
	7179.4	$53/2^{+}$	467.1	913.3	32(5)		467 as given in 1998Cl06 are 0.17(3), 0.13(+3
	7613.1	55/2+	433.7	900.6			-2), 0.16(2) and 0.28(+5-6) ps, respectively.
	7984.5	57/2+	371.4				4. The B(M1) values as given in 1994Cl01 for the
	8372.1	59/2	387.6				transitions from 151 to 267 keV are 1.32(+132
	8794.7	61/2'	422.6				-44), 2.08(+125-57) and 1.01(+67-29) W.u.,
	9246.4	63/2	(451.7)				respectively, and that for transitions from 337
	9723.5	65/2	(477.1)				to 467 keV, as given in 1998C106 are
							7.18(127), $5.88(+90-136)$, $3.72(47)$ and
							$1.90(+41-34) (\mu_N^2)$, respectively.
							5. Regular band showing a backbending at 55/2.
							6. Band intensity $\sim 7\%$.
3	Х					1995Ba35	1. Spin values could not be assigned due to the
	162.7+X		162.7			1999Po13	nonobservation of linking transitions to the
	381.5+X		218.8				lower lying states.
	646.2+X		264.7				2. $X \sim 5200 \text{ keV}$.
	962.8+X		316.6				3. Regular band.
	1325.9+X		363.1				4. Band intensity $\sim 6(2)\%$.
	1717.0+X		391.1				- • •

	$^{198}_{82}$ Pb $_{116}$						
	E _{level} keV	Ι ^π	E _γ (M1) keV	E _γ (E2) keV	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	References	Configurations and Comments:
1	X 206.8+X 444.9+X 725.1+X 1051.4+X 1426.4+X 1848.3+X 2312.5+X 2818.7+X 3369.0+X 3960.7+X	$\begin{array}{c} (20^{+}) \\ (21^{+}) \\ (22^{+}) \\ (23^{+}) \\ (24^{+}) \\ (25^{+}) \\ (26^{+}) \end{array}$	206.8 238.1 280.2 326.3 375.0 421.9 464.2 506.2 550.3 591.7	(518) 607 701 797 886 970 1056 1142	>50 32(3) 21(2) 26(3) 34(3) 27(3) 30(3) 21(3)	1993Cl05 1992Wa20 1994Cl01 1997Cl03	 Tentatively assigned as π(h_{9/2}i_{13/2})_{K=11}⁻ ⊗ v(i_{3/2}⁻⁴) from CWS calculations. Nearly oblate shape (β₂, γ) ~ (0.15, -60°) I^π's are from 1992Wa20, 1993Cl05 gives the tentative bandhead spin as 22 or 23. B(M1)/B(E2)'s except the first one are from 1994Cl01. The mean lifetimes for the transitions from 206.8 to 506.2 keV as given in 1994Cl01 are 2.1(4), 0.85(30), 1.1(6), 0.58(15), 0.36(10), 0.20(4), 0.099(25) and 0.052(11) ps, respectively. B(M1) values for the transitions from 207 to 506 keV as given in 1994Cl01 are 0.75(+18-12) 1.5(+8-4), 0.8(+10-3), 1.1(+5-3), 1.2(+5-3), 1.6 (+5-3), 2.6(+9-5) and 3.7(+11-9) W.u., respectively. Regular band. Nuclear reaction: ¹⁸⁶W (¹⁷O, 5nγ) E(¹⁷O) = 92 and 98 MeV, Band intensity ~ 8%.
2	Y 114.1+Y 270.0+Y 485.8+Y 769.6+Y 1113.9+Y 1533.1+Y 2010.3+Y 2495.1+Y		114.1 155.9 215.8 283.8 344.3 419.2 477.2 484.8	(372) (499) (896)	14(4) 13(4) 30(8)	1993Cl05	 Tentatively assigned as π(h_{9/2}²) ⊗ ν(i_{13/2}⁻³p_{3/2}⁻¹). Small oblate deformation. Regular band. Band intensity ~ 2%.
3	Z 113.9+Z 269.9+Z 485.2+Z 763.9+Z 1106.7+Z 1496.2+Z 1919.3+Z 2363.9+Z 2835.6+Z 3311.8+Z 3840.8+Z	(18 [°]) (19 [°]) (20 [°]) (21 [°]) (22 [°]) (23 [°]) (24 [°]) (25 [°]) (26 [°]) (27 [°]) (28 [°])	113.9 156.0 215.3 278.7 342.8 389.5 423.1 444.6 471.7 476.2 529.0	(270) (494) 622 732 812 867 917 948	10(3) 30(9) 13(4) 26(3) 24(2) 25(3) 23(2) 17(2)	1993C105 1992Wa20 1994C101 1997C103 1998Kr20	 Tentatively assigned as π(h_{9/2}²) ⊗ v(i_{13/2}⁻³f_{5/2}⁻¹). Small oblate deformation. I^π's are from 1992Wa20. 1993Cl05 gives the tentative bandhead spin around 18-22. Last six B(M1)/B(E2)'s are from 1994Cl01. The mean lifetimes for the transitions from 156.0 to 476.2 keV as given in 1994Cl01 are 2.7(9), 1.8(5), 2.1(5), 1.14(23), 0.72(10), 0.46(10), 0.24(4), 0.22(6), and 0.27(7) ps, respectively and B(M1) values for these transitions are 0.67(+34-17), 0.83(+32-18), 0.45 (+12-9), 0.48(+11-8), 0.55(+11-8), 0.69(+26 -12), 1.07(+38-17), 0.99(+49-19) and 0.74(+34 -14) W.u., respectively. The mean lifetimes for the transitions from 156 to 342.8 keV as given in 1998Kr20 are 0.63(10), 0.70(+10-20), 0.34(+15-10) and 0.20(+20-10) ps and the B(M1) values for these transitions are 6.2(+11-9), 3.8(+15-5), 4.9(+20-15) and 4.9(+48-28) μ_N² respectively. Regular band. Band intensity ~ 10%.

4	U				1993Cl05	1. Tentatively assigned as $\pi(h_{9/2}i_{13/2}) \otimes \nu(i_{13/2})^{-3}$
	123.4+U	123.4				$f_{5/2}^{-1}$).
	283.2+U	159.8				2. Small oblate deformation.
	487.6+U	204.4	(364)	19(4)		3. Regular band.
	752.5+U	264.9				4. Band intensity ~ 4%.
	1090.3+U	337.8	(603)	14(3)		
	1499.4+U	409.1	(747)	21(8)		
	1952.4+U	453.0				
		(495)				
5	V				1993C105	1. Suggested proton configuration: $\pi(h_{0/251/2})$.
	220.8+V	220.8				neutron configuration not indicated.
	461.2+V	240.4	(462)	10(3)		2. Very small oblate deformed structure.
	742.9+V	281.7	(523)	18(6)		3. Irregular band with backbending at 997.7+V
	997.7+V	254.8	(537)	8(3)		level.
	1330.0+V	332.3				4. Band intensity ~ 4%.
	1718.0+V	388.0	(720)	8(3)		•
	2110.0+V	392.0				

¹⁹⁹₈₂ Pb₁₁₇

	Elevel	Iπ	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	References
	keV		keV	keV	$(\mu_N/eb)^2$	
1	3604.2	$(25/2^{-})$				1995Ne09
	3694.1	$(27/2^{-})$	89.9			1999Po13
	3868.0	(29/2*)	173.9			1994Ba43
	4143.4	(31/2)	275.4			1997Cl03
	4502.8	(33/2)	359.4	634.8		
	4904.1	(35/2)	401.3	760.8		
	5324.8	(37/2)	420.7	822.1		
	5746.3	(39/2)	421.5	842.4		
	6074.9	(41/2)	328.6	750.1		
	6309.5	(43/2)	234.6			
	6549.6	$(45/2^{-})$	240.1			
	6823.4	$(47/2^{-})$	273.8			
	7139.7	$(49/2^{-})$	316.3	590.1	35(+22-20)	
	7502.8	$(51/2^{-})$	363.1	679.5	27(+18-14)	
	7914.1	$(53/2^{-})$	411.3	774.6	27(+15-18)	
	8373.4	$(55/2^{-})$	459.3	870.9	38(20)	
	8881.7	(57/2)	508.3	967.7		
	9436.5	$(59/2^{-})$	554.8	(1063)		

Configurations and Comments:

1. $\pi(h_{9/2}i_{13/2})_{K=11} \otimes \nu(i_{13/2}^{-1})$ below and $\pi(h_{9/2}i_{13/2})_{K=11} \otimes \nu(i_{13/2}^{-3})$ above the bandcrossing from the TAC model calculations.

2. Small oblate deformation $(\beta_2, \gamma) \sim (0.1, -70^\circ)$

3. Mean lifetimes of states with spins from 43/2 to 49/2 are 0.37(+51-29), 0.31(+31-24), 0.17(+6-4) and 0.13(+4-3), and for the states with spins 51/2 to 57/2 as given in 1997Cl03 are 0.20(5), 0.16(+5-4), 0.15(+5-4) and 0.21(+6-5) ps, respectively.

4. B(M1) values for the transitions 234.6, 240.1 and 273.8 keV are 6.6(+25-38), 7.4(+24-38) and 10.6(+34-29) μ_N^2 and for the transitions from 363.1 to 508.3 keV as given in 1997Cl03 are 4.8(13), 4.4(+12-15), 3.0(+7-9) and $1.7(+4-5) \mu_N^2$, respectively.

5. Regular band with backbending at 41/2. 6. Nuclear reaction: ¹⁸⁶W (¹⁸O, 5ny) E(¹⁸O) = 92 and 94 MeV.

2	X 98.2+X 223.2+X 388.8+X 603.4+X 871.2+X 1194.3+X 1571.4+X 2001.7+X 2483.6+X 3015.6+X 3589.2+X 4207.4+X 4546.6+X 4932.5+X 5353.5+X 5806.9+X 6303.4+X 6845.9+X 7433.6+X	$\begin{array}{c} (35/2^{+}) \\ (37/2^{+}) \\ (39/2^{+}) \\ (41/2^{+}) \\ (43/2^{+}) \\ (45/2^{+}) \\ (47/2^{+}) \\ (47/2^{+}) \\ (51/2^{+}) \\ (53/2^{+}) \\ (55/2^{+}) \\ (57/2^{+}) \\ (57/2^{+}) \\ (63/2^{+}) \\ (65/2^{+}) \\ (67/2^{+}) \\ (69/2^{+}) \\ (71/2^{+}) \\ (73/2^{+}) \end{array}$	98.2 125.0 165.6 214.6 267.8 323.1 377.1 430.3 481.9 532.0 573.6 618.5 339.2 385.9 421.0 453.4 496.5 542.5 587.7	700.1 807.1 912.4 1014.2 1105.7 1192.1	28(9) 49(28) 52(20) 30(9) 34(10) 45(11)	1999Po13 1995Ne09 1992Ba13 1994Ba43 1997C103	1. π(h _{9/2} i _{13/2}) _{K=11} ⊗ ν(i _{13/2} ⁻² f _{5/2} ⁻¹) below and π(h _{9/2} i _{13/2}) _{K=11} ⊗ ν(i _{13/2} ⁻⁴ f _{5/2} ⁻¹) above the bandcrossing from the TAC model calculations. 2. Small oblate deformation (β ₂ ,γ) ~ (0.1, -70°) suggested in 1995Ne09. 3. Mean lifetimes of states with spins from 47/2 to 55/2 are 0.19(+15-8), 0.14(+6-4), 0.10(+3-2), 0.06(2) and 0.11(2) ps, respectively and that for spin 57/2 as given in 1997Cl03 is 0.14(+3-2) 4. B(M1) value for the transition 323.1 keV is 6.6(+47-29) μ _N ² from 1995Ne09. 5. B(M1)/B(E2) values are from 1992Ba13. 6. Regular band with backbending at spin 61/2. 7. Nuclear reactions: ¹⁹² Os (¹² C, 5nγ), E(¹² C) = 82 MeV, and ¹⁸⁶ W (¹⁸ O, 5nγ), E(¹⁸ O) = 94 MeV, Band intensity ~ 12%.
3	Y 137.7+Y 302.3+Y 510.6+Y 781.6+Y 1123.6+Y 1540.6+Y 2023.3+Y 2560.1+Y 3145.3+Y	$\begin{array}{c} (39/2^+) \\ (41/2^+) \\ (43/2^+) \\ (45/2^+) \\ (47/2^+) \\ (47/2^+) \\ (51/2^+) \\ (51/2^+) \\ (53/2^+) \\ (55/2^+) \\ (57/2^+) \end{array}$	137.7 164.6 208.3 271.0 342.0 417.0 482.7 536.8 585.2	900.0 1019.6 1122.0		1994Ba43 1999Po13 1995Ne09	 Tentatively assigned as π(h_{9/2}i_{13/2})_{K=11}⁻ ⊗ v(i_{13/2}⁻² f_{5/2}⁻¹) from the TAC model calculation. Small oblate deformation (β₂,γ) ~ (0.1, -70°) The topmost transition is from 1999Po13. Regular band.
4	Z 97.7+Z 232.9+Z 426.1+Z 673.5+Z 967.6+Z 1349.7+Z 1743.9+Z 2227.4+Z 2737.9+Z 3256.7+Z 3594.9+Z		97.7 135.2 193.2 247.4 294.1 382.1 394.2 483.5 510.5 518.8 338.2	541.4 676.2 776.4 877.6 994.2 1029.4		1994Ba43 1999Po13	 Tentatively assigned as π(h_{9/2}²)_{K=8}⁺ ⊗ ν(i_{13/2}⁻³). The estimated bandhead spin is 37/2 since it populates states with spin around 33/2. The two topmost transitions are from 1999Po13 Regular band with signature splitting and backbending at the top of the band.
5	U 242.9+U 550.2+U 863.2+U 1247.8+U 1661.8+U 2148.8+U		242.9 307.3 313.0 384.6 414.0 487.0	620.5 697.6 798.7 901.4		1994Ba43	 Tentatively assigned as π(h_{9/2}²)_{K=8}⁺ ⊗ ν(i_{13/2}⁻⁴ p_{3/2}⁻¹). The estimated bandhead spin is 45/2 since it populates states with spin around 41/2. Regular band with signature splitting.

	²⁰⁰ ₈₂ Pb ₁₁₈						
	Elevel	I ^π	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	Reference	Configurations and Comments:
	keV		keV	keV	$(\mu_N/eb)^2$		
1	X					1994Ba43	1. $\pi(h_{9/2}i_{13/2})_{K=11} \otimes \nu(i_{13/2})^{-2}$ from the TAC m
	100.6+X		100.6				calculation.
	223.9+X		123.3				2. Small oblate deformation.
	384.2+X		160.3				3. Tentative bandhead spin is around 17.
	592.8+X		208.6				Regular band.
	855.3+X		262.5				5. Nuclear reaction (1992Ba13): ¹⁹² Os (¹³ C, 5
	1174.8+X		319.5				$E(^{13}C) = 81$ MeV, Band intensity ~ 12%.
	1549.5+X		374.7				
	1978.9+X		429.4				
	2459.5+X		480.6				
	2992.5+X		533.0	(1014)			
	3574.6+X		582.1				
	4207.0+X		632.4	1214.3			
2	Y					1994Ba43	1. Tentatively assigned as $\pi(h_{9/2}i_{13/2})_{K=11}$
	212.5+Y		212.5				$v(i_{13/2}^{-3} p_{3/2}^{-1})$ from the TAC model calcula
	452.8+Y		240.3				2. Tentative bandhead spin is around 23.
	736.1+Y		283.3				3. Regular band.
	1065.7+Y		329.6				4. Band intensity ~ 7%.
	1445.8+Y		380.1				-
	1884.6+Y		438.8				
3	Z					1994Ba43	1. Tentatively assigned as $\pi(h_{9/2}i_{13/2})_{K=11}$
	237.5+Z		237.5				$v(i_{13/2}^{-3} f_{5/2}^{-1})$ from the TAC model calculat
	518.8+Z		281.3				2. Tentative bandhead spin is around 23.
	853.4+Z		334.6				3. Regular band.
	1234.8+Z		381.4				C
	1658.3+Z		423.5				

²⁰¹₈₂ Pb₁₁₉

	82 - 119							
	E _{level} keV	I ^π	E _γ (M1) keV	E _γ (E2) keV	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	Reference	Configurations and Comments:	
1	X 109.2+X 290.8+X 554.6+X 895.4+X 1299.4+X 1758.4+X 2264.1+X 2822.6+X		109.2 181.6 263.8 340.8 404.0 459.0 505.7 558.5	744.6 862.8 964.7		1995Ba70	 π(h_{9/2}i_{13/2})_{K=11} [∞] v(i_{13/2}⁻¹) by comparison with similar band in ¹⁹⁹Pb. Regular band. Nuclear reaction: ¹⁹²Os (¹⁴C, 5nγ), E(¹⁴C) = 7 MeV, Band intensity ~ 11(4)%. 	
2	6146.0+Y 6247.7+Y 6377.4+Y 6549.0+Y 6769.5+Y 7045.4+Y 7380.0+Y 7773.3+Y 8227.2+Y	35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2	101.7 129.7 171.6 220.5 275.9 334.6 393.3 453.9			1995Ba70	 π(h_{9/2}i_{13/2})_{K=11} ⁽²⁾ ev(i_{13/2}⁻²p_{3/2}⁻¹) by comparison with ¹⁹⁹Pb and TAC model calculations. Small oblate deformation. From 47/2 and above, there is a forking of the band with very close lying transitions having energies 333.1, 394.8 and 492.5 keV. regular band. Band intensity ~ 11(3)%. 	

3	Z		1995Ba70	1. Tentatively assigned as $\pi(h_{9/2}i_{13/2})_{K=11}$		
	139.6+Z	Z 139.6		$v(i_{13/2}^{-2} f_{5/2}^{-1})$, because of the similarity in th		
	315.4+Z	175.8		moment of inertia of the bands 2 and 3.		
	537.7+Z	222.3		2. Regular band.		
	814.1+Z	276.4		3. Band intensity $\sim 8(3)\%$.		
	1146.4 ± 7	332.3		· · · ·		
	1534.5+Z	388.1				
	1975.8+Z	441.3 829.4				
	2467.5+Z	491.7 933.1				
	3007.3+Z	539.8 1031.4				
4	U		1995Ba70	1. Regular band.		
	176.5+U	176.5		2. Band intensity $\sim 7(4)\%$.		
	402.2+U	225.7				
	680.4+U	278.2				
	1007.1+U	326.7				
	1387.5+U	380.4				
	1817.2+U	429.7				
	2300.3+U	483.1				
	2830.5+U	530.2				
5	V		1995Ba70	1. Regular band.		
	152.9+V	152.9		2. Band intensity $\sim 8(4)\%$.		
	351.5+V	198.6				
	601.5+V	250.0				
	913.5+V	312.0				
	1287.9+V	374.4				
	1723.9+V	436.0				
	2217.3+V	493.4				

²⁰²₈₂ Pb₁₂₀

E_{level} I ^{π} $E_{\gamma}(M1)$ $E_{\gamma}(E2)$ B(M1)/B(E2) Reference Configurations and	Comments:
$h_{\rm eV} = 1 h_{\rm eV} = 1 h_{\rm eV} (h_{\rm eV}/h_{\rm eV})^2$	
$\kappa c v$ $\kappa c v$ $\kappa c v$ $(\mu_N/eD)^-$	
1 X 1995Ba70 1. Tentatively assigned	hed as $\pi(h_{9/2}i_{13/2})_{K=11} \otimes \nu(i_{13/2})^{-2}$
161.5+X 161.5 by comparison wi	ith the neighboring ²⁰¹ Pb.
404.8+X 243.3 2. Regular band.	
737.7+X 332.9 3. Nuclear reaction: ¹	192 Os (14 C, 4n γ), E(14 C) = 76
1145.3+X 407.6 MeV.	
1611.8+X 466.5	
2129.5+X 517.7	
2 Y 1995Ba70 1. This band is tentat	1. This hand is tentatively assigned to the nucleus
183.0+Y 183.0 because of its wea	aker intensity and the
423.1+Y 240.1 nonclarity of the co	coincidence relations. If it
719.4+Y 296.3 belongs to the nucl	cleus, it probably has higher
1081.3+Y 361.9 spin than band 1.	
1500.8+Y 419.5 2. Regular band.	
1988.0+Y 487.2	

	¹⁵⁰ ₈₃ B1 ₁₁₅					
	Elevel	Iπ	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	Reference
	keV		keV	keV	$(\mu_N/eb)^2$	
1	Х					1994Da17
	165+X		165			
	416+X		251			
	731+X		315			
	1108+X		377			
	1517+X		409			
	$^{199}_{83}$ Bi ₁₁₆					
	E	тЯ	E () (1)	E (E2)	D(M(1)/D(E2))	Defenses

100 -----

	E _{level}	I ^π	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	Reference
	keV		keV	keV	$(\mu_N/eb)^2$	
1	Х					1994Da17
	184.4+X		184.4			
	400.2+X		215.8			
	642.0+X		241.8			
	923.2+X		281.2			
	1236.7+X		313.5			
	1590.3+X		353.6			
	1950.8+X		360.5			
	2316.7+X		365.9			

	²⁰⁰ ₈₃ Bi ₁₁₇					
	E _{levet} keV	I ^π	E _γ (M1) keV	E _γ (E2) keV	$\frac{B(M1)/B(E2)}{(\mu_N/eb)^2}$	Reference
1	Х					1994Da17
	193+X		193			
	431+X		238			
	720+X		289			
	1056+X		336			
	1432+X		376			
	1855+X		423			
2	V					1004D 15
2	100.0+37		100.0			1994Da17
	199.0+Y		199.0			
	440.2+ Y		247.2			
	/40./+Y		294.5			
	1083.8+Y		343.1			
	1475.2+Y		391.4			
	1918.8+Y		443.6			
	2417.8+Y		499.0			
	2970.7+Y		552.9			
	3577.7+Y		607.0			

Configurations and Comments:

- 1. Tentatively assigned as $\pi(h_{9/2} i_{13/2} s_{1/2}^{-1})$ coupled to one or three $i_{13/2}$ neutron holes by comparison with a similar band in neighboring Pb isotopes.
- 2. B(M1)/B(E2) ratios are large due to the nonobservation of crossover E2 transitions. 3. Regular band.
- 4. Nuclear reaction: $^{186}W(^{19}F, 7n\gamma)$, $E(^{19}F) = 115$ and 105 MeV, Band intensity ~ 25% relative to the low lying 630 keV transition.

Configurations and Comments:

- 1. Tentatively assigned as $\pi(h_{9/2}i_{13/2}s_{1/2}^{-1})$ coupled to two $i_{13/2}$ neutron holes by comparison with a similar band in neighboring Pb isotopes.
- 2. The band depopulates around 37/2.
- 3. B(M1)/B(E2) ratios are large due to the nonobservation of crossover E2 transitions.
- 4. Regular band.
- 5. Nuclear reaction: ${}^{186}W({}^{19}F, 6n\gamma), E({}^{19}F) = 115$ and 105 MeV, Band intensity ~ 20% relative to 495 keV $31/2^{-} \rightarrow 29/2^{-}$ transition.

- 1. Tentatively assigned as $\pi(h_{9/2}i_{13/2}s_{1/2}^{-1})$ coupled to one or three i13/2 neutron holes by comparison with a similar band in neighboring Pb isotopes.
- 2. B(M1)/B(E2) ratios are large due to the nonobservation of crossover E2 transitions.
- 3. Regular band.
- 4. Nuclear reaction: ${}^{186}W({}^{19}F, 5n\gamma), E({}^{19}F) = 115$ and 105 MeV, Band intensity ~ 20% relative to the low lying 326 keV transition.
- 1. Tentatively assigned as $\pi(h_{9/2}i_{13/2}s_{1/2}^{-1})$ coupled to one or three i13/2 neutron holes by comparison with a similar band in neighboring Pb isotopes.
 - 2. B(M1)/B(E2) $\ge 10 \ (\mu_N/eb)^2$.
 - 3. Regular band.
 - 4. Band intensity ~ 30% relative to the low lying 326 keV transition.

	²⁰² ₈₃ Bi ₁₁₉						
	E _{level}	I ^π	E _γ (M1)	E _γ (E2)	B(M1)/B(E2)	Reference	Configurations and Comments:
	keV		keV	keV	$(\mu_N/eb)^2$		
1	Х					1993Cl02	1. Tentatively assigned as $\pi(h_{9/2}i_{13/2}s_{1/2}^{-1})$ coupled
	164+X		164				to one or two i13/2 neutron holes by comparison
	423+X		259				with a similar band in neighboring Pb isotopes.
	775+X		352				2. The estimated bandhead spin is about 10-16.
	1199+X		424				3. B(M1)/B(E2) \ge 12 ($\mu_{\rm N}$ /eb) ² .
	1680+X		481				4. Regular band.
	2210+X		530				5. Nuclear reaction: 196 Pt (11 B, 5n γ), E(11 B) = 75
	2780+X		570				MeV, Band intensity ~ 15%.
2	Y					1993Cl02	1. Tentatively assigned as $\pi(h_{9/2}i_{13/2}s_{1/2}^{-1})$ or
	180+Y		180				$\pi(h_{9/2}^2 s_{1/2}^{-1})$ coupled to one or two $i_{13/2}$ neutron
	394+Y		214				holes by comparison with the similar band in
	659+Y		265				neighboring Pb isotopes.
	984+Y		325				2. The estimated bandhead spin is about 10-16.
	1374+Y		390				3. B(M1)/B(E2) $\geq 6 (\mu_N/eb)^2$.
							4. Regular band.
							5. Band intensity $\sim 4\%$.
3	Z					1993Cl02	1. Tentatively assigned as $\pi(h_{9/2}i_{13/2}s_{1/2})^{-1}$ coupled
	250+Z		250				to one or two $i_{13/2}$ neutron holes by comparison
	550+Z		300				with the similar band in neighboring Pb
	907+Z		357				isotopes. The estimated bandhead spin is about
	1320+Z		413				11-19.
	1785+Z		465				2. B(M1)/B(E2) \geq 5 (μ_N /eb) ² .
	2302+Z		517				3. Regular band.
							4. Band intensity ~ 3%.

²⁰³ Bi

	83 - 120					
	Elevel	I ^π	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	Reference
	keV		keV	keV	$(\mu_N/eb)^2$	
1	X					1994Da17
	175+X		175			
	421+X		246			
	759+X		338			
	1201+X		442			
	1718+X		517			
	2295+X		577			

205	Dn	
86	IXII 119	

	au 119					
	Elevel	I ^π	$E_{\gamma}(M1)$	$E_{\gamma}(E2)$	B(M1)/B(E2)	Reference
	keV		keV	keV	$(\mu_N/eb)^2$	
1	1680+X	$(21/2^{+})$				1999No03
	1796.7+X	$(23/2^{+})$	116.7			
	1966.9+X	$(25/2^{+})$	170.2			
	2124.8+X	$(27/2^{+})$	157.9		2.0(2)	
	2246.0+X	$(29/2^{+})$	121.2		>4	
	2494.0+X	$(31/2^{+})$	248.0		>7	
	2861.7+X	$(33/2^{+})$	367.7		>10	
	3164.1+X	$(35/2^+)$	302.4		>33	
	3452.3+X	$(37/2^+)$	288.2		>18	
	3653.6+X	$(39/2^+)$	201.3			
	4059.4+X	(41/2+)	405.8			

02	 Tentatively assigned as π(h_{9/2} i_{13/2} s_{1/2}⁻¹) coupled to one or two i_{13/2} neutron holes by comparison with a similar band in neighboring Pb isotopes. The estimated bandhead spin is about 10-16. B(M1)/B(E2) ≥ 12 (μ_N/eb)². Regular band. Nuclear reaction: ¹⁹⁶Pt (¹¹B, 5nγ), E(¹¹B) = 75 MeV, Band intensity ~ 15%.
02	 Tentatively assigned as π(h_{9/2} i_{13/2} s_{1/2}⁻¹) or π(h_{9/2}²s_{1/2}⁻¹) coupled to one or two i_{13/2} neutron holes by comparison with the similar band in neighboring Pb isotopes. The estimated bandhead spin is about 10-16. B(M1)/B(E2) ≥ 6 (μ_N/eb)². Regular band. Band intensity ~ 4%.
	 Tentatively assigned as π(h_{9/2}i_{13/2}s_{1/2}⁻¹) coupled to one or two i_{13/2} neutron holes by comparison with the similar band in neighboring Pb isotopes. The estimated bandhead spin is about 11-19. B(M1)/B(E2) ≥ 5 (μ_N/eb)². Regular band. Band intensity ~ 3%.

Configurations and Comments:

- 1. Tentatively assigned as $\pi(h_{9/2}i_{13/2}s_{1/2}^{-1})$ coupled to two $i_{13/2}$ neutron holes by comparison with a similar band in neighboring Pb isotopes.
- 2. B(M1)/B(E2) ratios are large due to the nonobservation of crossover E2 transitions.
- 3. Regular band.
- 4. Nuclear reaction: ¹⁹⁸Pt (¹¹B, $6n\gamma$), E(¹¹B) = 74 MeV, Band intensity ~ 15% relative to the 689 keV transition.

- 1. The most likely configuration is the negative parity $\pi(h_{9/2}i_{13/2}) \otimes v(i_{13/2})$ from the TAC calculations. Since the observed parities are positive, the configuration $\pi(i_{13/2}^2) \otimes v(i_{13/2})$ is tentatively assigned.
- 2. Small oblate deformation , $\beta_2 \sim -0.1$.
- 3. $X \sim 600$ keV from systematics.
- 4. Irregular band.
- 5. Nuclear reaction: 170 Er (40 Ar, 5n γ), E(40 Ar) = 183 MeV, band intensity ~ 25%.

REFERENCES FOR TABLE

1980Ga17	W. Gast, K. Dey, A. Gelberg, U. Kaup, F. Paar, R. Richter, K. O. Zell and P. von Brentano, Phys. Rev. <u>C22</u> , 469 (1980).
1986Fu04	L. Funke, J. Döring, P. Kemnitz, P. Ojeda, R. Schwengner, E. Will, G. Winter, A. Johnson, L. Hildingsson and Th. Lindblad, Z. Phys. <u>A324</u> , 127 (1986).
1988Hi04	L. Hildingsson, C. W. Beausang, D. B. Fossan and W. F. Piel, Jr., Phys. Rev. C37, 985 (1988).
1988Sc13	R. Schwengner, J. Döring, L. Funke, H. Rotter, G. Winter, A. Johnson and A. Nilsson, Nucl. Phys. <u>A486</u> , 43 (1988).
1989Hi02	L. Hildingsson, C. W. Beausang, D. B. Fossan, R. Ma, E. S. Paul, W. F. Piel, Jr. and N. Xu, Phys. Rev. <u>C39</u> , 471 (1989).
1989Pa17	E. S. Paul, D. B. Fossan, Y. Liang, R. Ma and N. Xu, Phys. Rev. C40, 1255 (1989).
1989Xu01	N. Xu, C. W. Beausang, R. Ma, E. S. Paul, W. F. Piel, Jr., D. B. Fossan and L. Hildingsson, Phys. Rev. <u>C39</u> , 1799 (1989).
1990Ma26	R. Ma, E. S. Paul, D. B. Fossan, Y. Liang, N. Xu, R. Wadsworth, I. Jenkins and P. J. Nolan, Phys. Rev. <u>C41</u> , 2624 (1990).
1990Pa05	E. S. Paul, D. B. Fossan, Y. Liang, R. Ma, N. Xu, R. Wadsworth, I. Jenkins and P. J. Nolan, Phys. Rev. <u>C41</u> , 1576 (1990).
1990Sc07	R. Schwengner, J. Döring, L. Funke, G. Winter, A. Johnson and W. Nazarewicz, Nucl. Phys. <u>A509</u> , 550 (1990).
1992Ba13	G. Baldsiefen, H. Hübel, D. Mehta, B. V. Thirumala Rao, U. Birkental, G. Fröhlingsdorf, M. Neffgen, N. Nenoff, S. C. Pancholi, N. Singh, W. Schmitz, K. Theine, P. Willsau, H. Grawe, J. Heese, H. Kluge, K. H. Maier, M. Schramm, R. Schubart and H. J. Maier, Phys. Lett. <u>B275</u> , 252 (1992).
1992Ku06	A. Kuhnert, M. A. Stoyer, J. A. Becker, E. A. Henry, M. J. Brinkman, S. W. Yates, T. F. Wang, J. A. Cizewski, F. S. Stephens, M. A. Deleplanque, R. M. Diamond, A. O. Macchiavelli, J. E. Draper, F. A. Azaiez, W. H. Kelly and W. Korten, Phys. Rev. <u>C46</u> , 133 (1992).
1992Wa20	T. F. Wang, E. A. Henry, J. A. Becker, A. Kuhnert, M. A. Stoyer, S. W. Yates, M. J. Brinkman, J. A. Cizewski, A. O. Macchiavelli, F. S. Stephens, M. A. Deleplanque, R. M. Diamond, J. E. Draper, F. A. Azaiez, W. H. Kelly, W. Korten, E. Rubel and Y. A. Akovali, Phys. Rev. Lett. <u>69</u> , 1737 (1992).
1993Ce04	B. Cederwall, M. A. Deleplanque, F. Azaiez, R. M. Diamond, P. Fallon, W. Korten, I. Y. Lee, A. O. Macchiavelli, J. R. B. Oliveira, F. S. Stephens, W. H. Kelly, D. T. Vo, J. A. Becker, M. J. Brinkman, E. A. Henry, J. R. Hughes, A. Kuhnert, M. A. Stoyer, T. F. Wang, J. E. Draper, C. Duyar, E. Rubel and J. deBoer, Phys. Rev. <u>C47</u> , R2443 (1993).
1993Cl02	R. M. Clark, R. Wadsworth, F. Azaiez, C. W. Beausang, A. M. Bruce, P. J. Dagnall, P. Fallon, P. M. Jones, M. J. Joyce, A. Korichi, E. S. Paul and J. F. Sharpey-Schafer, J. Phys. <u>G19</u> , L57 (1993).
1993Cl05	R. M. Clark, R. Wadsworth, E. S. Paul, C. W. Beausang, I. Ali, A. Astier, D. M. Cullen, P. J. Dagnall, P. Fallon, M. J. Joyce, M. Meyer, N. Redon, P. H. Regan, J. F. Sharpey-Schafer, W. Nazarewicz and R. Wyss, Nucl. Phys. <u>A562</u> , 121 (1993).

1993De42	J. K. Deng, W. C. Ma, J. H. Hamilton, J. D. Garrett, C. Baktash, D. M. Cullen, N. R. Johnson, I. Y. Lee, F. K. McGowan, S. Pilotte, C. H. Yu and W. Nazarewicz, Phys. Lett. <u>B319</u> , 63 (1993).
1993Do14	J. Döring, L. Funke, R. Schwengner and G. Winter, Phys. Rev. C48, 2524 (1993).
1993Ho15	J. W. Holcomb, J. Döring, T. Glasmacher, G. D. Johns, T. D. Johnson, M. A. Riley, P. C. Womble and S. L. Tabor, Phys. Rev. <u>C48</u> , 1020 (1993).
1993Hu01	J. R. Hughes, Y. Liang, R. V. F. Janssens, A. Kuhnert, J. A. Becker, I. Ahmad, I. G. Bearden, M. J. Brinkman, J. Burde, M. P. Carpenter, J. A. Cizewski, P. J. Daly, M. A. Deleplanque, R. M. Diamond, J. E. Draper, C. Duyar, B. Fornal, U. Garg, W. Grabowski, E. A. Henry, R. G. Henry, W. Hesselink, N. Kalantar-Nayestanaki, W. H. Kelly, T. L. Khoo, T. Lauritsen, R. H. Mayer, D. Nissius, J. R. B. Oliveira, A. J. M. Plompen, W. Reviol, E. Rubel, F. Soramel, F. S. Stephens, M. A. Stoyer, D. Vo and T. F. Wang, Phys. Rev. <u>C47</u> , R1337 (1993).
1993Hu08	J. R. Hughes, J. A. Becker, M. J. Brinkman, E. A. Henry, R. W. Hoff, M. A. Stoyer, T. F. Wang, B. Cederwall, M. A. Deleplanque, R. M. Diamond, P. Fallon, I. Y. Lee, J. R. B. Oliveira, F. S. Stephens, J. A. Cizewski, L. A. Bernstein, J. E. Draper, C. Duyar, E. Rubel, W. H. Kelly, and D. Vo, Phys. Rev. <u>C48</u> , R2135 (1993).
1993Me12	D. Mehta, W. Korten, H. Hübel, K. Theine, W. Schimtz, P. Willsau, C. X. Yang, F. Hannachi, D. B. Fossan, H. Grawe, H. Kluge and K. H. Maier, Z. Phys. <u>A346</u> , 169 (1993).
1993P102	J. M. Plompen, M. N. Harakesh, W. H. A. Hesselink, G. Van't Hof, N. Kalantar-Nayestanaki, J. P. S. van Schagen, M. P. Carpenter, I. Ahmed, I. G. Bearden, R. V. F. Janssens, T. L. Khoo, T. Lauritsen, Y. Liang, U. Garg, W. Reviol and D. Ye, Nucl. Phys. <u>A562</u> , 61 (1993).
1993Ro03	N. Roy, J. A. Becker, E. A. Henry, M. J. Brinkman, M. A. Stoyer, J. A. Cizewski, R. M. Diamond, M. A. Deleplanque, F. S. Stephens, C. W. Beausang and J. E. Draper, Phys. Rev. <u>C47</u> , R930 (1993).
1993Sy03	G. N. Sylvan, J. E. Purcell, J. Döring, J. W. Holcomb, G. D. Johns, T. D. Johnson, M. A. Riley, P. C. Womble, V. A. Wood and S. L. Tabor, Phys. Rev. <u>C48</u> , 2252 (1993).
1993Th05	I. Thorslund, C. Fahlander, J. Nyberg, S. Juutinen, R. Julin, M. Piiparinen, R. Wyss, A. Lampinen, T. Lönnroth, D. Müller, S. Törmänen and A. Virtanen, Nucl. Phys. <u>A564</u> , 285 (1993).
1994Ba43	G. Baldsiefen, H. Hübel, W. Korten, D. Mehta, N. Nenoff, B. V. Thirumala Rao, P. Willsau, H. Grawe, J. Heese, H. Kluge, K. H. Maier, R. Schubart, S. Frauendorf and H. J. Maier, Nucl. Phys. <u>A574</u> , 521 (1994).
1994Cl01	R. M. Clark, R. Wadsworth, H. R. Andrews, C. W. Beausang, M. Bergstrom, S. Clarke, E. Dragulescu, T. Drake, P. J. Dagnall, A. Galindo-Uribarri, G. Hackman, K. Hauschild, I. M. Hibbert, V. P. Janzen, P. M. Jones, R. W. MacLeod, S. M. Mullins, E. S. Paul, D. C. Radford, A. Semple, J. F. Sharpey-Schafer, J. Simpson, D. Ward and G. Zwartz, Phys. Rev. <u>C50</u> , 84 (1994).
1994Da17	P. J. Dagnall, C. W. Beausang, R. M. Clark, R. Wadsworth, S. Bhattacharjee, P. Fallon, P. D. Forsyth, D. B. Fossan, G. deFrance, S. J. Gale, F. Hannachi, K. Hauschild, I. M. Hibbert, H. Hübel, P. M. Jones, M. J. Joyce, A. Korichi, W. Korten, D. R. LaFosse, E. S. Paul, H. Schnare, K. Starosta, J. F. Sharpey-Schafer, P. J. Twin, P. Vaska, M. P. Waring and J. N. Wilson, J. Phys. <u>G20</u> , 1591 (1994).
1994De11	G. de Angelis, M. A. Cardona, M. De Poli, S. Lunardi, D. Bazzacco, F. Brandolini, D. Vretenar, G. Bonsignori, M. Savoia, R. Wyss, F. Terrasi and V. Roca, Phys. Rev. <u>C49</u> , 2990 (1994).
1994Do18	J. Döring, R. Schwengner, L. Funke, H. Rotter, G. Winter, B. Cederwall, F. Lidén, A. Johnson, A. Atac, J. Nyberg and G. Sletten, Phys. Rev. <u>C50</u> , 1845 (1994).

- 1994J008 G. D. Johns, J. Döring, J. W. Holcomb, T. D. Johnson, M. A. Riley, G. N. Sylvan, P. C. Womble, V. A. Wood and S. L. Tabor, Phys. Rev. <u>C50</u>, 2786 (1994).
- S. Juutinen, R. Julin, M. Piiparinen, P. Ahonen, B. Cederwall, C. Fahlander, A. Lampinen, T. Lönnroth, A. Maj,
 S. Mitarai, D. Müller, J. Nyberg, P. Simecek, M. Sugawara, I. Thorslund, S. Törmänen, A. Virtanen and R. Wyss, Nucl. Phys. <u>A573</u>, 306 (1994).
- S. Juutinen, P. Simecek, C. Fahlander, R. Julin, J. Kumpulainen, A. Lampinen, T. Lönnroth, A. Maj, S. Mitarai, D. Müller, J. Nyberg, M. Piiparinen, M. Sugawara, I. Thorslund, S. Törmänen and A. Virtanen, Nucl. Phys. A577, 727 (1994).
- Y. Le Coz, N. Redon, A. Astier, R. Beraud, R. Duffait, M. Meyer, F. Hannachi, G. Bastin, I. Deloncle, B. Gall, M. Kaci, M. G. Porquet, C. Schück, F. Azaiez, C. Bourgeois, J. Duprat, A. Korichi, N. Perrin, N. Poffe, H. Sergolle, J. F. Sharpey-Schafer, C. W. Beausang, S. J. Gale, M. J. Joyce, E. S. Paul, R. M. Clark, K. Hauschild, R. Wadsworth, J. Simpson, M. A. Bentley, A. G. Smith, H. Hübel, P. Willsau, G. De France, I. Ahmad, M. Carpenter, R. Henry, R. V. F. Janssens, T. L. Khoo and T. Lauritsen, Z. Phys. <u>A348</u>, 87 (1994).
- M. G. Porquet, F. Hannachi, G. Bastin, V. Brindejonc, I. Deloncle, B. Gall, C. Schück, A. G. Smith, F. Azaiez, C. Bourgeois, J. Duprat, A. Korichi, N. Perrin, N. Poffe, H. Sergolle, A. Astier, Y. Le Coz, M. Meyer, N. Redon, J. Simpson, J. F. Sharpey-Schafer, M. J. Joyce, C. W. Beausang, R. Wadsworth and R. M. Clark, J. Phys. <u>G20</u>, 765 (1994).
- 1994Rz01 T. Rzaca-Urban, S. Utzelmann, K. Strähle, R. M. Lieder, W. Gast, A. Georgiev, D. Kutchin, G. Marti, K. Spohr, P. Von Brentano, J. Eberth, A. Dewald, J. Theuerkauf, I. Wiedenhöfer, K. O. Zell, K. H. Maier, H. Grawe, J. Heese, H. Kluge, W. Urban and R. Wyss, Nucl. Phys. <u>A579</u>, 319 (1994).
- 1994Th01 I. Thorslund, C. Fahlander, J. Nyberg, M. Piiparinen, R. Julin, S. Juutinen, A. Virtanen, D. Müller, H. Jensen and M. Sugawara, Nucl. Phys. <u>A568</u>, 306 (1994).
- 1995Ba35 G. Baldsiefen, S. Chmel, H. Hübel, W. Korten, M. Neffgen, W. Pohler, U. J. van Severen, J. Heese, H. Kluge, K. H. Maier and K. Spohr, Nucl. Phys. <u>A587</u>, 562 (1995).
- 1995Ba70 G. Baldsiefen, P. Maagh, H. Hübel, W. Korten, S. Chmel, M. Neffgen, W. Pohler, H. Grawe, K. H. Maier, K. Spohr, R. Schubart, S. Frauendorf and H. J. Maier, Nucl. Phys. <u>A592</u>, 365 (1995).
- B. Fant, B. Cederwall, L. O. Norlin, R. Wyss, P. Fallon, C. W. Beausang, P. A. Butler, R. Roberts, A. M. Bruce, D. M. Cullen, S. M. Mullins, R. J. Poynter, R. Wadsworth, M. A. Riley, W. Korten and M. J. Piiparinen, Phys. Scr. <u>T56</u>, 245 (1995).
- N. Fotiades, S. Harissopulos, C. A. Kalfas, S. Kossionides, C. T. Papadopoulos, R. Vlastou, M. Serris, M. Meyer, N. Redon, R. Duffait, Y. Le Coz, L. Ducroux, F. Hannachi, I. Deloncle, B. Gall, M. G. Porquet, C. Schück, F. Azaiez, J. Duprat, A. Korichi, J. F. Sharpey-Schafer, M. J. Joyce, C. W. Beausang, P. J. Dagnall, P. D. Forsyth, S. J. Gale, P. M. Jones, E. S. Paul, J. Simpsons, R. M. Clark, K. Hauschild and R. Wadsworth, J. Phys. <u>G21</u>, 911 (1995).
- M. Kaci, M. G. Porquet, F. Hannachi, M. Aïche, G. Bastin, I. Deloncle, B. J. P. Gall, C. Schück, F. Azaiez, C. W. Beausang, R. Beraud, C. Bourgeois, R. M. Clark, R. Duffait, J. Duprat, K. Hauschild, H. Hübel, M. J. Joyce, A. Korichi, Y. Le Coz, M. Meyer, E. S. Paul, N. Perrin, N. Poffe, N. Redon, H. Sergolle, J. F. Sharpey-Schafer, J. Simpsons, A. G. Smith and R. Wadsworth, Acta Phys. Pol. <u>B26</u>, 275 (1995).

- E. F. Moore, M. P. Carpenter, Y. Liang, R. V. F. Janssens, I. Ahmad, I. G. Bearden, P. J. Daly, M. W. Drigert, B. Fornal, U. Garg, Z. W. Grabowski, H. L. Harrington, R. G. Henry, T. L. Khoo, T. Lauritsen, R. H. Mayer, D. Nisius, W. Reviol and M. Sterrazza, Phys. Rev. <u>C51</u>, 115 (1995).
- M. Neffgen, G. Baldsiefen, S. Frauendorf, H. Grawe, J. Heese, H. Hübel, H. Kluge, A. Korichi, W. Korten, K. H. Maier, D. Mehta, J. Meng, N. Nenoff, M. Piiparinen, M. Schönhofer, R. Schubart, U. J. van Severen, N. Singh, G. Sletten, B. V. Thirumala Rao and P. Willsau, Nucl. Phys. <u>A595</u>, 499 (1995).
- 1995Sc04 R. Schwengner, G. Winter, J. Reif, H. Prade, L. Käubler, R. Wirowski, N. Nicolay, S. Albers, S. Eber, P. von Brentano and W. Andrejtscheff, Nucl. Phys. <u>A584</u>, 159 (1995).
- 1995Ta21 S. L. Tabor and J. Döring, Phys. Scr. <u>T56</u>, 175 (1995).
- 1996Ba53 G. Baldsiefen, H. Hübel, W. Korten, U. J. van Severen, J. A. Cizewski, N. H. Medina, D. R. Napoli, C. Rossi Alvarez, G. Lo Bianco and S. Signorelli, Z. Phys. <u>A355</u>, 337 (1996).
- G. Baldsiefen, M. A. Stoyer, J. A. Cizewski, D. P. McNabb, W. Younes, J. A. Becker, L. A. Bernstein, M. J. Brinkman, L. P. Farris, E. A. Henry, J. R. Hughes, A. Kuhnert, T. F. Wang, B. Cederwall, R. M. Clark, M. A. Deleplanque, R. M. Diamond, P. Fallon, I. Y. Lee, A. O. Macchiavelli, J. Oliveira, F. S. Stephens, J. Burde, D. T. Vo and S. Frauendorf, Phys. Rev. <u>C54</u>, 1106 (1996).
- 1996Br33 F. Brandolini, M. Ionescu-Bujor, N. H. Medina, R. V. Ribas, D. Bazzacco, M. De Poli, P. Pavan, C. Rossi Alvarez, G. de Angelis, S. Lunardi, D. De Acuña, D. R. Napoli and S. Frauendorf, Phys. Lett. <u>B388</u>, 468 (1996).
- L. Ducroux, A. Astier, R. Duffait, Y. Le Coz, M. Meyer, S. Perries, N. Redon, J. F. Sharpey-Schafer, A. N. Wilson, R. Lucas, V. Méot, R. Collatz, I. Deloncle, F. Hannachi, A. Lopez-Martens, M. G. Porquet, C. Schück, F. Azaiez, S. Bouneau, C. Bourgeois, A. Korichi, N. Poffe, H. Sergolle, B. J. P. Gall, I. Hibbert and R. Wadsworth, Z. Phys. <u>A356</u>, 241 (1996).
- M. Kaci, M. G. Porquet, F. Hannachi, M. Aïche, G. Bastin, I. Deloncle, B. J. P. Gall, C. Schück, F. Azaiez, C. W. Beausang, C. Bourgeois, R. M. Clark, R. Duffait, J. Duprat, K. Hauschild, M. J. Joyce, A. Korichi, Y. Le Coz, M. Meyer, E. S. Paul, N. Perrin, N. Poffe, N. Redon, H. Sergolle, J. F. Sharpey-Schafer, J. Simpsons, A. G. Smith and R. Wadsworth, Z. Phys. <u>A354</u>, 267 (1996).
- C. M. Petrache, Y. Sun, D. Bazzacco, S. Lunardi, C. Rossi Alvarez, R. Venturelli, D. De Acuña, G. Maron, M. N. Rao, Z. Podolyak and J. R. B. Oliveira, Phys. Rev. <u>C53</u>, R2581 (1996).
- 1996Ro04 C. Rossi Alvarez, D. Vretenar, Zs. Podolyak, D. Bazzacco, G. Bonsignori, F. Brandolini, S. Brant, G. de Angelis, M. De Poli, M. Ionescu-Bujor, Y. Li, S. Lunardi, N. H. Medina and C. M. Petrache, Phys. Rev. <u>C54</u>, 57 (1996).
- 1996Sm07 D. H. Smalley, R. Chapman, P. J. Dagnall, C. Finck, B. Haas, M. J. Leddy, J. C. Lisle, D. Prevost, H. Savajols, A. G. Smith, Nucl. Phys. <u>A611</u>, 96 (1996).
- P. Willsau, M. Neffgen, Y. Le Coz, H. Hübel, W. Korten, F. Hannachi, A. Korichi, M. G. Porquet, M. Kaci, N. Redon, M. Meyer, C. W. Beausang, E. S. Paul, J. Simpson and J. R. Hughes, Z. Phys. <u>A355</u>, 129 (1996).
- 1997Ch01 R. S. Chakrawarthy and R. G. Pillay, Phys. Rev. <u>C55</u>, 155 (1997).
- 1997Ch33 S. Chmel, F. Brandolini, R. V. Ribas, G. Baldsiefen, A. Görgen, M. de Poli, P. Pavan and H. Hübel, Phys. Rev. Lett. <u>79</u>, 2002 (1997).

- R. M. Clark, S. J. Asztalos, G. Baldsiefen, J. A. Becker, L. Bernstein, M. A. Deleplanque, R. M. Diamond, P. Fallon, I. M. Hibbert, H. Hübel, R. Krücken, I. Y. Lee, A. O. Macchiavelli, R. W. MacLeod, G. Schmid, F. S. Stephens, K. Vetter, R. Wadsworth and S. Frauendorf, Phys. Rev. Lett. <u>78</u>, 1868 (1997).
- A. Gadea, G. de Angelis, C. Fahlander, M. De Poli, E. Farnea, Y. Li, D. R. Napoli, Q. Pan, P. Spolaore, D. Bazzacco, S. M. Lenzi, S. Lunardi, C. M. Petrache, F. Brandolini, P. Pavan, C. Rossi Alvarez, M. Sferrazza, P. G. Bizetti, A. M. Bizetti Sona, J. Nyberg, M. Lypoglavsek, J. Persson, J. Cederkäll, D. Seweryniak, A. Johnson, H. Grawe, F. Soramel, M. Ogawa, A. Makishima, R. Schubart and S. Frauendorf, Phys. Rev. <u>C55</u>, R1 (1997).
- 1997Lo12 G. Lo Bianco, Ch. Protochristov, G. Falconi, N. Blasi, D. Bazzaco, G. de Angelis, D. R. Napoli, M. A. Cardona, A. J. Kreiner and H. Somacal, Z. Phys. <u>A359</u>, 347 (1997).
- C. M. Petrache, R. Venturelli, D. Vretenar, D. Bazzacco, G. Bonsignori, S. Brant, S. Lunardi, M. A. Rizzutto,
 C. Rossi Alvarez, G. de Angelis, M. De Poli and D. R. Napoli, Nucl. Phys. <u>A617</u>, 228 (1997).
- 1997Pe07 C. M. Petrache, Y. Sun, D. Bazzacco, S. Lunardi, C. Rossi Alvarez, G. Falconi, R. Venturelli, G. Maron, D. R. Napoli, Zs. Podolyak and P. M. Walker, Nucl. Phys. <u>A617</u>, 249 (1997).
- M. Sugawara, H. Kusakari, Y. Igari, K. Terui, K. Myojin, D. Nishimiya, S. Mitarai, M. Oshima, T. Hayakawa, M. Kidera, K. Furutaka and Y. Hatsukawa, Z. Phys. <u>A358</u>, 1 (1997).
- R. M. Clark, R. Krücken, S. J. Asztalos, J. A. Becker, B. Busse, S. Chmel, M. A. Deleplanque, R. M. Diamond,
 P. Fallon, D. Jenkins, K. Hauschild, I. M. Hibbert, H. Hübel, I. Y. Lee, A. O. Macchiavelli, R. W. MacLeod,
 G. Schmid, F. S. Stephens, U. J. van Severen, K. Vetter, R. Wadsworth and S. Wan, Phys. Lett. <u>B440</u>, 251 (1998).
- 1998F002 N. Fotiades, J. A. Cizewski, D. P. McNabb, K. Y. Ding, D. E. Archer, J. A. Becker, L. A. Bernstein, K. Hauschild, W. Younes, R. M. Clark, P. Fallon, I. Y. Lee, A. O. Macchiavelli and R. W. MacLeod, Phys. Rev. <u>C57</u>, 1624 (1998).
- 1998Je03 D. G. Jenkins, I. M. Hibbert, C. M. Parry, R. Wadsworth, D. B. Fossan, G. J. Lane, J. M. Sears, J. F. Smith, R. M. Clark, R. Krücken, I. Y. Lee, A. O. Macchiavelli, V. P. Janzen, J. Cameron and S. Frauendorf, Phys. Lett. <u>B428</u>, 23 (1998).
- 1998Je09 D. G. Jenkins, R. Wadsworth, J. Cameron, R. M. Clark, D. B. Fossan, I. M. Hibbert, V. P. Janzen, R. Krücken, G. J. Lane, I. Y. Lee, A. O. Macchiavelli, C. M. Parry, J. M. Sears, J. F. Smith and S. Frauendorf, Phys. Rev. <u>C58</u>, 2703 (1998).
- 1998Ka59 M. Kaci, M-G. Porquet, Ch. Vieu, C. Schück, A. Astier, F. Azaiez, C. Bourgeois, I. Deloncle, J. S. Dionisio, J. Duprat, F. Farget, B. J. P. Gall, D. Han, A. Korichi, Y. Le Coz, M. Pautrat, N. Perrin, D. Santos and H. Sergolle, Eur. Phys. J. <u>A3</u>, 201 (1998).
- 1998Kr20 R. Krücken, R. M. Clark, A. Dewald, M. A. Deleplanque, R. M. Diamond, P. Fallon, K. Hauschild, I. Y. Lee, A. O. Macchiavelli, R. Peusquens, G. J. Schmid, F. S. Stephens, K. Vetter and P. von Brentano, Phys. Rev. <u>C58</u>, R1876 (1998).
- G. J. Lane, D. B. Fossan, C. J. Chiara, H. Schnare, J. M. Sears, J. F. Smith, I. Thorslund, P. Vaska, E. S. Paul, A. N. Wilson, J. N. Wilson, K. Hauschild, I. M. Hibbert, R. Wadsworth, A. V. Afanasjev and I. Ragnarsson, Phys. Rev. <u>C58</u>, 127 (1998).

- N. Nenoff, G. Baldsiefen, H. Hübel, A. Görgen, W. Korten, M. A. Deleplanque, R. M. Diamond, P. Fallon,
 I. Y. Lee, A. O. Macchiavelli and F. S. Stephens, Nucl. Phys. <u>A629</u>, 621 (1998).
- P. Vaska, D. B. Fossan, D. R. LaFosse, H. Schnare, M. P. Waring, S. M. Mullins, G. Hackman, D. Prévost, J. C. Waddington, V. P. Janzen, D. Ward, R. Wadsworth and E. S. Paul, Phys. Rev. <u>C57</u>, 1634 (1998).
- R. M. Clark, S. J. Asztalos, B. Busse, C. J. Chiara, M. Cromaz, M. A. Deleplanque, R. M. Diamond, P. Fallon, D. B. Fossan, D. G. Jenkins, S. Juutinen, N. Kelsall, R. Kruken, G. J. Lane, I. Y. Lee, A. O. Macchiavelli, R. W. MacLeod, G. Schmid, J. M. Sears, J. F. Smith, F. S. Stephens, K. Vetter, R. Wadsworth and S. Frauendorf, Phys. Rev. Lett. <u>82</u>, 3220 (1999).
- 1999Do02 J. Döring, D. Ulrich, G. D. Johns, M. A. Riley and S. L. Tabor, Phys. Rev. <u>C59</u>, 71 (1999).
- 1999Je07 D. G. Jenkins, R. Wadsworth, J. A. Cameron, R. M. Clark, D. B. Fossan, I. M. Hibbert, V. P. Janzen, R. Krücken, G. J. Lane, I. Y. Lee, A. O. Macchiavelli, C. M. Perry, J. M. Sears, J. F. Smith and S. Frauendorf, Phys. Rev. Lett. <u>83</u>, 500 (1999).
- 1999JeAA D. G. Jenkins, Private Communication (1999).
- 1999No03 J. R. Novak, C. W. Beausang, N. Amzal, R. F. Casten, G. Cata Danil, J. F. C. Cocks, J. R. Cooper, P. T. Greenlees, F. Hannachi, K. Helariutta, P. Jones, R. Julin, S. Juutinen, H. Kankaanpää, H. Kettunen, R. Krücken, P. Kuusiniemi, M. Leino, Benyuan Liu, M. Muikku, A. Savelius, T. Socci, J. T. Thomas, N. V. Zamfir, Jing-ye Zhang and S. Frauendorf, Phys. Rev. <u>C59</u>, R2989 (1999).
- W. Pohler, G. Baldsiefen, H. Hübel, W. Korten, E. Mergel, D. Robbach, B. Aengenvoort, S. Chmel, A. Görgen,
 N. Nenoff, R. Julin, P. Jones, H. Kanakaanpää, P. A. Butler, K. J. Cann, P. T. Greenlees, G. D. Jones and J. F. Smith, Eur. Phys. J. A5, 257 (1999).
- H. Schnare, R. Schwengner, S. Frauendorf, F. Dönau, L. Käubler, H. Prade, A. Jungclaus, K. P. Lieb, C. Lingk, S. Skoda, J. Eberth, G. de Angelis, A. Gadea, E. Farnea, D. R. Napoli, C. A. Ur and G. Lo Bianco, Phys. Rev. Lett. 82, 4408 (1999).
- 1999Sc20 I. Schneider, R. S. Chakrawarthy, I. Wiedenhöver, A. Schmidt, H. Meise, P. Petkov, A. Dewald, P. von Brentano, O. Stuch, K. Jessen, D. Weisshaar, C. Schumacher, O. Vogel, G. Sletten, B. Herskind, M. Bergström and J. Wrzesinski, Phys. Rev. <u>C60</u>, 014312-1 (1999).