Dataset referencing 2021XU04
Y.Xu, S.Goriely, E.Khan
Systematical studies of the E1 photon strength functions combining the Skyrme-Hartree-Fock-Bogoliubov plus quasiparticle random-phase approximation model and experimental giant dipole resonance properties
NUCLEAR STRUCTURE 70,72,74Ge, 80,82Se, 89Y, 90,91,92,94Zr, 93Nb, 96,100Mo, 103Rh, 107Ag, 115In, 119,120,124Sn, 124,126,128Te, 127I, 128,134Xe, 133Ce, 138Ba, 140Ce, 141Pr, 143,145,146Nd, 144,150Sm, 165Ho, 181Ta, 188Os, 197Au, 206,208Pb, 209Bi, 239Pu; calculated E1 photon strength function using BSk27+QRPA, and compared with extracted strength from experimental photoabsorption cross sections. A=70-190; calculated parameters of giant-dipole resonances (GDR) using BSk27+QRPA, and compared with compiled in the RIPL-3 database. A=25-250; calculated E1 strength functions and compared with compiled data in RIPL3 for 60 nuclei from 25Mg to 239U, and comparison between ARC E1 strength function for 25 nuclei from 96Mo to 240Pu. 115,120,125,130,135,140,145,150,155Sn; calculated E1 photon strength functions from empirical Lorentzian model SMLO, D1M+QRPA, BSk7+QRPA, and the present BSk27+QRPA. 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155Sn; calculated neutron capture reaction rates at the temperature of T9=1 using present BSk27+QRPA model and compared with those from BSk7+QRPA, D1M+QRPA, SMLO. Z=1-110, N=0-255; calculated neutron capture reaction rates at T9=1 present BSk27+QRPA model and compared with those from previous D1M+QRPA model. 43,44Sc, 44,45Ti; calculated temperature-dependent E1 strength functions using present BSk27+QRPA, and compared with shell-model calculationsSystematic investigation of E1 photon strength functions for about 10, 000 nuclei with Z=8-124 lying between the proton and neutron drip lines by combining simultaneously microscopic Hartree-Fock-Bogoliubov plus quasiparticle random-phase approximation (HFB+QRPA) model and the constraints from available experimental results for photon strength functions from giant dipole resonance (GDR) data, and other types of experiments. Relevance to future measurement of the photonuclear excitation using the Extreme Light Infrastructure (ELI-NP) facilities, and to improve study of r and p nucleosynthesis processes.
doi: 10.1103/PhysRevC.104.044301