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CALCULATED NEUTRON-INDUCED CROSS SECTIONS FOR 32Cr FROM
1 TO 20 MeV AND COMPARISONS WITH EXPERIMENTS

D. M. Hetrick, C. Y. Fu, and D. C. Larson

ABSTRACT

Nuclear model codes were used to compute cross sections for neutron-induced reactions on 32Cr for
incident energies from 1 to 20 MeV. The input parameters for the model codes were determined
through analysis of experimental data in this energy region. Discussion of the models used, the input
data, the resulting calculations, extensive comparisons to measured data, and comparisons to the
Evaluated Nuclear Data File (ENDF/B-V) for Cr (MAT 1324) are included in this report.

1. INTRODUCTION

The nuclear data needs specified by the National Nuclear Data Center (NNDC) include evaluated
neutron cross sections for chromium, an important material for fusion reactor applications. It has been
shown that deficiencies exist for chromium in the Evaluated Nuclear Data File (ENDF/B-V) for the
neutron emission spectra from contributing reactions (HE79). Since neutron-emission cross sections (as
a function of angle and energy) and charged particle and gamma-ray emission cross sections (as a
function of energy) are important for transport calculations for fusion engineering feasibility
demonstrations, an extensive effort was made to reproduce the rather sparse experimental data and use
realistic models to provide reliable interpolation and extrapolation to other energy and angular regions
where no data were available. Guided by experimental data, we have performed a comprehensive set of
nuclear model calculations for neutron reactions on **Cr for incident energies between 1 and 20 MeV in
which we have particularly addressed the NNDC requests for chromium as noted in Ref. ND83. This
report documents these calculations.

Nuclear model codes were employed in this analysis. Several published optical-model parameter sets
(WI164, PE76, AR84) were tried as input for the Hauser-Feshbach code TNG (FU80, FU80a, SH86)
in order to determine which gave the best overall fit to measured data. The Distorted Wave Born
Approximation (DWBA) program DWUCK (KU?72) was used to compute direct-interaction cross
sections needed as input for TNG. The applicability of TNG to cross-section evaluations has been
extended as TNG is now capable of using variable energy bin widths for outgoing particle energies
(SH86). The TNG code provides energy and angular distributions of particles emitted in the compound
and precompound reactions, ensures consistency among all reactions, and maintains energy balance.

The optical-model parameter sets, discrete energy levels, and other parameters needed as input for TNG
are discussed in Section 2. Section 3 includes a discussion of the computational methods and
procedures for the calculations. Figures showing calculated results compared to measured data are
given in Section 4, along with some brief discussions. In Section 5, the calculations are compared to
cross sections from the ENDF/B-V evaluation for chromium. A short summary is given in Section 6.



2. PARAMETER DETERMINATION

2.1 NEUTRON OPTICAL-MODEL POTENTIAL

Since optical-model parameters are essential input for our nuclear model calculations, effort was spent
to find a good documented set of neutron optical-model parameters for n+32Cr so as to reproduce the
nonelastic, elastic, and total cross sections. Deficiencies exist for chromium in ENDF/B-V for the
neutron emission spectra from contributing reactions (HE79). However, the elastic angular
distributions in ENDF/B-V for chromium are in good agreement with measured data (PR79). Thus,
we especially emphasized fitting the available nonelastic cross-section data since, for evaluation
purposes, measured data are used for the total cross section, and the elastic cross section is obtained by
subtracting the nonelastic from the total cross section.

Several published neutron optical-model parameter sets (WI64, PE76, AR84) were tried as input to the
Hauser-Feshbach code TNG (FU80, FU80a, SH86). The potential by Wilmore and Hodgson (WI164)
resulted in a very good fit to the nonelastic cross-section data and the various reaction cross-section data
for incident energies from 1 to 20 MeV, and a satisfactory fit to the total cross section (see Section 4).
Other potentials that were tried (PE76, AR84) did not fit the nonelastic, total, and some of the reaction
cross sections as well. Therefore, the neutron optical-model potential by Wilmore and Hodgson was
chosen and used as input to the TNG code for >*Cr. Values for this potential are given in Table 1.

Table 1. Neutron optical-model parameters

V (MeV) = 47.01 — 0.267E, — 0.0018E?
W (MeV) = 0.0
Wp (MeV) = 9.52 — 0.053E;
U(MeV) = 7.0
r,(fm) = 1.322 — 7.64 X 10* + 44% X 10° — 843 X 10?
r, (fm) = 1.266 — 3.74 X 10* + 242 X 10 — 44° X 10°

r,(fm) = r,

a, (fm) = 0.66
a, (fm) = 0.48
a, (fm) = 0.66

E; = incident energy in the laboratory system (MeV),
V = real well depth,
W = imaginary well depth (Wood-Saxon),
Wp = imaginary well depth (Wood-Saxon derivative),
U = spin-orbit potential depth,
A = mass number of the target nucleus,
r.net, = radii for V, Wp, U potentials,

a,a,a, = diffuseness for ¥, Wp, U potentials.



2.2 CHARGED-PARTICLE OPTICAL-MODEL PARAMETERS

The proton optical-model parameters are taken from the work of Becchetti and Greenlees (BE69). The
potential used for the protons is given in Table 2. Originally, the optical-model parameters for the
alpha particles were taken from Huizenga and Igo (HU62). However, the calculated total alpha-
emission cross section did not agree well with measured data, and, subsequently, the real and imaginary
well depths for this potential were increased by 70 percent. This change caused the alpha reaction cross
section to increase by 11.2 percent, and the alpha elastic scattering cross section to decrease by 4.7
percent. The resultant parameters are given in Table 3.

2.3 THE DIRECT REACTION MODEL AND PARAMETERS

The Distorted Wave Born Approximation (DWBA) program DWUCK (KU72) was used to calculate
the direct-interaction component of the inelastic-scattering cross sections to a number of levels in 32Cr
for which information was available. Inputs to this code were the neutron optical-model parameters of
Table 1 and the deformation parameters, 8¢, shown in Table 4. B# values from numerous references
(see table) were averaged to obtain the 8§ values shown in Table 4. The resulting calculated direct
inelastic excitation cross sections, shown in Fig. 1, were used as input to the TNG code for the purpose
of including the direct interaction effects in the gamma-ray cascades calculation. All TNG results were
automatically scaled to maintain the same total reaction cross section.

2.4 DISCRETE ENERGY LEVELS AND LEVEL-DENSITY PARAMETERS

The statistical-model calculations with TNG require a complete description of the energy levels of the
residual nuclei for the various open channels. The low-energy region of excitation of these nuclei can be
adequately described in terms of discrete levels for which we usually know the energy, spin and parity
(J™), and gamma-ray deexcitation branching ratios, hereinafter referred to as branching ratios. As the
excitation energy increases, our knowledge of these levels becomes incomplete, and eventually, as their
number increases, we prefer to describe them in terms of a level density formula. In this section, we
give the discrete levels used in the calculations and discuss the level density formulae and parameters.

The reactions for which we need level information for the residual nuclei are: 2Cr(n,n’)%3Cr,
52Cr(n,p)*2V, 32Cr(n,a)®Ti, 52Cr(n,np)*'V, 52Cr(n,na)*®Ti, 32Cr(n,2n)°'Cr, and 3Cr(n,y)’*Cr. The
level energies, J* values and gamma-ray branching ratios adopted for these nuclei are given in Tables 5
to 11. There are a few levels where the energies are known, but J* values or branching ratios are
experimentally undetermined. These J”* values and branching ratios were assigned as indicated by the
parentheses in the tables. In most cases, these values are as given in the reference (see below); others
were estimated from systematics. Excited states were reported having excitation energies larger than
for levels shown in Tables 5 through 11. However, the branching ratios for these higher levels were not
known, and thus the levels were not used in the calculations.

The information on the levels and gamma-ray branching ratios of 2Cr in Table 5 was taken from
Beene (BE78) and Browne et al. (BR78). We include the 4.563- and 4.64-MeV levels because they are
collective and the cross sections for exciting these levels were computed by DWUCK (KU72) and input
to TNG. Also, as seen earlier (Table 4), the 8¢ values for these levels are large, which gives rise to
significant contributions to the inelastic-scattering and gamma-ray production cross sections. Although
there are many other levels in this energy region (i.e., above 3.7 MeV), the cross section for exciting
these levels can be adequately accounted for in the TNG calculation (FU80) with the level density
formulae.



Table 2. Proton optical-model parameters*

V(MeV) = 540 — 0.32E; +[‘;‘f§ + 240 (iv—;—gﬂ
r,(fm) = 117

a, (fm) = 0.75

W (MeV) = 0.22E; — 2.7, (W > 0.0)

r(fm) = 132

a,(fm) = 051+ 07 (%)

WyMeV) = 118 — 0.25E, + 12.0 (’V+2> , (Wp = 0.0)
r.(fm) = 125

%Parameter definitions are as in Table 1; r,is the Coulomb radius.

Table 3. Alpha Optical-Model Parameters®

1.77

V (MeV) = 85.0 r, (fm) = 1.17 + P

a, (fm) = 0.576

W (MeV) 17.0 r, (fm) = r, a,, (fm) = 0.576

Wp (MeV) = 0.0 r. (fm) = 1.17

%Parameter definitions are as in Tables 1 and 2.



Table 4. Deformation parameters of 52Cr levels

Level (MeV) Y B} Ref.

1.434 2% 0.035  PE69, ST65a, HA68, 1S79, PO79, PR70
2.370 4% 0.0081 PE69, PR70

2.768 4% 0.0056 PE69, PR70

2.965 2t 0.001 PE69, PR70

3.114 6t  0.0058 PE69

3.162 2 0.0059 PE69, PR70

3.772 2t 0.011  PE69, PR70

4.563 3= 0.023 PE69, PR70

4.640 47 0.0137 PE69

70 ORNL-DWG 87-11184
T TF =1 & T " T T"0"% & & 7 170 17 T
60

50
40

30 r
20 =

20 (
4563 3~

1.434 2%

Opy (mb)

4

T

0 2 4 6 8 10 12 14 16 18 20
E, (MeV)

Fig. 1. Calculated direct inelastic excitation cross sections for S2Cr.



Table 5. Energy levels and gamma-ray branching ratios of >Cr

Initial state Branching ratios to state N

N J° E(keV) 1 2 3 5 7 9
1 ot 0

3 2F 1434 100

3 4t 2370 100

4 ot 2647 100

5 47 2768 99 1

6 2t 2965 100

T g 3114 99 1

g 2 3162 13 87

9 @hH 3415 7 14 79

10 3t 3472 22 78

I 5 3616 54 42 3 1
12 2t 3772 20 80

13 (37) 4563 100

14 4% 4640 100

Table 6. Energy levels and gamma-ray branching ratios of 52V

Initial state Branching ratios to state N
N U E (keV) 1 2 3 4 5 6

1 : i 0

2 & 17 100

3 (5N 23 100

4 1t 142 100

5 @)t 148 15 85

6 @F 437 49 30 21

7 3+ 794 99 1
8 @t 846 83 17




Table 7. Energy levels and gamma-ray branching ratios of “*Ti

Initial state

Branching ratios to state N

N I E (keV) 1 2
1 7/2” 0

2 3/2- 1382 100

H (11/27) 1542 (100)

4 3/2” 1585 100

5 (9/2)" 1623 (100)

6 1/2” 1723 100
7 2 1762 100

Table 8. Energy levels and gamma-ray branching ratios of SV

Initial state

Branching ratios to state N

N Jr E (keV) 1 2 3 4
1 7/2~ 0

2 527 319 100

3 3 928 85 15

4 11/27 1609 100

5 9/2” 1813 74 25 1
6  3/2” 2416 20 65 15

7 1/2+ 2547 100




Table 9. Energy levels and gamma-ray branching ratios of “*Ti

Initial state

Branching ratios to state N

N J* E (keV) 1 2 3 8
1 ot 0
3 g* 983 100
3 47 2296 100
4 o+ 2420 4 96
5 ot 2997 100
6 )" 3224 74 26
7 - 3240 100
8 6" 3333 100
9 3~ 3359 85 15
10 It 3371 19 81
11 (6t 3509 24 76
12 s ig 3618 100

Table 10. Energy levels and gamma-ray branching ratios of *'Cr

Initial state

Branching ratios to state N

N J* E (keV) 1 2 3 4 5 6 7 9 11 12
1 7/2” 0

2 3/27 749 100

3 12~ 777 100

4 9/2~ 1165 100

5 5/2~ 1353 35 56 9

6 11/27 1480 52 48

7 7/2” 1557 16 79 5

8 3/2” 1899 100

9 5/2)” 2002 100

10 (15/2)” 2256 100

11 1/2)~ 2313 11 89

12 7/27) 2380 36 12 23 17 12

13 (13/27) 2386 100

14 (7/27) 2704 11 30 10 49

15 1" 2763 100

16 /2~ 2767 56 20 22 2

17 (3/27) 2829 100

18 3/2” 2890 62 38




Table 11. Energy levels of 3Cr

Initial State

Initial State

N ¥ il E (keV) | N J* E (keV)
1 3/2” 0 |17 (5/2) 2993
2 1/27 564 | 18 15/2~ 3084
3 5/2° 1006 | 19 (5/27) 3127
4 7/27 1290 | 20 (3/2) 3179
5 1537 | 21 (5/27) 3244
6 (5/2)° 1974 | 22 5/2% 3261
7 11/2° 2172 | 23 (5/27) 3351
8 9207 2233 | 24 (5/27) @ 3435
9 3/27 2321 |25 (5/27) 3589

10 (5/27) 2453 |26 13727 3602

11 5/2" 2657 |27 1/2° 3617

12 1 2670 | 28 (5/27) 3667

13 (5/27) 2707 |29 9/2% 3711

14 3/2° 2708 | 30 (5/27) 3781

15 (5/27) 2772 |31 (5/27) 3838

16 117207 2827
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For 2V, the level energies, the adopted J* values, and gamma-ray branching ratios are given in Table
6. They were taken from Refs. BE78 and BR78. Table 7 shows the levels, J* values, and branching
ratios for ¥Ti. The levels and J* values were taken from the compilation of Halbert (HA78) and the
branching ratios were taken from Ref. BR78. Level information from Sy, given in Table 8, was taken
from Ref. BR78 and the branching ratios are from Auble (AU78). For “®Ti (see Table 9), the level
energies, adopted J” values, and branching ratios were compiled from the work of Beene (BE78a) and
Browne et al. (BR78). The information on levels, J* values, and branching ratios of 3'Cr, given in
Table 10, was taken from Ref. AU78. For 3Cr, the level energies and J* values were taken from
Dickens and Larson (DI87) and are given in Table 11. Although TNG is capable of predicting capture
gamma-ray spectra (Shibata and Fu, 1986), the present calculations did not include this option. Thus,
branching ratios are not given in Table 11 since they were not needed.

To represent the continuum excitation energy region occurring above the highest-energy discrete level
(continuum cutoff E_), the level-density formulae as described by Fu (FU76 and FU80) were used.
The level-density parameters of the residual nuclei of all reactions analyzed are given in Table 12. The
formulae of Gilbert and Cameron (GI65) were used in computing most of the parameters. However, it
was found that for computing the spin-cutoff parameter, o%, a formula due to Facchini and Saetta-
Menichella (FA68) produced better results and was used for excitation energies greater than the
tangency point (E,). The spin cutoff parameter at E, was based on the cumulative sum of the discrete
values. In between E, and E_ the spin cutoff parameter was assumed to vary linearly with the
excitation energy.

Table 12. Level density parameters

Residual T E, a A s E, E,
Nuclei (MeV) (MeV) (MeV™l) (MeV) (MeV) (MeV)
Cr 1.433 0.20 6.154 2.65 12.52 3.7 10.39
S2y 1.255 —1.805 6.75 0.0 13.73 0.881 6.309
49y 1.336  —0.893 6.85 .73 13.39 1.80 9.432
gy 1.236 0.069 6.4 1.3 12.85 2.56 6.741
48T 1.374 0.161 6.93 327  13.36 3.633 11.74
Sicr 1.384 —1.129 6.44 1.35 12.935  2.908 8.961
3Cr 1.332 —0.754 6.5 1.35  13.39 3.84 8.306

T = nuclear temperature

E, = parameter for matching lower energy level density to the higher one

a = 7% g/6 (g = density of uniformly spaced single particle states)

A = pairing energy correction

o® = spin cut-off parameter = 2¢ V(E —A)/a where E is the excitation energy,
E, = continuum cutoff

E, = tangency point
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2.5 GIANT DIPOLE RESONANCE PARAMETERS

The giant dipole resonance parameters used as input to TNG in this analysis are those reported by
Fuller et al. (FU73). For *’Cr the resonance has a peak cross section of 97 mb, the width of the
resonance is 5.0 MeV, and the energy of the resonance is 18.5 MeV.

2.6 (n0), (n, 3He), and (n,d) CROSS SECTIONS

The TNG code is not capable of calculating the (nd), (nt), and (n3He) cross sections. TNG can
accept them in the input data as correction factors to reduce proportionately the other TNG calculated
cross sections. The only measured data found was for the (n,d) reaction. Grimes et al. (GR79)
reported an (n,d) cross section of 8.0 mb at 14.8 MeV incident neutron energy. The ENDF/B-V
energy dependent cross-section shape for (n,d) was normalized to this measurement and input to TNG.
The (n,t) cross sections given in ENDF/B-V were too large when compared to systematics and the
energy-dependent shape was normalized to a cross section of 0.07 mb at 14.0 MeV incident neutron
energy. The (n,°He) cross sections included in ENDF/B-V were very small and were ignored in the
TNG calculations.

3. COMPUTATIONAL METHODS AND PROCEDURES

Nuclear model calculations play an important role in modern evaluations for the interpolation and
extrapolation of cross sections to energy regions where no data exist, and for predictions of reaction
cross sections for which there are few or no experimental data. However, in order to ensure internal
consistency, the model calculations should simultaneously reproduce as much of the experimental
information as possible for as many reaction channels as reliable data are available. As noted earlier,
the model code TNG (FU80, FU80a, SH86) was used exclusively for this analysis. The applicability of
TNG to cross-section evaluations has been extended as TNG is now capable of using variable energy
bin widths for outgoing particle energies (SH86).

Calculations for 32Cr at a number of incident energies from 1.0 to 20.0 MeV were performed.
Parameters required as input to TNG are now summarized. The discrete energy levels for each of the
residual nuclei and the gamma-ray branching ratios (Tables 5 through 11), the level density parameter
(Table 12), the direct inelastic cross sections calculated by DWUCK (KU72) as discussed in Section 2,
the optical-model parameters (Tables 1 though 3), the giant dipole resonance parameters, and the (n,d)
and (n,t) cross sections were all used as input to the TNG computer code. Parameters required for the
precompound mode of reaction were the same as determined previously in a global analysis (FU80) and
were found to be satisfactory for the present calculations.

TNG simultaneously computes cross sections for all energetically possible binary reactions and tertiary
reactions, and also computes the resulting gamma-ray production cross sections. Also, TNG computes
the compound and precompound cross sections in a consistent fashion and conserves angular momentum
in both compound and precompound reactions. Thus, the resulting cross-section sets are consistent and
energy balance is ensured. The results from TNG are found to agree reasonably well with available
data, and these comparisons are discussed in the next section.

4. COMPARISON OF CALCULATIONS WITH EXPERIMENTS

In this section the TNG calculated cross sections are compared with available data obtained from the
National Nuclear Data Center CSISRS file (CS86). When comparisons were made for natural Cr, the
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calculated cross sections for *Cr were multiplied by 0.90 and added to 0.10 times the computed cross
sections for 3Cr (see the recent evaluation of 3*Cr by Shibata and Hetrick [SH87]). Together, *>33Cr
account for 93.29% of natural chromium. Calculations for the minor isotopes 3%**Cr were not
performed for this work.

4.1 TOTAL CROSS SECTION

The TNG computed total cross section is compared in Fig. 2 to the measured data of Larson (LAS80),
which has been compared against other available data. Calculations using two different optical-model
potentials are shown in the figure. The optical-model potential due to Wilmore and Hodgson was
chosen for this study. However, this calculation is too large in the energy range less than 4.0 MeV. As
noted earlier, the total cross section ¢, is the sum of the elastic and nonelastic cross section. The
nonelastic cross section is the sum of all the individual reaction cross sections which we work hard to
reproduce with TNG. For the evaluation (of which these calculations will become a part) the elastic
cross section will be obtained by subtracting the nonelastic cross section from the total cross section,
and the computed elastic and total cross sections are not used. Thus, it is important to use optical
model parameters which reproduce the nonelastic cross section; it is less important how well the elastic
and total cross sections are reproduced, as long as the elastic angular distributions are described
reasonably well by the optical model parameters chosen.

4.2 NONELASTIC CROSS SECTION

Comparison of the nonelastic cross section with experiment is shown in Fig. 3. The measured elastic
cross sections from Korzh et al. (KO76), Holmgqvist and Wiedling (HO69), Holmgqvist et al. (HO70),
Sokolov et al. (SO73), and Kasakova et al. (KA65) were subtracted from the averaged total cross
section of Larson (LA80) and included in the figure. Again, calculations using two different optical-
model potentials are shown in the figure, with the Wilmore and Hodgson potentials giving the best fit.
The agreement lends support to the optical-model parameters used for the n + *2Cr channel.

4.3 ELASTIC CROSS SECTION

Measured data for the elastic cross section of *Cr and natural chromium are compared with the TNG
calculations in Figs. 4-5. As for the total cross sections, the elastic cross-section calculation is too large
at incident energies less than 4.0 MeV. As noted earlier, the elastic cross section is the difference
between the total and nonelastic cross section and measured data are used for the total cross section in
ENDF. The elastic angular distributions in ENDF/B-V for chromium are in good agreement with
experimental data (PR79), and thus emphasis was placed on fitting the measured nonelastic cross
section in this analysis. = However, to show that the present calculations agree well with measured
elastic angular distributions, see Figs. 6-9.

4.4 TOTAL INELASTIC SCATTERING CROSS SECTION

The TNG calculations of cross sections for total inelastic scattering of neutrons from 2Cr and natural
chromium are compared to experimental data in Figs. 10 and 11. The computed cross sections agree
well with the measurements with the exception of the data from Kinney and Perey (KI74) and Fujita et
al. (FU72). The data of Kinney and Perey were deduced from their neutron scattering data and are
believed to be too large because they already exceed the upper limit given by the nonelastic cross
section shown in Fig. 3. Fujita et al. (FU72) measured the continuum spectra of inelastically-scattered
neutrons using the time-of-flight method. The total inelastic scattering cross section was deduced after
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Fig. 3. Comparison of calculated and experimental nonelastic cross sections for *Cr.
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Fig. 4. Comparison of calculated and experimental elastic cross sections for ¢y,
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Fig. 6. Comparison of calculated and experimental differential elastic scattering cross sections for
52Cr at E, = 2.0 MeV.
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Fig. 7. Comparison of calculated (*3Cr) and experimental (**Cr) differential elastic scattering cross
sections at E, = 4.0 MeV.
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Fig. 10. Comparison of calculated and experimental total inelastic scattering cross sections for 5Cr.
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allowing for contributions from (n,particle) reactions. Apparently, the (nparticle) reaction cross
sections were underestimated in obtaining the unreasonably large total inelastic cross section shown in
Fig. 11. The data of Larson (LA85) were obtained by summing cross sections measured for >2Cr
ground-state transitions of which by far the most important (i.e., largest cross section) is for the 2;" —
O, transition.

4.5 ANGULAR DISTRIBUTIONS FOR INELASTIC SCATTERING

The calculated differential 32Cr (n,n’) cross sections for exciting the low-lying discrete levels are
compared with measurements in Figs. 12 through 25. The DWBA calculations for inelastic scattering
were combined with the TNG computations to obtain the results in these figures. Measurements of
angular distributions for individual levels are presented. The need for nuclear model analyses (and
preferably better data) can be seen from these figures for in some cases the measurements disagree.
For example, in Fig. 13 the data of Pasechnik et al. (PA69) and Korzh et al. (KO76) disagree
significantly with the calculation agreeing with Korzh et al. The calculations do agree consistently well
with the data of Kinney and Perey (K174).

4.6 INELASTIC SCATTERING TO DISCRETE LEVELS

The comparison of calculated and experimental (n,n’) cross sections for individual levels for 2Cr is
given in Figs. 26-31. The calculated direct interaction cross sections (see Fig. 1) are included.
Disagreement among measured data is quite large (e.g., see Figs. 26 and 27), and the calculation
represents a good compromise in these cases. Overall, the agreement is quite good.

4.7 ANGULAR DISTRIBUTIONS OF NEUTRON PRODUCTION CROSS SECTIONS

The computed angular distributions of neutron production cross sections for chromium at an incident
energy of 14.5 MeV and for secondary energies of E, = 4.0-5.0, 6.0-7.0, and 8.0-9.0 MeV are
compared with experiments in Fig. 32. Again discrepancies exist between the measured data sets. The
calculation agrees best with the data of Salnikov et al. (SA72), but disagrees with the measurements of
Takahashi et al. (TA83) and Hermsdorf (HE75).

4.8 NEUTRON EMISSION SPECTRA

Neutron emission spectra were computed for 35 incident energies; however, measurements were
available only for the incident neutron energy range from 14.1 to 14.8 MeV. Comparison of the
calculated neutron spectra at incident energy of 14.5 MeV with the experimental data is shown in Fig.
33. The data of Takahashi et al. (TA83) were measured at 80°, and the other measurements (HE7S,
V080, SA72) are angle integrated. The figure shows the calculated total neutron emission spectra, as
well as the calculated emission spectra from the individual contributing reactions. The (n,n’) continuum
and discrete level computations were combined into the one curve labeled "(n,ny)". The curve labeled
"(n,np)" includes contributions from both the (n,np) and (n,pn) reactions. Likewise, the curve labeled
"(n,na)" includes contributions from both the (n,na) and (n,an) reactions. The curve labeled "TNG
Calculation" is the computed angle-integrated spectrum and includes the angle-integrated direct
inelastic cross sections from the DWUCK code (these were input to the TNG code).
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Fig. 12. Comparison of calculated and experimental differential cross sections for exciting the
1.434-MeV level at E, = 2.0 MeV.
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Fig. 13. Comparison of calculated and experimental differential cross sections for exciting the
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Fig. 14. Comparison of calculated and experimental differential cross sections for exciting the
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Fig. 15. Comparison of calculated and experimental differential cross sections for exciting the
1.434-MeV level at E, = 6.0 MeV.
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Fig. 16. Comparison of calculated and experimental differential cross sections for exciting the
1.434-MeV level at E, = 6.5 MeV.
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Fig. 17. Comparison of calculated and experimental differential cross sections for exciting the
1.434-MeV level at E, = 7.0 MeV.
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Fig. 18. Comparison of calculated and experimental differential cross sections for exciting the
1.434-MeV level at E, = 7.5 MeV.

ORNL/DWG 87-11863

14.0 | |

12.0 S2CR(N,N' )., EX=1.434 MEV
= EN = 8.0 MEV =)

M KINNEY AND PEREY tK174)

— TNG+DWUCK CALC.

(mb/sr)

Cross Section

2.00 L _

o | | | | |
0 20.0 40.0 60.0 80.0 100. 120. 140. 160. 180.
Angle (deq)

Fig. 19. Comparison of calculated and experimental differential cross sections for exciting the
1.434-MeV level at E, = 8.0 MeV.
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Fig. 20. Comparison of calculated and experimental differential cross sections for exciting the
1.434-MeV level at E, = 8.5 MeV.
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Fig. 22. Comparison of calculated and experimental differential cross sections for exciting the
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Fig. 26. Comparison of calculated and experimental S2Cr(m,n’) cross sections for exciting the
1.434-MeV level.
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Fig. 30. Comparison of calculated and experimental S’Cr(mn’) cross sections for exciting the
2.965-MeV level.
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Fig. 33. Neutron emission spectra from the TNG calculation compared with experimental data. The
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components, respectively.
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4.9 PROTON AND ALPHA-PARTICLE EMISSION SPECTRA

The calculated (n,xp) and (mxa) spectra for 32Cr are compared to measurements by Grimes et al.
(GR79, HA77) and Colli et al. (CO62) in Figs. 34-35. The data of Colli et al. were measured at 15°;
the other data are angle integrated. The (n,xp) spectra are sums of the partial spectra from the (n,p),
(n,pn), and (nnp) reactions. Likewise, the (nxa) spectra are sums of (n,a), (n,an), and (n,na). The
measurements of Grimes et al. were taken at an incident energy of 14.8 MeV, and the data of Colli et
al. were taken at an incident energy of 14.1 MeV. The TNG results were calculated at an incident
energy of 14.5 MeV and are in good agreement with the data.

4.10 BINARY AND TERTIARY REACTION CROSS SECTIONS

The calculated binary and tertiary cross sections for >’Cr are compared to available data in Figs. 36-40.
Figure 36 shows the results of >2Cr(n,p). The data are quite discrepant at an incident energy of 14.5
MeV, but the calculation agrees very well with the data of Holmberg et al. (HO74), Valkonen (VA76),
and Dresler et al. (DR73) at this energy. The calculated total proton emission versus data for 32Cr is
shown in Fig. 37. The calculation agrees well with the data around an incident energy of 14 MeV, but
disagrees with the data of Smith and Meadows (SM80) above an incident energy of 7 MeV.

The 32Cr(n,2n) data and TNG calculations are shown in Fig. 38. The calculation agrees well with the
data of Sailer et al. (SA77), Wenusch and Vonach (WE62), and Borman et al. (BO68) for incident
energies less than 15 MeV. The TNG calculation for 52Cr(n,2n) (multiplied by 0.9) is added to the
calculation for 33Cr(#,2n) (multiplied by 0.1) and compared to available natural chromium data in Fig.
39 with very good agreement.

The total alpha-emission results from TNG for ’Cr are compared to data for both 2Cr and ™Cr in
Fig. 40. The calculation agrees fairly well with the data of Paulsen et al. (PA81) for incident energies
less than 10 MeV, but is somewhat smaller than the data around 14 MeV incident energy.

The need for nuclear model analyses can be seen from these figures for in many cases the
measurements disagree and data are not available for some reactions [e.g., (n,a), (n,np), and (nna)].
The TNG calculations have provided a reasonable characterization of the behavior of the binary and
tertiary reaction cross sections over a wide range of incident neutron energies.

4.11 GAMMA-RAY EXCITATION FUNCTIONS

Excitation functions for 11 gamma rays of >2Cr are shown in Figs. 41-51. The TNG calculations are in
fairly good agreement with the data of Larson (LA85), Karatzas et al. (KA78), Breunlich et al.
(BR71), and Van Patter et al. (VA62). The data of Voss et al. (VO75) are averaged in the figures
and, with the exception of the excitation functions for E, = 0.647, 1.531, and 2.038 MeV, are
consistently at least 30% smaller than the TNG calculations. The cross section measured by Burymov
(BU69) is larger than the calculation (see Fig. 41). The measured data sets of Tessler et al. (TE75)
and Grenier et al. (GR74) are inconsistent in their agreement/disagreement with the TNG calculations
from one excitation function to the next.

4.12 INTEGRATED YIELD OF SECONDARY GAMMA RAYS

The integrated yield of secondary gamma rays with E, 2 0.5 MeV for the TNG calculations and
measurements are shown in Fig. 52. For clarity, the data of Morgan and Newman (MO76) were
plotted at the midpoints of the incident neutron energy bins. The calculated yields agree very well with
both the data of Morgan and Newman and the data of Drake et al. (DR78).
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Fig. 34. Comparison of calculated experimental proton production spectra for 52Cr. The measure-
ments were taken at incident energies of 14.8 and 14.1 MeV; the TNG calculation was for E, = 14.5
MeV. The data of Grimes et al. (GR79, HA77) are angle integrated; the data of Colli et al. (C062)
were taken at 15°.
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Fig. 37. Comparison of calculated and experimental cross sections for the total proton emission of
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Cr.
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Fig. 41. Comparison of calculated and experimental data of the excitation function for the E, =
1.434 MeV transition following S2Cr(m,n"y).
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Fig. 43. Comparison of calculated and experimental data of the excitation function for the E, =
0.744 MeV transition following *Cr(n,n"y).
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Fig. 45. Comparison of calculated and experimental data of the excitation function for the E, =
1.246 MeV transition following ?Cr(n,n'y).
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Fig. 46. Comparison of calculated and experimental data of the excitation function for the E, =
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Fig. 47. Comparison of calculated and experimental data of the excitation function for the E.
1.334 MeV transition following 52Cr(m,n'v).
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Fig. 49. Comparison of calculated and experimental data of the excitation function for the E, =
1.728 MeV transition following 5*Cr(n,n'y).
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Fig. 50. Comparison of calculated and experimental data of the excitation function for the E, =
2.038 MeV transition following 5Cr(m,n'y).
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Fig. 51. Comparison of calculated and experimental data of the excitation function for the E, =
2.338 MeV transition following 52Cr(n,n'y).

ORNL/DWG 87-11846

S I I T 1
5L -
C
0
S
0
- 2L
&
o
- b E,2 0.5 MEV N
0 10 CR
o [ MORGAN AND NEWMAN (MO761. 71257
i O DRAKE ET AL. [OR741. 8:110°
N - — TNG CALCULATION i
%
0
C
&
2 Iz =il
y N I S N S
= Z.00 4.00 6.00 8.00 10.0 12.0 14.0 16.0 18.0 20.0

Incident Neutron Energy (MeV)

Fig. 52. Integrated yield of secondary gamma rays with E. > 0.5 MeV as a function of incident neu-
tron emergy. Gamma-ray scattering angles 6., are given in the legend.



44

4.13 GAMMA-RAY PRODUCTION CROSS SECTIONS AND SPECTRAL COMPARISONS

The calculated gamma-ray production cross sections are compared to data measured by Morgan and
Newman (MO76) and Drake et al. (DR78) in Figs. 53-56. Although the measurements of Morgan and
Newman, as well as the calculations by TNG, were made at numerous incident energies, comparisons
are shown only for energies of 5.5, 9.5, and 14.5 MeV. In each figure, the calculated secondary spectra
were smeared by a Gaussian function corresponding to the resolution of the detector for the data of
Morgan and Newman (MO76).

Before looking at the comparisons between the computed gamma-ray production spectra and
measurements cited above, we should first discuss the energy-conservation constraint imposed in the
calculation. In each reaction, the sum of the energies of the outgoing particles (including the recoiled
heavy particle) and gamma rays equals the incident neutron energy plus the Q value of the reaction.
Since there is good overall agreement between calculation and experiment in various partial reaction
cross sections and particle-production spectra, the computed gamma-ray production spectra can be
regarded as the most consistent possible with these data.

In general, the TNG calculations agree fairly well with the measurements. At 5.5-MeV incident
neutron energy, the calculation does not agree well with the measurement for E, > 2.0 MeV, but
agreement is quite good for incident energies of 9.5 and 14.5 MeV.

5. COMPARISON OF CALCULATIONS WITH ENDF/B-V

The TNG calculations are compared to a representative set of cross sections from the ENDF/B-V for
chromium (MAT 1324) in Figs. 57-67. In each figure, the curves labeled "TNG Calculation" include
the sum of the calculated cross sections for *2Cr (multiplied by 0.9) and 3Cr (multiplied by 0.10).
Comparison of the total inelastic scattering cross section is given in Fig. 57. The total integrated yield
of secondary neutrons as a function of incident neutron energy is shown in Fig. 58. Although the
agreement appears quite reasonable in Fig. 58 for incident energies less than 13.0 MeV, a look at the
neutron emission spectra for incident neutron energies of 5.5 and 9.5 in Figs. 59-60 reveals significant
differences. Also, the evaluated spectrum for E, = 14.5 MeV (Fig. 57) does not project enough high-
energy secondary neutrons. This lack can be understood because the ENDF/B-V evaluation does not
include a precompound component. It should be noted that the elastic cross section has not been
included in Figs. 58-61. Comparison of the (n,p) and (n,a) cross sections are given in Figs. 62 and 63,
respectively, with significant disagreement.

Differences are seen when comparing the TNG calculations for gamma rays with the ENDF/B-V
values as shown in Figs. 64-67. The total integrated yields of secondary gamma rays from the
calculations and from ENDF/B-V are shown in Fig. 64. The ENDF/B-V curve drops off sharply at
17.0 MeV incident neutron energy since the cross section given in the ENDF/B-V is 0.0 at 20.0 MeV
incident neutron energy. The computed gamma-ray production cross sections are compared to
ENDF/B-V for incident neutron energies of 5.5, 9.5, and 14.5 MeV in Figs. 65-67. In these plots, the
secondary spectra were smeared by a Gaussian function; for clarity the broader resolution width due to
Morgan (MO79) was used. The ENDF/B-V evaluation used the data of Morgan and Newman
(MO76) that were shown in Figs. 53-55.
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Fig. 53. Secondary gamma-ray spectra versus gamma-ray energy from the TNG calculation (incident
energy E, = 5.5 MeV) compared with the data of Morgan and Newman (MO76).
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Fig. 63. Comparison of the TNG calculation with ENDF/B-V for the (n,c) cross section.
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Fig. 64. Comparison of the TNG calculation with ENDF/B-V for the integrated yield of secondary
gamma rays as a function of incident neutron energy.
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6. SUMMARY

This report has presented the nuclear models and parameters used in computing neutron-induced
reactions on >2Cr between 1 and 20 MeV. The calculations were made using the multistep Hauser-
Feshbach/precompound model code TNG. Input parameters for TNG, including optical-model sets,
discrete level information, level-density parameters, giant dipole resonance parameters, and direct
reaction model parameters, were discussed. Once the input parameters were determined for TNG no
other parameter adjustments were performed in the model calculations for any of the incident neutron
energies for which reactions were computed. The resulting calculated cross-section sets are consistent
and energy balance is ensured.

Calculated results were compared extensively to available measured data. The overall quality of the
comparisons leads to the acceptance of the TNG calculations as reliable, especially for those reactions
for which little or no measured data exists; for example, energy-angular distributions of the continuum
neutrons for all E, except 14.5 MeV. Also, it should be recognized from the comparisons that TNG
can be used to resolve discrepancies among experimental data sets. The present work verifies that
advanced nuclear-model codes can lead to internally consistent evaluations that are in good overall
agreement with measured data.

The computed data were compared to cross sections from the current ENDF/B-V evaluation for
chromium. The comparisons reveal serious problems in the current ENDF/B-V evaluation for natural
chromium neutron-emission cross sections and spectra. These problems probably lead to difficulties
with energy balance in the ENDF/B-V chromium evaluation, which can cause erroneous results for the
KERMA (Kinetic Energy Release in MAterial) factor, as noted by Fu (FU80b).

These calculations, supplemented by available experimental data and resonance parameters, will be
incorporated in the new isotopic evaluation of 32Cr for ENDF/B-VI.
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