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CALCULATED NEUTRON-INDUCED CROSS SECTIONS FOR 3%%N; FROM
1 TO 20 MeV AND COMPARISONS WITH EXPERIMENTS

D. M. Hetrick, C. Y. Fu, and D. C. Larson

ABSTRACT

Nuclear model codes were used to compute cross sections for neutron-induced reactions on both **Ni
and ®Ni for incident energies from 1 to 20 MeV. The input parameters for the model codes were
determined through analysis of experimental data in this energy region. Discussion of the models used,
the input data, the resulting calculations, extensive comparisons to measured data, and comparisons to
the Evaluated Nuclear Data File (ENDF/B-V) for Ni (MAT 1328) are included in this report.

1. INTRODUCTION

The nuclear data needs specified by the National Nuclear Data Center (NNDC) include evaluated
neutron cross sections for nickel, an important material for fusion reactor applications. It has been
shown that deficiencies exist for nickel in the Evaluated Nuclear Data File (ENDF/B-V) for the
neutron emission spectra from contributing reactions (HE79). Since neutron-emission cross sections as
a function of angle and energy are important for neutron-transport calculations for fusion-engineering
feasibility demonstrations, an extensive effort was made to reproduce the rather sparse experimental
data and use realistic models to provide reliable interpolation and extrapolation to other energy and
angular regions where no data were available. Guided by experimental data, we have performed a
comprehensive set of nuclear model calculations for neutron reactions on %Ni for incident energies
between 1 and 20 MeV in which we have particularly addressed the NNDC requests for nickel as noted
in Ref. ND83. This report documents these calculations, and these results, together with experimental
data, will form the basis for the ENDF/B-VI evaluations for %®Ni.

Nuclear model codes were employed in this analysis. Several published optical-model parameter
sets (WI64, PE76, KI85, HA82) were tried as input for the Hauser-Feshbach code TNG (FUS80,
FU80a, SH86) in order to determine which gave the best overall fit to measured data. The Distorted
Wave Born Approximation (DWBA) program DWUCK (KU72) was used to compute direct-
interaction cross sections needed as input for TNG. The applicability of TNG to cross-section
evaluations has been extended as TNG is now capable of using variable energy bin widths for outgoing
particle energies (SH86). The TNG code provides energy and angular distributions of particles emitted
in the compound and precompound reactions, ensures consistency among all reactions, and maintains
energy balance.

The optical-model parameter sets, discrete energy levels, and other parameters needed as input for
TNG are discussed in Chapter 2. Chapter 3 includes a discussion of the computational methods and
procedures for the calculations. Figures showing calculated results compared to measured data are
given in Chapter 4, along with some brief discussions. In Chapter 5, the calculations are compared to
cross sections from the ENDF/B-V evaluation for nickel. A short summary is given in Chapter 6.



2. PARAMETER DETERMINATION

2.1 NEUTRON OPTICAL-MODEL POTENTIAL

Since optical-model parameters are essential input for our nuclear model calculations, effort was
spent to find a good documented set of neutron optical-model parameters for n + %%Ni so as to
reproduce the nonelastic, elastic, and total cross sections. Deficiencies exist for nickel in ENDF/B-V
for the neutron emission spectra from contributing reactions (HE79). However, the elastic angular
distributions in ENDF/B-V for nickel are in good agreement with measured data (DI79, BH74). Thus,
we especially emphasized fitting the available nonelastic cross-section data, since for evaluation purposes
measured data are used for the total cross section.

Several published neutron optical-model parameter sets (WI64, PE76, KI85, HA82) were tried as
input to the Hauser-Feshbach code TNG (FU80, FU80a, SH86). Although the local neutron optical-
model potential due to Harper and Alford (HA82) gave the best overall fit to measured data for the
total cross section (LA80), the resulting calculated nonelastic cross section was approximately 25
percent too small in the energy range from 2 to 6 MeV compared to available measured data.
However, the potential by Wilmore and Hodgson (WI64, PE76) resulted in a very good fit to the
nonelastic cross section for incident energies from 1 to 20 MeV and a satisfactory fit to the total cross
section (see Section 4). Other potentials that were tried (PE76, KI85, and for example, see YO85) did
not fit the nonelastic, total, and some of the reaction cross sections as well. Therefore, the neutron
optical-model potential by Wilmore and Hodgson was chosen and used as input to the TNG code for
both *Ni and ®Ni. Values for this potential are given in Table 1.

2.2 CHARGED-PARTICLE OPTICAL-MODEL PARAMETERS

The proton optical-model parameters are taken from the work of Becchetti and Greenlees (BE69).
The potential used for the protons is given in Table 2. Optical-model parameters for the alpha
particles were taken from Huizenga and Igo (HU62). They are given in Table 3.

2.3 THE DIRECT REACTION MODEL AND PARAMETERS

The Distorted Wave Born Approximation (DWBA) program DWUCK (KU72) was used to
calculate the direct-interaction component of the inelastic-scattering cross sections to a number of levels
in %%Ni for which information was available. Inputs to this code were the neutron optical-model
parameters of Table 1 and the deformation parameters, 8§, shown in Table 4 for **Ni and in Table 5
for ®Ni. B values from numerous references (see Tables) were averaged to obtain the 8¢ values shown
in Tables 4 and 5. The resulting calculated direct inelastic excitation cross sections, shown in Figs. 1
and 2, were used as input to the TNG code for the purpose of including the direct interaction effects in
the gamma-ray cascades calculation. All TNG results were automatically reduced to maintain the
same total reaction cross section.

2.4 DISCRETE ENERGY LEVELS AND LEVEL-DENSITY PARAMETERS

The statistical-model calculations with TNG require a complete description of the energy levels of
the residual nuclei for the various open channels. The low-energy region of excitation of these nuclei
can be adequately described in terms of discrete levels for which we usually know the energy, spin and
parity (J*), and gamma-ray deexcitation branching ratios, hereinafter referred to as branching ratios.



Table 1. Neutron optical-model parameters

¥V (MeV) = 47.01 — 0.267E — 0.0018E?>
W{(MeV) = 0.0
Wp (MeV) = 9.52 — 0.053E
U(MeV) = 7.0
r, (fm) = 1.322 — 7.64 X 10* + 442 X 10% — 84° X 10°
r, (fm) = 1.266 — 3.74 X 10* + 24%> X 10% — 44* X 10°

r,(fm) = »r,

a, (fm) = 0.66
a, (fm) = 0.48
a, (fm) = 0.66

E = incident energy (MeV),
V = real well depth,
W = imaginary well depth (Wood-Saxon),
Wp = imaginary well depth (Wood-Saxon derivative),
U = spin-orbin potential depth,
A = mass number of the target nucleus,
r»r.r, = radii for various potentials,

a,a,a, = diffuseness for various potentials.



Table 2. Proton optical-model parameters®

04Z N-—-Z
V (MeV) = 54.0 — 0.32E {W + 240 <—T)] r, (fm) = 1.17 a, (fm) = 0.75

W (MeV) = 0.22E — 2.7, (W = 0.0) r, (fm) = 1.32 a, (fm) = 0.51 + 0.7 (N - Z )
A

W,MeV) = 11.8 — 0.25E + 12,0 (N—_AZ—) , (W, >00) r(fm) = 1.25

“Parameter definitions are as in Table 1; 7, is the Coulomb radius.

Table 3. Alpha Optical-Model Parameters®

V(MeV) = 50.0 r, (fm) = 117 + i—?% a, (fm) = 0.576

W (MeV) = 0.0 r,(fm) =r, a, (fm) = 0.576

Wp(MeV) = 57 + 0.087 X 4% r, (fm) = 1.17

%parameter definitions are as in Tables 1 and 2.

bFitted to Huizenga and Igo’s tabulated values for 4 = 20 - 235.



Table 4. Deformation parameters of **Ni Levels

Level (MeV) J* 82 Ref.
1.454 2% 0.035 JA67, IN68, JO69a, DJ82, WIS, IN81
2.459 4% 0.006 JA67, WI80, IN81, IN68
2.776 2t 0.00044 WISO
3.038 2t 0.0029 JA67, IN68, WIS0
3.265 2% 0.004 JA67, IN68, WIS0, IN81
4.470 3= 0.019 JA67, IN68, JO69a, WIS0, IN81

Table 5. Deformation parameters of ®Ni Levels

Level (MeV) J* Bt Ref.
1.333 2% 0.055 IN68, JO69a, JO65, BA74, CH83,
HAS83, HAS81, IN81
2.159 2% 0.0005 IN68, HA83
2.506 4% 0.007 IN68, BA74, CH83, HA83, IN81
3.12 4t 00032 IN68, HAS3
4.045 3~ 0026  ING68, JO65, BA74, JO69a, CHS3,

HAS83, IN81
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As the excitation energy increases, our knowledge of these levels becomes incomplete, and eventually, as
their number increases, we prefer to describe them in terms of a level density formula. In this section
we give the discrete levels used in the calculations and discuss the level density formulae and
parameters.

The reactions for which we need level information for the residual nuclei are: Ni(nn')*®Ni,
¥Ni(n,p)*®Co, *Ni(n,a)**Fe, *Ni(n,np)’’Co, ®Ni(n,na)**Fe, ¥Ni(n,2n)*'Ni, *Ni(n,v)*’Ni,
ONi(n,n)®Ni, %Ni(n,p)®Co, Ni(n,a)’Fe, ©Ni(nnp)*?Co, ®Ni(nna)**Fe, ®Ni(n,2n)*Ni, and
%Ni(n,v)’'Ni. The level energies, J* values and gamma-ray branching ratios adopted for these nuclei
are given in Tables 6 to 18. There are a few levels where the energies are known, but J* values or
branching ratios are experimentally undetermined. These J* values and branching ratios were assigned
as indicated by the parentheses in the tables. In most cases, these values are as given in the references
(see below); others were estimated from systematics. Excited states were reported having excitation
energies larger than for levels shown in Tables 6 through 18. However, the branching ratios for these
higher levels were not known and thus the levels were not used in the calculations.

The information on the levels and gamma-ray branching ratios of ®Ni in Table 6 was taken from
the compitation of Kocher and Auble (KO76a). We include the 4.47-MeV level because it is collective
and the cross section for exciting this level was computed by DWUCK (KU72) and input to TNG.
Also, as seen earlier (Table 4), the 8¢ value for this level is large, which gives rise to a significant
contribution to the inelastic-scattering and gamma-ray production cross sections. Although there are
many other levels in this energy region (i.e., above 3.5 MeV), the cross section for exciting these levels
can be adequately accounted for in the TNG calculation (FU80) with the level density formulae.

For %8Co, the level energies, the adopted J* values, and gamma-ray branching ratios are given in
Table 7. They were taken from Ref. KO76a. Table 8 shows the levels, J* values, and branching
ratios for *Fe. The levels and J* values were taken from Ref. BR78 and the branching ratios were
taken from the compilation of Kocher (KO76b). Level information from 3’Co, given in Table 9, was
taken from Ref. BR78 and the branching ratios are from Auble (AU77a). For **Fe (see Table 10),
the level energies and adopted J* values are from Ref. BR78 and the branching ratios were compiled
from the work of Verheul and Auble (VE78). The information on levels and J* values of 3'Ni, given in
Table 11, was taken from Ref. BR78 and the branching ratios were obtained from Ref. AU77a.

For ®Ni, the level energies, their J* values and branching ratios adopted are given in Table 12.
These were taken from Ref. AU79. As explained above for *®Ni, we include the 4.045-MeV level
because it is collective. There are many other levels in this energy region (i.e., above 3.4 MeV), but
the level density formulae (FU80) can adequately account for cross sections exciting these "other” levels.

Table 13 shows the levels, J* values, and branching ratios for 80Co. This information was taken
from the compilation of Auble (AU79), with the exception of the J* value for the 0.786-MeV level,
which is from Ref. BR78. For 3’Fe (see Table 14), the information was obtained from Ref. BES3.
Table 15 shows the levels, J* values, and branching ratios for *Co. The branching ratios were taken
from the compilation of Kim (KI76) and the level energies and J* values were taken from Ref. BR78.
For 6Fe (sec Table 16), the level energies and adopted J* values were compiled from Ref. BR78. The
branching ratios were taken from both Ref. BR78 and from the work of Auble (AU77a). Table 17
shows the level information for **Ni, taken from Ref. BR78. For *'Ni, the level energies and J* values
were taken from the work of Ekstrom and Lyttkens (EK83), and are given in Table 18.

To represent the continuum excitation energy region occurring above the highest-energy discrete
level (continuum cutoff E_), the level-density formulae as described by Fu (FU76 and FU80) were used.
The level-density parameters of the residual nuclei of all reactions analyzed are given in Table 19. The
formulae of Gilbert and Cameron (GI65) were used in computing most of the parameters. However, it



Table 6. Energy levels and gamma-ray branching ratios of *Ni

Initial state

Branching ratios to state N

N J  E(keV) 1 2 3 4 5 1
1 ot 0

2 2t 1454 100

3 4t 2459 100

4 2t 2776 4 96

5 1t 2903 94

6 ot 2943 11 11 78
7 2t 3038 42 57 1

g8 2t 3265 63 37

9 3 3421 95 5
10 37 4470 100

Table 7. Energy levels and gamma-ray branching ratios of **Co

Initial state

Branching ratios to state N

N F E (keV) 1 2 3 4 5 6 1
1 2t 0

2 &t 25 100

3 4t 53 129

4 3t 111 53 47

5 3t 366 99 1

6 5t 374 4 96

7 4t 458 83 1 15 1

8 @ 886 8 6 51 20 15

9 (3t 1040 29 24 47




Table 8. Energy levels and gamma-ray branching ratios of *Fe

Initial state

Branching ratios to state N

N F E (keV) 1 2 3 4 5 6 9 13 15
1 3/2° 0
2 1/2~ 412 100
3 52 931 98 2
4 12 1317 96 4
5 12" 1409 46 54
6 1/2° 1919 68 32
7 32" 2052 23 7
8  5/2° 2144 18 3 43 36
9 9/2” 2212 2 98
10 5/27 2256 100
1 92" 2300 92 8
12 32 2470 100
13 11/2° 2539 100
14 5/2° 2578 84 1 6 3
15 1320 2813 100
16 (5/27) 2871 88 12
17 (1/27) 2938 55 45
18 11/20) 2983 100
19  (9/27) 2984 100
20 327 3027 65 35
21 (11/27) 3072 83 17

Table 9. Energy levels and gamma-ray branching ratios of 5Co

Initial state

Branching ratios to state N

N i E (keV) 1 2 3 4 5 7
1 12 0

2 92" 1224 100

3 32 1378 100

4 12 1505 100

5 11/2° 1689 46 54

6  3/27 1757 100

7 12 1897 4 59

8  5/27 1920 100

9 527 2133 83 14 3

10 72" 2311 10 70 20

1n (112 2486 65 12 12 1
12 (13/27) 2524 100

13 (11/2°) 2560 2 & 16

14 72 2611 100
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Table 10. Energy levels and gamma-ray branching ratios of *Fe

Initial state

Branching ratios to state N

N Jr E (keV) 1 2 3 8 9
1 ot 0000
2 2t 1408 100
3 4* 2538 100
4 o* 2561 100
5 6* 2950 100
6 2+ 2959 55 45
7 2t 3166 81 19
8 4* 3295 16 84
9 (%) 3345 57 43
10 4* 3834 91 9
11 s 4029 S 95
12 4* 4048 50 50
13 (M) 4074 92 8
14 4" 4265 21 79
15 o+ 4292 100
16 2t 4579 30 70

Table 11. Energy levels and gamma-ray branching ratios of *'Ni

Initial state

Branching ratios to state N

N J E (keV) 1 2
1 3/2” 0

2 5/2~ 769 100

3 1/2~ 1113 100

4 5/2(7) 2443 100

5 7/2 2577 100

6 (3/27) 3007 100

7 72~ 3230 40 60
8 (7/2) 3370 100
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Table 12. Energy levels and gamma-ray branching ratios of *Ni

Initial state Branching ratios to state N
N J E (keV) 1 2 3 5 6
1 ot 0
2 2t 1333 100
3 2+ 2159 15 85
4 ot 2285 100
5 4* 2506 100
6 3+ 2626 30 70
7 4* 3120 100
8 2t 3124 10 90
9 3 3186 24 46 30
10 3194 15 50 35
11 2t 3270 15 45 20 20
12 %) 3318 100
13 3 4045 69 31

Table 13. Energy levels and gamma-ray branching ratios of “Co

Initial state Branching ratios to state N
N J E (keV) 1 2 3 4 5 6 7 8 10
1 st 0
2 2+ 59 100
3 4 277 100
4 3* 288 100
5 5t 436 46 54
6 3t 506 100
7 2)* 543 43 57
8 3+ 614 97 3
9 1 739 60 40
10 4t 786 52 42 3 2 1
1 3% 1004 8 48 24 19 1
12 4* 1006 26 71 3
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Table 14. Energy levels and gamma-ray branching ratios of ’Fe

Initial state Branching ratios to state N

N Jr E (keV) 1 2 3 4 5

1 1/27 0

2 312" 14 100

3 5/2° 136 11 89

4 3/2° 367 14 79 7

5 5/27 706 5 85 9 1

6 7/2” 1007 32 68

7 9/27 1198 100

8 1/2~ 1265 3 4 93

9 7/2” 1357 22 23 55
10 3/27 1627 5 61 26 8
11 3/2° 1725 67 2 9 22

Table 15. Energy levels and gamma-ray branching ratios of $Co

Initial state Branching ratios to state N

N J E (keV) 1 2 3 4 6

1 7/2° 0

2 3/2” 1099 100

3 9/~ 1190 100

4 3/2” 1291 100

5 172 1435 50 50

6 11/2° 1459 100

7 5/2(7) 1482 90 10

8 7/2° 1745 60 40

9 7/2~ 2063 60 40
10 (5/27) 2088 100




Table 16. Energy levels and gamma-ray branching ratios of *Fe

13

Initial state

Branching ratios to state N

N T E (keV) 1 2 3 4 g8 10 11
1 ot 0

2 2t 847 100

3 4t 2085 100

4 2t 2658 2 98

5 ot 2942 100

6 2t 2960 2 98

7 Y 3120 100

8 4% 3123 100

9 2t 3370 15 85

10 6t 3388 100

1nmn 3t 3445 7 21 1

12 1 3449 50 50

13 2t 3602 65 35

14 ot 3607 100

15 6t 3756 82 18
16 2 3832 11 63 26

17 3% 3857 6 92 2

18 3t 4049 80 19

19 (3% 4100 60 25 2 12

20 (@4 4120 18 79 1 1

21 4% 4298 25 10 1 64

22 (oY) 4302 100

23 3t 4395 90 10

24 (F 4401 78 16
25 (4% 4458 3 38 59

26 3 4510 31 16 50 3
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Table 17. Energy levels and gamma-ray branching ratios of *Ni

Initial state Branching ratios to state N
N J E (keV) 1 2 3 4 5
1 32
2 52 339 100
32 465 100
4 3/2” 878 99 1
5 5/27 1190 92 8
6 1/27 1302 75 1 11 13
7 12 1338 100
8 52" 1680 14 84 2
9 (3/27) 1735 61 17 11 11
10 9/27) 1739 100
Table 18. Energy levels of *'Ni
Initial state Initial state
N J E (keV) N J E (keV)
1 3/2” 0 12 3/2” 1729
2 5/2~ 67 13 9/2~ 1808
3 12 283 14 9/2° 1988
4 12 656 15 5/2° 1998
5 52 909 16 1/2" 2018
6 1/2~ 1015 17 9/2% 2122
7 32 1100 18 1/2 2123
8 5/2° 1132 19 11/2~ 2129
9 3/2° 1185 20 (3/27) 2410
0 172 1455 21 Y2 2464
n 52 1610
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Table 19. Level density parameters

Residual T E, a A o E, E,
Nuclei (MeV) (MeV) (MevV™) (MeV) (MeV) (MeV)
Ni 1.607 —0.0972 5.438 247 11.896 3.52 11.01
#Co 1.303 —1.89 7.062 0.507 14.259 1.044 6.58
$Fe 1.576 —1.758 5.909 1.54 12.476 3.076 10.88
Co 1.485 —1.249 5.951 1.27 12.868 2.723 9.326
HFe 1.576 0.2635 5.568 2.84 11.615 4.656 1L14
SINi 1.439 0.6294 4.999 1.20 10.811 3.7 6.332
®Ni 1.541 —1.877 6.003 1.20 13.283 1.746 10.24
SONi 1.395 —0.1853 6.539 249 14.632 3.339 10.49
“Co 1.204 -2.252 8.13 0.49 16.898 0.79 6.864
S'Fe 1.358 —1.341 6.923 1.54 14.97 1.975 9.719
®Co 1.249 —0.7826 7.058 1.29 15.617 2.154 8.031
*Fe 1.474 —0.2907 6.355 2.81 13.581 4.539 11.64
$INi 1.331 —1.556 7.029 1.20 15.902 2.526 9.152

T = nuclear temperature

E, = parameter for matching lower energy level density to the higher one

a = x*g/6 (g = density of uniformly spaced single particle states)

A = pairing energy correction

o* = spin cut-off parameter = 2¢ \/(E —A)/a where E is the excitation energy,
E_ = continuum cutoff

E, = tangency point

was found that for computing the spin-cutoff parameter "o?" a formula due to Facchini and Saetta-
Menichella (FA68) produced better results and was used for excitation energies greater than the
tangency point (E,). The spin cutoff parameter at E, was based on the cumulative sum of the discrete
values. In between E, and E, the spin cutoff parameter was assumed to vary linearly with the
excitation energy.

2.5 GIANT DIPOLE RESONANCE PARAMETERS

The giant dipole resonance parameters used as input to TNG in this analysis are those reported by
Fuller et al. (FU73). For Ni the resonance has a peak cross section of 125 mb, the width of the
resonance is 4.8 MeV, and the energy of the resonance peak is 19.5 MeV. The resonance for ®Ni has
a peak cross section of 90 mb, width of 5.5 MeV, and energy of the resonance peak of 19 MeV.

2.6 (m1), (n,°He), and (,d) CROSS SECTIONS
The only measured data points found for the (n,¢) reaction were less than 0.1 mb and were in the

energy range from 14.4 to 14.7 MeV (BI75, QA76a, SU79). Since this cross section is very small, the
(n,t) reaction was ignored in the TNG calculations. No measured data were found for the (n,3He)
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reaction and this reaction was also ignored. The (n,¢) and (n,’He) reactions were not included in
ENDF/B-V. For (nd), the cross sections reported by Grimes et al. (GR79) and Glover and Purser
(GL61) at 14.8 MeV agree reasonable well with the ENDF/B-V values. Therefore, the ENDF/B-V
cross sections for (n,d) were used in this analysis. These cross sections were not computed by the TNG
code but were input to it as correction factors to reduce proportionately the other TNG calculated cross
sections.

3. COMPUTATIONAL METHODS AND PROCEDURES

Nuclear model calculations play an important role in modern evaluations for the interpolation and
extrapolation of cross sections to energy regions where no data exist, and for predictions of reaction
cross sections for which there are few or no experimental data. However, in order to ensure internal
consistency, the model calculations should simultaneously reproduce as much of the experimental
information as possible for as many reaction channels as reliable data are available. As noted earlier,
the model code TNG (FU80, FU80a, SH86) was used exclusively for this analysis. The applicability of
TNG to cross-section evaluations has been extended as TNG is now capable of using variable energy
bin widths for outgoing particle energies (SH86).

Calculations for both *®Ni and ®Ni at a number of incident energies from 1.0 to 20.0 MeV were
performed. Parameters required as input to TNG are now summarized. The discrete energy levels for
each of the residual nuclei and the gamma-ray branching ratios (Tables 6 through 18), the level density
parameters (Table 19), the direct inelastic cross sections calculated by DWUCK (KU72) as discussed
in Section 2, the optical-model parameters (Tables 1 through 3), the giant dipole resonance
parameters, and the (n,d) cross section were all used as input to the TNG computer code. Parameters
required for the precompound mode of reaction were the same as determined previously in a global
analysis (FU80) and were found to be satisfactory for the present calculations.

TNG simultaneously computes cross sections for all energetically possible binary reactions and
tertiary reactions, and also computes the resulting gamma-ray production cross sections. Also, TNG
computes the compound and precompound cross sections in a consistent fashion and conserves angular
momentum in both compound and precompound reactions. Thus, the resulting cross-section sets are
consistent and energy balance is ensured. The results from TNG are found to agree reasonably well
with available data, and these comparisons are discussed in the next section.

4. COMPARISON OF CALCULATIONS WITH EXPERIMENTS

In this section the TNG calculated cross sections are compared with available data obtained from
the National Nuclear Data Center CSISRS file (CS86). When the comparisons were made for natural
nickel, the cross sections for ®Ni were multiplied by 0.71 and for ®¥Ni were multiplied by 0.29 and
summed to obtain the results. Together, *%%Nj account for 94.4% of natural nickel. Calculations for
the minor isotopes 5*2%4Nj were not performed.

4.1 TOTAL CROSS SECTION

The TNG computed total cross section is compared to the measured data of Larson (LAS80) in
Fig. 3. The calculation is too large in the energy range less than 5.0 MeV. As noted earlier, the total
cross section o, is the sum of the elastic and nonelastic cross section. The nonelastic cross section is the
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sum of all the individual reaction cross sections, which we work hard to reproduce with TNG. For the
evaluation (of which these calculations will become a part) the elastic cross section will be obtained by
subtracting the nonelastic cross section from the total cross section, and the calculated elastic and total
cross sections are not used. Thus it is important to use optical model parameters which reproduce the
nonelastic cross section; it is less important how well the elastic and total cross sections are reproduced,
as long as the elastic angular distributions are described reasonably well by the optical model
parameters chosen.

4.2 NONELASTIC CROSS SECTION

Comparison of the nonelastic cross section with experiment is shown in Fig. 4. The measured
elastic cross sections from Bauer et al. (BA63), Hansen et al. (HA73), and Kinney and Perey (KI74)
were subtracted from the total cross section of Larson (LA80) and included in this figure in order to
further check the calculation. The good agreement lends support to the optical-model parameters used
for the n + 3%%Ni channel.

4.3 ELASTIC CROSS SECTION

Measured data for the elastic cross section of ¥Ni, %Ni, and natural Ni are compared with the
TNG calculations in Figs. 5 through 7. The differences seen between the calculated elastic cross
sections for 3®Ni and ®Ni are due mainly to the contributions from the compound elastic cross sections,
as the shape elastic cross sections are very similar. As for the total cross sections, the elastic cross-
section calculation is too large at incident energies less than 5.5 MeV. As noted earlier, the elastic
cross section is the difference between the total and nonelastic cross section and measured data are used
for the total cross section in ENDF. The elastic angular distributions in ENDF/B-V for nickel are in
good agreement with experimental data (DI79, BH74) and thus emphasis was placed on fitting the
measured nonelastic cross section in this analysis.

4.4 TOTAL INELASTIC SCATTERING CROSS SECTION

The TNG calculations of cross sections for total inelastic-scattering of neutrons from ¥Ni, ®Ni, and
natural nickel are compared to experimental data in Figs. 8 through 10. The computed cross sections
agree well with the measurements with the exception of the data from Fujita et al. (FU72) and
Salnikov et al. (SA70) at 14.0 MeV (See Fig. 10). In these experiments, the outgoing neutrons were
detected with a time-of-flight arrangement to perform the analysis. The total inelastic scattering cross
section was deduced after allowing for contributions from (n,particle) reactions. Apparently, the
(n,particle) reaction cross sections were underestimated in obtaining the unreasonably large total
inelastic cross sections shown in Fig. 10. Also shown are the data of Larson et al. (LA85) which were
obtained from measurement of the **Ni 2;*—0,, gamma rays corrected for the cross sections for
gamma rays which bypass the 2{" state and go directly to the ground state.

4.5 ANGULAR DISTRIBUTIONS FOR INELASTIC SCATTERING

The calculated differential *%°Ni (n,n') cross sections for exciting the low-lying discrete levels are
compared with measurements in Figs. 11 through 43. The DWBA calculations for inelastic scattering
were combined with the TNG computations to obtain the results in these figures. Measurements of
angular distributions for both individual levels and groups of levels are presented. The TNG and
DWUCK calculations were summed for the groups of levels for the comparisons. The need for nuclear
model analyses (and preferably better data) can be seen from these figures for in many cases the
measurements disagree.
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Fig. 17. Comparison of calculated and experimental differential cross sections for exciting the
2.459-MeV level at E, = 5.0 MeV.
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Fig. 18. Comparison of calculated and experimental differential cross sections for exciting the
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Fig. 19. Comparison of calculated and experimental differential cross sections for exciting the
2.776-, 2.903-, 2.943-, and 3.038-MeV levels at E, = 5.0 MeV.
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Fig. 20. Comparison of calculated and experimental differential cross sections for exciting the
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Fig. 21. Comparison of calculated and experimental differential cross sections for exciting the 3.265-
and 3.421-MeV levels at E, = 5.0 MeV.
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Fig. 22. Comparison of calculated and experimental differential cross sections for exciting the 3.265-
and 3.421-MeV levels at E, = 5.5 MeV.
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Fig. 23. Comparison of calculated and experimental differential cross sections for exciting the
1.333-MeV level at E, = 2.0 MeV.
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Fig. 24. Comparison of calculated and experimental differential cross sections for exciting the
1.333-MeYV level at E, = 2.5 MeV.
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Fig. 25. Comparison of calculated and experimental differential cross sections for exciting the
1.333-MeV level at E, = 3.0 MeV.
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Fig. 26. Comparison of calculated and experimental differential cross sections for exciting the
1.333-MeYV level at E, = 4.0 MeV.
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Fig. 27. Comparison of calculated and experimental differential cross sections for exciting the
1.333-MeV level at E, = 5.0 MeV.
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Fig. 28. Comparison of calculated and experimental differential cross sections for exciting the
1.333-MeV level at E, = 6.5 MeV.
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Fig. 29. Comparison of calculated and experimental differential cross sections for exciting the
1.333-MeV level at E, = 7.5 MeV.
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Fig. 30. Comparison of calculated and experimental differential cross sections for exciting the
1.333-MeV level at E, = 8.5 MeV.
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Fig. 31. Comparison of calculated and experimental differential cross sections for exciting the
2.159-MeV level at E, = 3.0 MeV.
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Fig. 32. Comparison of calculated and experimental differential cross sections for exciting the
2.159-MeV level at E, = 3.25 MeV.
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Fig. 33. Comparison of calculated and experimental differential cross sections for exciting the 2.159-
and 2.285-MeV levels at E, = 4.0 MeV.
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Fig. 34. Comparison of calculated and experimental differential cross sections for exciting the 2.159-
and 2.285-MeV levels at E, = 5.0 MeV.
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Fig. 35. Comparison of calculated and experimental differential cross sections for exciting the 2.159-
and 2.285-MeV levels at E, = 6.5 MeV.
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Fig. 37. Comparison of calculated and experimental differential cross sections for exciting the 2.159-
and 2.285-MeV levels at E, = 8.5 MeV.
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Fig. 38. Comparison of calculated and experimental differential cross sections for exciting the
2.506-MeV level at E, = 3.26 MeV.



38

ORNL/DWG 87-7776

1T 1T 17 17T 1T “"1T 1

60 NIIN.N' 1, ENz4.G MEV
EX = 2.506+2.626 MEV

00— (7 KINNEY AND PEREY (KI74) —|
— TNG+OWUCK CALC.

5.0 | ! _
[u)

20.¢ | — ‘ —]

{mb/sr)

X ]

Cross Section

100 I l l I I

Q 20.0 40.0 60.0 80.0 100. 120. 140. 160. 180.

Angle (deg)

Fig. 39. Comparison of calculated and experimental differential cross sections for exciting the 2.506-
and 2.626-MeV levels at E, = 4.0 MeV.
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Fig. 40. Comparison of calculated and experimental differential cross sections for exciting the 2.506-
and 2.626-MeV levels at E, = 5.0 MeV.
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Fig. 41. Comparison of calculated and experimental differential cross sections for exciting the 2.506-
and 2.626-MeV levels at E, = 6.5 MeV.
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Fig. 42. Comparison of calculated and experimental differential cross sections for exciting the 2.506-
and 2.626-MeV levels at E, = 7.5 MeV.
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Fig. 43. Comparison of calculated and experimental differential cross sections for exciting the 2.506-
and 2.626-MeV levels at E, = 8.5 MeV.

4.6 INELASTIC SCATTERING TO DISCRETE LEVELS

The comparison of calculated and experimental (n,n’) cross sections for individual levels and groups
of levels for both ®Ni and %Ni is given in Figs. 44 through 52. The calculated direct interaction cross
sections (see Figs. 1 and 2) are included. Disagreement among measured data is quite large (e.g., see
Figs. 44 and 49), and the calculation represents a good compromise in these cases. Overall, the
agreement is quite good.

4.7 ANGULAR DISTRIBUTIONS OF NEUTRON-PRODUCTION CROSS SECTIONS

The computed angular distributions of neutron production cross sections for nickel at an incident
energy of 14.5 MeV and for secondary energies of E, = 4.0-5.0, 6.0-7.0, and 8.0-9.0 MeV are
compared with experiments in Fig. 53. Again, discrepancies exist between the measured data sets. The
calculation agrees best with the data of Hermsdorf et al. (HE75) and Salnikov et al. (SA72), but
disagrees with the measurements of Takahashi et al. (TA83) and Clayeux and Voignier (CL72).

4.8 NEUTRON EMISSION SPECTRA

Neutron emission spectra were computed for 35 incident energies; however, measurements were
available only for the incident neutron energy range from 14.1 to 14.8 MeV. Comparison of the
calculated neutron spectra at an incident energy of 14.5 MeV with the experimental data is shown in
Fig. 54. The data of Clayeux and Voignier (CL72) and Mathur et al. (MA69) were measured at 90°,
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Fig. 54. Neutron emission spectra from the TNG calculation compared with experimental data. The
data of Clayeux and Voignier (CL72) and Mathur et al. (MA69) were taken at 90°, the data of
Takahashi et al. (TA83) were taken at 80°, and the other measured data sets shown (HE75, VO80, and
SA72) are angle integrated. Contributions from the various neutron-producing components are shown
(they sum to the total). The curves labeled (n,np) and (n,na) include the (n,pn) and (n,an) com-

ponents, respectively.
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the data of Takahashi et al. (TAS83) were measured at 80°, and the other measurements (HE?75,
VO80, SA72) are angle integrated. The figure shows the calculated total neutron emission spectra, as
well as the calculated emission spectra from the individual contributing reactions. The (n,n’) continuum
and discrete level computations were combined into the one curve labeled "(n,ny)". The curve labeled
“(n,np)" includes contributions from both the (nnp) and (npn) reactions. Likewise, the curve labeled
"(n,na)" includes contributions from both the (m,na) and (nan) reactions. The curve labeled "TNG
Calculation” is the computed angle-integrated spectrum and includes the angle-integrated direct
inelastic cross sections from the DWUCK code (these were input to the TNG code).

4.9 PROTON AND ALPHA-PARTICLE EMISSION SPECTRA

The calculated (n,xp) and nxa) spectra for both *®Ni and ®Ni are compared to measurements by
Grimes et al. (GR79, HA77), Colli et al. (C062), and Fischer et al. (FI84) in Figs. 55 through 58.
The data of Colli et al. were measured at 15°; the other data are angle integrated. The (n,xp) spectra
are sums of the partial spectra from the (n,p), (npn), and (nnp) reactions. Likewise, the (n,xa)
spectra are sums of (n,a), (n,an) and (n,na). The measurements of Grimes et al. were taken at an
incident energy of 14.8 MeV, and the data of Colli et al. and Fischer et al. were taken at an incident
energy of 14.1 MeV. The TNG results were calculated at an incident energy of 14.5 MeV and are in
very good agreement with the data.

4.10 BINARY AND TERTIARY REACTION CROSS SECTIONS

The calculated binary and tertiary cross sections for *®Ni and %Ni are compared to available data in
Figs. 59 through 69. Figure 59 shows the results for 8Ni(m,p). Numerous other data sets were
available for *®Ni(n,p) from the CSISRS library (CS86); only those sets with six or more data points
are included in Fig. 59. The data are quite discrepant in the region above an incident energy of 13
MeV, but the calculation agrees very well with the data of Pavlik et al. (PA85), Viennot et al. (VI82),
and Paulsen and Widera (PA71) in this energy range. The ®Ni(n,p) data and calculation are shown in
Fig. 60 with good overall agreement. The computed *Ni[(n,np) + (mpn)] excitation function is
compared to available data in Fig. 61. Again, the data disagree around an incident energy of 14 MeV,
but the calculation is in excellent agreement with the recent data of Pavlik et al. (PA85). Figures 62
and 63 show the calculated total proton emission versus data for ¥Ni and ®Ni. In both cases, the
calculation agrees well with the data of Grimes et al. (GR79). Note that the measured **Ni(n,p) and
%Ni(n,p) data from Figs. 59 and 60 for incident energies less than approximately 9.0 MeV could have
been included on Figs. 62 and 63, respectively.

Other data scts were available for *Ni(n,2n) from the CSISRS library (CS86); only those sets with
five or more data points are included in Fig. 64. The calculation is smaller than the more recent data
of Pavlik et al. (PA82) and Han-Lin et al. (HA82a) for incident energies greater than 14.5 MeV, but
does agree well with the measurements of Paulsen and Liskien (PA65), Bormann et al. (BO66), and
Hudson et al. (HU78). Comparison of calculation to data for natural nickel is shown in Fig. 65. The
solid line represents the **Ni calculation (multiplied by 0.71) plus the %Ni calculation (multiplied by
0.29). However, the (n,2n) cross sections are large for the minor isotopes. The dashed line is the sum
of the TNG calculations for **Ni and %Ni added to the calculations of Divadeenam (DI79) for $'Ni,
62Nji and *Ni. In this case, the cross sections for each isotope were multiplied by its fractional natural
abundance (68.3% for Ni, 26.1% for ®Ni, 1.1% for %!Ni, 3.6% for %>Ni, and 0.9% for %*Ni) and
summed to obtain the results. The calculated cross sections (dashed curve) are still smaller than the
data, but since there are no (n,2n) measurements available for any of the isotopes besides *8Ni, it is
difficult to determine whether or not the TNG calculation for either ¥Ni(n,2n) or ®Ni(n,2n) is too
small.
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Fig. 55. Comparison of calculated experimental proton production spectra for *Ni. The measure-
ments were taken at incident energies of 14.8 and 14.1 MeV; the TNG calculation was for E, = 14.5
MeV. The data of Grimes et al. (GR79, HA77) are angle integrated; the data of Colli et al. (CO62)
were taken at 15°.
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Fig. 56. Comparison of calculated and experimental alpha production spectra for 3®Ni. The measure-
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Fig. 57. Comparison of calculated and experimental proton production spectra for ®Ni. The meas-
urements were taken at incident energies of 14.8 and 14.1 MeV; the TNG calculation was for E, =
14.5 MeV. The data of Grimes et al. (GR79, HA77) are angle integrated; the data of Colli et al.
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Fig. 58. Comparison of calculated and experimental alpha production spectra for ®Ni. The meas-
urements were taken at incident energies of 14.8 and 14.1 MeV and are angle integrated; the TNG cal-
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Fig. 62. Comparison of calculated and experimental cross sections for the total proton emission of
SNi. The *Ni(np) data from Fig. 59 for incident energies less than approximately 9.0 MeV could

have been included in this figure.
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Fig. 66. Comparison of calculated and experimental 8Ni(n,a) cross sections.
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Fig. 67. Comparison of calculated and experimental cross sections for the total alpha emission of
SN
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Fig. 68. Comparison of calculated and experimental cross sections for the total alpha emission of
SNi.

ORNL/DWG B7-7805

¢ —
s b
O
< 2
C 10! —
O
= < ]
by (N.A)
@]
o NI
@w o, L [ PAULSEN ET AL. (PABL)
0 © GRIMES ET AL. (GR79)
0 — TNG CALC.
o 1 %
(&
o L |
2 B -
B I N R N N
) 2.00 4.00 6.00 8.00 10.0 12.0 14.0 16.0 18.0 20.0

Incident Neutron Energy (MeV)

Fig. 69. Comparison of calculated and experimental "‘Ni(n,a) cross sections.



61

The *Ni(n,a) data and TNG calculations are shown in Fig. 66, and the total alpha emission results
for ®Ni and %Ni are presented in Figs. 67 and 68, respectively. The total alpha-emission calculations
agree very well with the available data at 14.5 MeV incident energy, but the **Ni(n,«) calculation is
slightly larger than the data of Qaim et al. (1984) for incident energies less than 10.0 MeV. The TNG
calculation for **Ni(n,a) (multiplied by 0.71) is added to the calculation for ®Ni(n,a) (multiplied by
0.29) and compared to available natural nickel data in Fig. 69. In this figure, the data shown by
Grimes et al. (GR79) is their total alpha-emission cross section minus the TNG calculation at 14.5
MeV for (n,na) + (n,an). The TNG results in this figure are up to 75% larger than the data of
Paulsen et al. (PA81) for incident energies less than 10.0 MeV. However, it should be noted that the
data of Qaim et al. (QA84) for **Ni(n,a) (see Fig. 66), if multiplied by the fractional natural
abundance, is approximately 10% larger than the data of Paulsen et al. (PA81) for natural nickel.

The ¥Ni(n,p) reaction is one of several reactions used for dosimetry measurements, and we recently
performed an evaluation in which this reaction was studied simultaneously with 12 other dosimetry
reaction cross sections. This evaluation (FUB2) is based on the generalized least-squares technique
which includes the impacts of measured ratios and cross-reaction covariances. The *°Ni(n,p) data of
Smith and Meadows (SM75) were used in this work. The resultant values for the ”Ni(n,p) differ from
the TNG calculations shown in Fig. 59 (see the dashed line versus solid line), and thus, for evaluation
purposes, the results of FU82 should be used. From the point of view of the present analysis, however,
the TNG calculations have provided a reasonable characterization of the behavior of the binary and
tertiary reaction cross sections over a wide range of incident neutron energies.

4.11 GAMMA-RAY EXCITATION FUNCTIONS

Excitation functions for six gamma rays of *®Ni are shown in Figs. 70 through 75 and for nine
gamma rays of ®Ni are shown in Figs. 76 through 84. The TNG calculations are in fairly good
agreement with the data measured by Larson (1985), Traiforos et al. (TR79) and Dickens et al.
(DI173). The data of Voss et al. (VO75) are averaged in the figures and are consistently about 30%
smaller than the TNG calculations. The cross sections measured by Nishimura et al. (NI65) are
smaller than the calculation (see Fig. 70), as is the datum measured by Yamamoto et al. (YA78) at
15,0 MeV (see Fig. 76). The other measured data sets (BR64, TE7S, BR71, JO69, GR74) are
inconsistent in their agreement/disagreement with the TNG calculations from one excitation function to
the next.

4.12 INTEGRATED YIELD OF SECONDARY GAMMA RAYS

The integrated yield of secondary gamma rays with E, > 1.0 MeV for the TNG calculations and
measurements are shown in Figure 85. For clarity, the data of Dickens et al. (DI73) were plotted at
the midpoints of the incident neutron energy bins. The calculated yiclds agree with the data of Drake
et al. (DR78) and Shin et al. (SH80) reasonably well but are smaller than the data of Dickens et al. for
incident energies greater than 5 MeV. However, see the discussion in the next section on the energy
conservation constraint in the calculation.

4.13 GAMMA-RAY PRODUCTION CROSS SECTIONS AND SPECTRAL COMPARISONS

The calculated gamma-ray production cross sections are compared to data measured by Dickens et
al. (DI73), Drake et al. (DR78), and Shin et al. (SH80) in Figs. 86 through 90. Although the
measurements of Dickens et al., as well as the calculations by TNG, were made at numerous incident
energies, comparisons are shown only for energies of 5.5, 9.5, and 14.5 MeV. In each figure, the
calculated secondary spectra were smeared by a Gaussian function corresponding to the resolution of
the detector for the data of Dickens et al. (DI73).
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72

ORNL/DWG 87-7823

10 | | |
5 | |
NI (GAMMA-RAY SPECTRA)
‘ 3 7 Dickens et al. (0173)
2 E, = 9.00 to 10.00 MeV .
. e — TNG Calculation
> Oy 4 E, = 9.50 MeV |
E S 4 T ]h"l _
- b b
§ i
Ne) 2 U —
-~ fih
g 1 _WL' + m#ﬂ ]
N  S5H m |
©
B f ﬁ
o 2| i i
; 'H'
LL) 190 HH% ]
| h i
L e
. | | | |
LI 2.00 4.00 5.00 8.00 10.0

Gamma Ray Energy (MeV]
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Before looking at the comparisons between the computed gamma-ray production spectra and
measurements cited above, we should first discuss the energy-conservation constraint imposed in the
calculation. In each reaction, the sum of the energies of the outgoing particles (including the recoiled
heavy particle) and gamma rays equals the incident neutron energy plus the Q value of the reaction.
Since there is good overall agreement between calculation and experiment in various partial reaction
cross sections and particle-production spectra, the computed gamma-ray production spectra can be
regarded as the most consistent possible with these data.

In general, at incident energy of 14.5 MeV the three measurements are fairly consistent with each
other and the calculation is smaller than the data at some gamma-ray energies. At this incident
neutron energy, the gamma rays produced in the (n,2n) reaction have fairly large contribution for E., <
0.5 MeV , a gamma-ray energy region that has only two data points from the measurement of Drake et
al. (DR78) and is not covered by the experiments of Dickens et al. (DI73) or Shin et al. (SH80). The
same pattern holds between calculation and experiment for the gamma-ray spectra at incident energies
of 5.5 and 9.5 MeV. At these two energies, there are significant contributions from the (n,p) reactions
for E.,, < 0.5 MeV which are not covered by the measurements.

5. COMPARISON OF CALCULATION WITH ENDF/B-V

The TNG calculations are compared to a representative set of cross sections from the ENDF/B-V
for nickel (MAT 1328) in Figs. 91 through 101. In each figure, the curves labeled "TNG Calculation"
include the sum of the calculated cross sections for *Ni (multiplied by 0.71) and *Ni (multiplied by
0.29). Comparison of the total inelastic scattering cross section is given in Fig. 91. The total
integrated yield of secondary neutrons as a function of incident neutron energy is shown in Fig. 92.
Although the agreement appears quite reasonable in Fig. 92, a look at the neutron emission spectra for
incident neutron energies of 5.5, 9.5, and 14.5 in Figs. 93 through 95 reveals significant differences.
The evaluated spectra for E, = 14.5 MeV do not project enough high-energy secondary neutrons. This
lack can be understood because the ENDF/B-V evaluation does not include a precompound component.
It should be noted that the elastic cross section has not been included in Figs. 92 through 95.
Comparison of the (n,p) and (n,a) cross sections are given in Figs. 96 and 97, respectively.

Differences are scen when comparing the TNG calculations for gamma rays with the ENDF/B-V
values as shown in Figs. 98-101. The total integrated yields of secondary gamma rays from the
calculations and from ENDF/B-V are shown in Fig. 98. The computed gamma-ray production cross
sections are compared to ENDF/B-V for incident neutron energies of 5.5, 9.5, and 14.5 MeV in
Figs. 99-101. In these plots, the secondary spectra were smeared by a Gaussian function; for clarity
the broader resolution width due to Morgan (MO79) was used. The ENDF/B-V evaluation used the
data of Dickens (DI73) that were shown in Figs. 86 through 88. As mentioned previously, the TNG
calculation shows that gamma rays produced in the (n,p) and (n,2n) reactions are significant for Ey <
0.5 MeV, a gamma-ray energy region not represented in ENDF/B-V.

6. SUMMARY

This report has presented the nuclear models and parameters used in computing neutron-induced
reactions on %%Ni between 1 and 20 MeV. The calculations were made using the multistep Hauser-
Feshbach/precompound model code TNG. Input parameters for TNG, including optical-model sets,
discrete level information, level-density parameters, giant dipole resonance parameters and direct
reaction model parameters, were discussed. Once the input parameters were determined for TNG no
other parameter adjustments were performed in the model calculations for any of the incident neutron
energies for which reactions were computed. The resulting calculated cross-section sets are consistent
and energy balance is ensured.
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Calculated results were compared extensively to available measured data. The overall quality of the
comparisons leads to the acceptance of the TNG calculations as reliable, especially for those reactions
for which little or no measured data exist; for example, energy-angular distributions of the continuum
neutrons for all E, except 14.5 MeV. Also, it should be recognized from the comparisons that TNG can
be used to resolve discrepancies among experimental data sets. The present work verifies that advanced
nuclear-model codes can lead to internally consistent evaluations that are in good overall agreement
with measured data.

The computed data were compared to cross sections from the current ENDF/B-V evaluation for Ni.
The comparisons reveal serious problems in the current ENDF/B-V evaluation for natural nickel
neutron-emission cross sections and spectra, as well as gamma-ray production cross sections and spectra.
These problems probably lead to difficulties with energy balance in the ENDF/B-V Ni evaluation,
which can cause erroneous results for the KERMA (Kinetic Energy Release in Material) factor, as
noted by FU (FU80b).
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