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ABSTRACT

In this report we describe a method for determining the parameters
of a model from experimental data based upon the utilization of Bayes'
theorem. This method has several advantages over the least-squares
method as it is commonly used; one important advantage is that the
assumptions under which the parameter values have been determined are
more clearly evident than in many results based upon least squares.
Bayes' method has been used to develop a computer code which can be
utilized to analyze neutron cross-section data by means of the R-matrix
theory. The required formulae from the R-matrix theory are presented,
and the computer implementation of both Bayes' equations and R-matrix
theory is described. Results of our analysis of Ni60 transmission data
from ORELA and of several artificial data sets, and a comparison of our
results with those of an earlier multilevel R-matrix code, are also
presented. Finally, details about the computer code and complete

input/output information are given,
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I. INTRODUCTION

The nonlinear least-squares method is frequently used for obtaining
estimates of parameters of a model by fitting experimental data. This
procedure requires an initial estimate of the parameters of the model
which are modified in an iterative fashion to minimize the value of XZ.
The method also provides an estimate of the errors in the parameters.,
Although the method of least-squares is widely used and has a well-
understood theoretical foundation, in practice it is not totally free
from problems. As the method 1s usually implemented and used, three
difficulties often arise: 1) the extent to which the final parameters
are dependent upon the starting values is not known and is hard to
assess; 1i) when all parameters of the model are allowed to be adjusted,
some of them frequently end up with values which are perceived to be
unphysical; and iii) the estimate of the errors which the method pro-
vides are often perceived to be unreasonably small. How serious are
these problems of course varies from case to case. The usefulness of
the results obtained depends to some degree upon how serious these prob-
lems are in any given situation and what was done specifically to
alleviate them. Consequently, this procedure which was expected to
yield objective and well-understood answers, provides results which must
be evaluated with great care. This is particularly true when we are
interested in combining the information obtained from different experi-
ments and the problems of fitting the data were not handled in a con-

sistent fashion in the different experiments.



In Section II of this report we describe a method for determining
the parameters of a model from experimental data based upon the utiliza-
tion of Bayes' theorem. This method has several advantages over the
least-squares method as it is commonly used; one important advantage is
that the assumptions under which the parameter values have been deter-
mined are more clearly evident than in many results based upon least
squares. The method has been used to develop a computer code (SAMMY)
which can be utilized to analyze neutron cross-section data by means of
the R-matrix theory. The required formulae from the R-matrix theory are
presented in Section IV. Sections III and V describe the computer
implementation of Bayes' equations and R-matrix theory, respectively.
Results of our analysis of Ni60 transmission data from ORELA and of
several artificial data sets, and a comparison of our results with those
of an earlier multilevel R-matrix code, are given in Section VI, A
brief summary appears in Section VII,

Five appendices complete this report: Miscellaneous algebraic
detalls, too involved to be presented in the text, are given in Appendix
A. A description of the computer code, including a detailed discussion
of its space-saving features, is given in Appendix B. Appendix C
explains input to and output from SAMMY, and input and output for a sim-

ple example are given in Appendix D. Finally, the code itself is listed

in Appendix E.



IT. BAYES' THEOREM

In this section we derive the formulae used in the code SAMMY to
obtain the values of the parameters and their uncertainties using Bayes'
theorem, We emphasize the conditions under which the formulae are
applicable and the relationship of our results to the customary least-
squares method. We adopt in this section the usual mode of description
based on the theory of statistics since the reader is familiar with it.
Derivation of our results from a different point of view will be
presented elsewhere (PET9, PE80Oa).

Bayes' theorem is usually written:

p(A|B) = p(a) p(B|a) (IT.1)
where:

A represents the parameters of the model and B the data.

p(A]B) is the probability for the value of the parameters condi-
tional upon the data B, and is what we seek, It is conventional to call
p(A]B) the posterior probability. When A represents several parameters,
p(A|B) is a joint probability density function (joint pdf). The expec-
tation values of p(AIB) are taken as the estimates for the parameters
and its covariance matrix gives us a measure of how well the parameters
are determined and of the parameters' interdependencies.

p(BIA) is the probability for observing the data B given the param-
eters A, It is a function of the parameters A of the model and is known
as the likelihood function of the data B.

p(A) is the joint pdf for the value of the parameters A of the
model, prior to consideration of the data B. It 1s known as the prior

joint pdf. The expectation values of p(A) are the prior estimates for



the values of the parameters and its covariance matrix gives a measure
of how well the parameters are known before consideration of the data.

The constant of proportionality in Eq. (II.1) can be determined
from the normalization condition,

The use of Eq. (II.1) as an estimator is considered controversial
in many textbooks unless p(A) is an estimated joint pdf based upon some
data or considered as an hypothesis., In order to avoid this problem, we
will consider that the prior p(A) is based upon some data which we will
denote by X, and rewrite Eq. (II.1) as:

p(AlBX) <« p(alx) p(Blax) . (11.2)

In this form Bayes' theorem is always acceptable and has the mean-
ing that p(A{BX) is the joint pdf based upon both data X and data B. It
is often said that Eq. (II.2) is an "adjustment equation" where the
estimates of the values of the parameters, from p(AlX), are adjusted on
the basis of the data B to provide a new set of estimates. It should be
noted at thisg stage that the form of Eq. (II.2) is valid only if the
data B and X are independent. The extent to which the value of the
parameters and their uncertainties are changed as a result of using Eq.
(II.2) is a function of how accurate are the data B and how sensitive
they are to the parameters, We postpone until later a discussion of the
data X,

Let 4 = {Pk} for k = 1 to K be the set of all parameters of the
multilevel R-matrix theory. We use instead of A the letter P without an
index to represent the K-dimensional column vector whose components are
the P 's, 1i.e.,

k
P = {Pk} , K= 1,2,s4.,K (11.3)



We assume that the joint pdf p(AlX) is a joint normal pdf having as
an expectation value the vector P and a covariance matrix M, Under this
assumption we have:

p(AlX) = expl =172 (P-P)® M '(P-P)1 (1I.4)
where P is the "true" value of the parameters and the superscript t
denotes the transpose,

The experimental data which we had symbolized by B and which is to
be described by the R-matrix theory will now be represented by a data
vector D whose components D'1 are the L data points. We also assume that
the experimental conditions are such that the data D, i.e. the Di's,
have a joint normal distribution about their "true" value T and the
covariance matrix will be denoted by V. We therefore have the like-
lihood function,

p(B|AX) « exp[ - 1/2 (-1 v (d>-1)1 . (11.5)

If, as we have just stated, T stands for the true value of the
data, then the covariance matrix V represents the experimental "errors"
of the data. The diagonal elements of V are the variances of the data
points; and the off-diagonal elements, i.e. the covariances Vij,
represent the errors which jointly affect the data points D.l and Dj. It
is conventional to state that the off-diagonal elements represent the
correlated errors in the data., Although data are usually reduced in
such a fashion that important correlations between data points are
introduced, existing data analysis codes usually have no provisions for
a nondiagonal covariance matrix V (PE80b), This is a major deficiency,
which our code remedies. (Note that the inclusion of off-diagonal data

covariances is not restricted to Bayes' method but could be done with



least—squares as well.) The importance of including correlations is
illustrated by the examples in Section VI of the report.

We now need to relate the "true" value of the data T to the parame-
ters P, Ideally T can be calculated exactly from the model, in our case
the R-matrix theory. In practice it 1s not always so since the observed
quantity often cannot be reduced to the form of cross sections because
of various "experimental" problems such as Doppler broadening, multiple
scattering, experimental resolution, etc. What is often done is to cal-
culate the cross sections on the basis of the theory and then "fold into
them" various effects to produce an estimate of the "true" values of the
data D. In this process various approximations are used. In the like-
lihood function, Eq. (II.5), V must therefore be modified to include an
estimate of the uncertainties in the theoretically calculated values T.
These uncertainties are very often correlated over the range of the data
being analyzed and contribute to the fact that the covariance matrix V
is nondiagonal, In most data analysis codes used today, this problem is
totally ignored and cannot be handled adequately since V is restricted
to be diagonal, In what follows we will consider V to include all of
the uncertainties: those from the data D and those from the theoretical
estimates T based upon the R-matrix theory,

In the likelihood function, Eq. (II.5), we need to calculate T as a
function of P, the true value of the parameters., This is done formally
by considering T a function of P and performing a Taylor expansion about
P, the expectation value of p(A|X), and keeping only the linear terms:

T(P) = T + G(P~-P) , (11.6)

where T is equal to T(P).



Since T is a vector of dimension L (equal to the number of data
points), and P is a vector of dimension K (equal to the number of param-
eters), the sensitivity matrix G is of dimension L X K. The elements of
G are the partial derivatives of Tn with respect to the parameters Pk

evaluated at P = 5:

G = fOl" = ),2,31\,[‘ . (II‘D'?)
op P=P and k= 1,2,...,K

Substituting Eq. (I1I.6) into Eq, (II.5) and using Eq. (II.4) we

obtain for the posterior joint pdf (Eq. (II.2)):

p(A|BX) = expl- 1/2 {(P-F)" M '(P-P) + (1I.8)

(D—T—G(P—?))t v (p-T-c(P-P))}].

Because of the three basic assumptions we have made, i,e.,
i) the prior joint pdf is a Jjoint normal,
ii) the likelihood function is a joint normal, and
iii) the true value is a linear function of the parameters,
the posterior joint pdf is also a joint normal, Denoting its expecta-

tion value by P' and its covariance matrix by M', we may write:

p(A [BX) «expl - 1/2(P-P1)Y Mr™! (P-B1)] . (I1.9)



As shown in Appendix A, equating the linear and quadratic terms of
the exponents in Eqs. (II.8) and (II.9) yields our final results,

hereafter referred to as Bayes' equations:

=M GY (V)T (b-T) (I1.10)

o
1
javl
1

M- M =MGt (Nev)" G M (II.11)

where the L x L matrix N is defined as
N=GMG . (I1.12)

The matrix N is the covariance matrix of the joint pdf for the true
value of the data based upon our prior pdf for the value of the
parameters. As is clear from Eq., (II.8) and therefore reflected in
Bayes' equations, the prior data X and the data B are treated on an
equal footing. From Eq. (II.11) we see that it is the relative size of
the elements of the matrix N and V which determines the extent to which
the uncertainties in the parameters are changed. 1In the 1limit where the
matrix M is diagonal and its elements tend to infinity, Bayes' equations
become the familiar least-squares equations. Algebraic details are
given in Appendix A.

The results, Eq. (II1.10) and Eq. (II.11), are valid only if the
three assumptions under which they were derived from Bayes' theorem are
valid. 1In practice we use these equations when the assumptions are only
approximately true; in the remainder of this section we discuss the
consequences of this and the relationship of the results to the usual

method of least—squares.



Instead of starting from Bayes' theorem we could have obtained our
results (II,10) and (II.11) by postulating that we should minimize X2,
glven by:

2

¥ = (p-p) M

(P-B) + (0-1)% v (D-T). (I1.13)

Data analysis codes which use the conventional least-squares method take
as a starting point the fact that they want to miﬁimize the second term
of (II.13) to produce the result which we will call 9 and g, The prac-
tical difficulties in that approach come from the nonlinearity of T with
respect to the parameters P. The advantages and disadvantages of the
method we are proposing derive solely from the inclusion of the first
term in Eq. (II.13). It is clear from Eq. (II.13) that, if M is diagonal
and its elements become very large, we recover the conventional least-
squares results as already mentioned.

Bayes' equations were derived on the assumption that we could
approximate T(P) by the first two terms of the Taylor expansion about P.
In the usual least-squares method this same linear approximation is
made, but about 3 which minimizes the second term of Eq. (II.13). The
value of S must be obtained by an iteration method; difficulties, when
they occur, stem from the fact that the X2 surface does not exhibit a
well-defined minima for some of the parameters Pk‘ This tends to occur

for two classes of parameters P The first class consists of those

k‘
parameters for which the data D have very little sensitivity and the

minimum is therefore very broad, The linearity approximation is not at
fault here; rather, the parameters are not well determined by the data,

and the "noise" in the data causes the maximum of the likelihood func-

tion to be far from what is perceived to be a physically reasonable
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value, This often occurs because of some approximation in the theoreti-~
cal calculation. The other class for which difficulties occur with the
conventional least-squares method are those parameters for which the X2
surface exhibits a "valley" in parameter space which extends beyond the
domain of physically reasonable values, even though the partial deriva-
tives of the theory with respect to these parameters may be large.

For both classes of parameters for which the conventional least-
séuares method has difficulties, the linear expansion of T(P) about P
may not be a very good one and Bayes' method may also have difficulties.
However, it is possible to improve upon formulae (II.10) and (II.11) by
iterating in order to use an expansion of T(P) about P' instead of P.

The way in which this can be done is to estimate P! by first doing the
expansion about P; let us call this result Opt, Then, in Eq. (II.10) and
{I1.11) instead of calculating T and G at P = 5, we calculate them at P =
05' and obtain a new estimate 1?', In principle one can iterate in this
fashion until convergence is obtained. In practice it is seldom neces-
sary to do so more than once since further iteration merely improves the
precision of the Pk's beyond a limit justified by the accuracy with
which they are determined. The presence of P and M in Eq. (II.10) and
(II.11), unless the values of the diagonal elements of M are very large,
prevents the solution from "running away" as it often does in the con-
ventional least-squares method. We emphasize that in iterating Bayes'
equations the values of P and M are left at their input values and it is
only the quantities denoted by T and G which are recalculated at the

previously estimated value of P, Algebraic details are given in

Appendix A.
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The "solution" to the problems we often encounter with the conven-
tional method of least squares has been bought at the price that we must
provide P and M . Even if the matrix V were diagonal, the matrix N will
be nondiagonal and it is the matrix N+V which must be inverted. There-
fore we no longer have any incentive to approximate V by a diagonal
covariance matrix. The consequence of introducing 5 and M when they are
known is that P' and M' are not independent of P and M. As we have
emphasized in discussing Bayes' theorem, P and M must be based upon some
data or be treated as an hypothesis, in which case we say that P' and M
are conditional upon the validity of our hypothesis.

We will first discuss the case where P and M are obtained from an
analysis of some actual data X. (As pointed out earlier the data D must
be independent of X; it is possible to modify Eq. (II.13) when the data
p are not independent of P but we shall not consider this case here.)
That is, the analysis of data X yielded an approximately normal joint
pdf for the true value of P, at least in the neighborhood of 5;
the central limit theorem ensures fhat this approximation is usually
valid. Then the results P' and M' which we obtain using Bayes' equa-
tions will be identical to those obtained in the usual procedure where
we first obtain 9 and & and then "combine" this value with P and M in
the least-squares sense., If the model is nonlinear, the results of the
two procedures will differ slightly since in one case the linear expan-
sion is made about P' and in the other about g.

Formula (II.13), although to our knowledge not used in current dif-
ferential nuclear data analysis, 1s used in many codes to perform "data

adjustment" where P and M are the "differential data" and D are some
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"integral data", 1In our approach we take P to be the parameters of the
theory and D to be the differential data. There is a practical problem
with simultaneously evaluating and analyzing data as our formulae does:
if two different sets of data 1D and 2D are analyzed separately but
using the same values of E and M derived from data X, then it is a prac-
tical impossibility to combine the output of the two analyses, say 15'
and 25', because they are correlated in some unknown fashion, This
problem is of course to be contrasted with the one faced in the conven-
tional least-squares approach, where we also cannot combine the analyses
of data 1D and 2D if some of the physical parameters are fixed at dif-
ferent values or 1if different sets of the parameters are adjusted.

We now consider the situation when P and M do not come in their
entirety from the analysis of some specific data X but may be considered
an hypothesis, The results P' and M' of the analyses of data D are
functions of P and M, and in the future will be of interest to us only
if we are willing to continue to entertain this same hypothesis. We may
in fact view the usual least-squares procedure (where some of the param-
eters are fixed at specific values and x? is minimized by varying some
other parameters) as producing an analysis of the data D which is valid
conditional upon the hypothesis that all the fixed parameters have a
true value equal to the value at which they were fixed. This may well
be a very good hypothesis to consider at the time the data is analyzed
or to answer some specific questions, but the utility of the results
ceases the moment the hypothesis is no longer justified.

Our method based upon Bayes' theorem can be viewed as equivalent to

what is usually done, if M is taken as diagonal, the M corresponding

kk
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to fixed parameters are set infinitely small, and the Mkk corresponding
to the adjusted parameters are set infinitely large. If we adopt this
point of view, our procedure, where all of the elements Mij are finite,
becomes just a constrained least-squares method. Its great advantage is
that it allows us to reduce the data D using a far less drastic
hypothesis than we are often forced to use, and the results will more
likely be considered useful much longer. Often data does exhibit very
small sensitivity to some parameters, and large sensitivity to some
other parameters, but there are many intermediate cases. Our method can
be viewed as a way to obtain the joint pdf for the true value of the

parameters P, based upon the X2 surface in a specified region of parame-

k
ter space defined by P and M. It can be argued that this method does
not solve the problems we often encounter with the method of least-
squares as much as it provides a way to cope with them in a more gen-
erally useful way. It is therefore very important when reporting the
results ;' and M' that we specify clearly the values of P and M upon
which they are based, The extent to which P' differs from 5, but more
importantly how the matrix elements of M' differ from those of M, tells
us what we have learned about the parameters from the data D. The
results ;' and M' will continue to be useful as long as we consider P
and M a reasonable hypothesis.,

Finally the method e propose should provide a more realistic
assessment of the uncertainties in the parameters. There are three
major reasons why unrealistically small values for the uncertainties in

the parameters are usually obtained in the conventional procedure, Two

of the reasons are not related to our introduction of P and M in the
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procedure but are related to the fact that the covariance matrix V is
usually taken as diagonal, In most instances the data D to be analyzed
results from manipulations and corrections made to experimentally
observed quantities. Because these corrections and transformations in
the data are not exact, properly propagated "errors" would yield a non-
diagonal matrix V. The magnitudes of the elements of the matrix M' are
very sensgitive functions of the elements of V and are strongly affected by
the nondiagonal elements of V. Secondly, in our calculations of the
theoretical values of the data, which we have called T, we also make
approximations; the matrix V should contain a contribution due to the
uncertainties arising from these approximations. (The matrix N does
not represent the uncertainties due to the approximations in the
theoretical calculations.) The contributions to V due to the approxima-
tions in the theoretical calculation T are alsc highly nondiagonal.
Until the effort is made to use realistic covariance matrices for V., the
results of our analyses will not be reliable and in particular our esti-
mates of the uncertainties in the parameters will not be reliable.

Since the code described in this report does allow for a nondiagonal
covariance matrix V and since no computer time is saved when V is diago-
nal, we urge users of the code to input more realistic covariance
matrices for V. The burden of providing the 'theoretical component'" of
the matrix V should normally be part of the code but has not yet been
implemented in an automatic fashion in the code SAMMY., However, some
options have been provided for generating some off-diagonal elements;
these options should be used when appropriate to relieve the burden of

preparing the input data,
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The final reason why we often get too small uncertainties in the
parameters is that, when we fix some parameters, the diagonal elements
of the matrix M' are wrongly identified as the variance of the marginal
pdf's of the parameters being varied. This, however, is true only if
the joint pdf of gll the parameters has a diagonal covariance matrix,
Through the introduction of P and M we allow for the possibility of
obtaining the full joint pdf of all the parameters. The diagonal ele-
ments of this full joint pdf are alsc the variances of the marginal
pdf's of the parameters and do provide a realistic measure of how well
we know each individual parameter. It is very important to report the
full covariance matrix M' since it is essential for most applications to
know the off-diagonal elements of M'., We recognize that this is a new
burden on the user but we believe that, if a realistic covariance matrix
V is used, the full covariance matrix M' is meaningfully produced by the

code,
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ITI. TIMPLEMENTATION OF BAYES' EQUATIONS

1. Solving the Equations
Implementation of Bayes' equations is straightforward. In matrix

form, these equations can be written

P' = P + MG (N+V)'1 (b-T), (I11.1)
and MY o= M - MGY (NaV)] CM, (I1I1.2)
where N = aMGY. (I1I.3)

Solving Egqs. (III.1) and (III.2) is equivalent to solving
AX = ¥ (I11.4)

K+1 times (where K is the number of parameters for the problem), with A the
Lxl symmetric matrix N+V (where L is the number of data points), and Y a
column matrix equal to (D-T) in Equation (III.?1) or equal to each of the K
columns of the rectangular matrix GM in Equation (III.2).

Prudent numerical analysis procedure dictates that the inverse of a
matrix never be evaluated directly. Rather, the matrix A is first factor-

ized as
t
A=zUBU (111.5%)

where B is a block-diagonal matrix, and U is the product of elementary unit
triangular and permutation matrices, so that inverses of U and B are

immediately available. The solution X is then found from

X = (U")t gl y . (1I11.6)
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In SAMMY, the factorization (III.5) is performed by LINPACK (DO79) subrou-
tine SSPC@, and the (K+1) solutions are obtained by LINPACK subroutine
SSPSL. Subroutine NEWPAR oversees these operations. Further details are

given in the report on program BAYES (LA8OQ).

2., Adjusting for Approximations
It is necessary to modify this procedure slightly to account for the
approximations built intc Bayes' equations. As explained in Appendix A, an
iteration scheme has been derived to correct for the nonlinear relation-
ship between parameters and theoretical values. In SAMMY, a single
iteration is performed, since (1) further iteration is expected to increase
precision but not accuracy, and (2) test cases have shown this to yield

consistent results, (See, e.g., example 4 of Section VI),

3. Introduction of QOff-Diagonal Data Covariances

Often £ > 0 resonance parameters cannot be determined accurately
because the underlying % = 0 structure is not well known. Introduction of
a constant on- and off-diagonal data covariance in the neighborhood of the
non-s-wave resonance permits effective decoupling of the s-wave from the
non-s waves, This occurs because an additive constant covariance is
mathematically equivalent to a constant, coherent correction term for
either the data or the theory; algebraic details are presented in Appendix
A. This type of off-diagonal data covariance matrix can be generated
automatically by SAMMY, if the user so desires.

One other type of off-diagonal data covariance matrix which can be

automatically generated by SAMMY is of the form

v = T 4 (a+bE’) (a+bEY)
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where Vij is supplied by the user, Ei is the energy for data point i, and a
and b are constants chosen by the user. This type of covariance is useful
if there are energy-dependent coherent uncertainties in the data, for exam-
ple, if a subtracted background is imperfectly known,

Other types of off-diagonal data covariances may be supplied directly
by the user. Details for inputting all types of covariances are provided
in Appendix C. Examples using off-diagonal data covariances are presented

in Section VI.
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IV. MULTILEVEL R-MATRIX THEORY

Consider a neutron of energy E incident on a target of spin I. The
combined system (neutron plus target) has resonances A with spin and parity
J7T at energies E . These resonances may decay through any of several chan-
nels ¢ with spin s and orbital angular momentum £; the partial width for
decay via channel ¢ is ', . 1In addition, gamma decay is allowed, with par-

AC
¥
R R

tial width
Cross-sections for the interaction described above may be calculated
from multilevel R-matrix theory (LAS58) in the Reich-Moore approximation
(RE58). An excellent review of R-matrix theory and its relationship to
other resonance formalisms is presented in the recent article by Froehner
(FR80); the reader interested in both derivation and details is referred to

that article. Here we present only the relevant formulae, beginning with

the R-matrix itself:

Y, Y
T e et
RO, = I e (IV.1)
A E, - E - ia
A A

where all levels (resonances) with total spin and parity J1T are included in

the sum, The channel widthI‘Ac is given in terms of the reduced width YXC

by

2

Py o (1IVv.2)

F,)\C = 2Y>\C 2

where PR is the penetration factor, which depends only on the orbital angu-
lar momentum % and the energy E; formulae for PQ(E) are shown in Table

IV.1. &Similarly, the gamma width PXY is given in terms of the reduced
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gamma width o, as

A

2
r,' = 205 . (1v.3)

The R-matrix is related to physical observables via the W-matrix

which, in matrix notation, is given by

_pl/2 2 ) (Iv.4)

W (1-rL) " (1-mLt)p~"/

SAMMY uses a different but equivalent form for W:

Wo o RR o YE(1R-YR (IV.4a)
L L L L
The quantity L, in Eq. (IV.4) is given by
Ly = (S, = By) + iPy (IV.5)

with S2 the shift factor, shown in Table IV.,1, and B, the arbitrary
boundary constant at the channel radius 8, "I" in Eq. (IV.4) represents
the identity matrix.

Integrated c¢ross sections are then given in terms of W and the poten-

tial scattering phase shift ¢, also shown in Table IV.1, as follows:

total _ 21 ¥ Y _ (_Zid)l J)
g = 2385 incident (1 Rege W (1v.6)

2 cc
k channels
c
) ) 249, I 71°
elastic _ T _ -2i
o B k2 J 87 incident (l 2Re(e % wcc) incident] cc' >
channels channels (1Iv.7)

c c'
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k2 J gJ incident exit cc

Oreaction T z z z W J (Iv.8)

channels channels

c c'

2
capture - T _ z J
’ w2 J B incident (1 all Wee! . (1v.9)
channels channels

c c'

Note that the total cross section is the sum of the other three:

¢ . .
stotal _ _elastic . greaction . gcapture

. (Iv.10)

In Eq. (IV.6) through (IV.9), g; is the spin statistical factor

ol
gy = 2(2I+1) (Iv.11)

where I is the target spin. The quantity k is the neutron momentum in the

center-of-mass system, related to laboratory kinetic energy E by

f 2
E = 7 k (1Iv.12)
2Mc
where M is given by
M + M 2
1 1 neutron tarzet
MM M . (@v.13)
neutron target

Multiple-scattering corrections are not included in the capture cross sec-
tions; it is the authors' intention to introduce these corrections in the

near future,
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V. IMPLEMENTATION OF MULTILEVEL R-MATRIX THEORY

The implementation of multilevel R-matrix theory with Doppler- and
resolution-broadening was borrowed from the least squares multilevel
R-matrix code MULTI, developed by George Auchampaugh (AUT4). The coding
was extensively modified for clarity, for easier amendment and additions,
and for greater compatibility with the PDP-10 computer system at ORELA.
However, the basic design of this portion of the computer code SAMMY is
exactly that which was first implemented in MULTI. (The code name SAMMY
had its origin here: SAM = Jeverely Altered MULTI.)

Generation of theoretical cross sections and derivatives in SAMMY, as
in MULTI, is accomplished as follows: The user specifies which of the

physical parameters EX’FAQ’PI are to be varied. These parameters are

converted to "u-parameters" via

u(EA) = 4 «]EA] , Where the negative sign is chosen if Ex <0, (v.1)
2

U(FXC) = Y,, Where FAc = 2YA0 Pz , (v.2)
Y - Y 2
“<FA ) = a, where PA = ZuA . (v.3)

(Note that Y5 and o, may be either positive or negative.) It is the

A
u-parameters on which Bayes' equations operate.

To solve Bayes' equations, it is necessary to know both the cross
section and the derivative of the cross section with respect to each

u-parameter, evaluated at every energy for which input data is available,

The chain rule is used to evaluate partial derivatives:

R
20 - Y B M a0
ou, u<v Ju, 3R oW
i — i uv w
w<T

(V.4)
T
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where the index J has been suppressed, since it is fixed for a given u.
The restricted sums (v £ v, w £ T) result from the symmetry of R and W.

In Eq. (IV.1), the R-matrix is given as

R ,,2: quykv (V.5)

PRV —.
)\ —_ —
E)\ E 1cx>\

from which the derivative of R with respect to the parameters can be found:

d Re R
S U VE Nl ) 2
5 VB [2 T Yav EA]“ (Ex E)Z * <°‘A)2)/DiJ (V.6a)
A
3 Im Ru\) )
—Y = 4y oy, VR E. — 2/p (V.6Db)
> VI T T T A} {(x ) ) AJ
3 Re Rw [ —
3 Im RH\) 5
I - - 212 2
s 5 2 Y Vv OL)\:, [{<E>\—E) — (a)\) }/D{l (V.7b)
o Re R

BV
——B_Y:L—l‘— = [YAV (l + Guv)} [(EA—E)/D)\] (v.8a)
d Im R
A [va (l + sw)] [ai/DAjl (V.8b)

where

D, = (EA—E)Z + ol . (v.9)
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In each of Egs. (V.6) - (V.8), the first square bracket contains an
energy-independent factor; in the code SAMMY, this factor is evaluated out-
side the energy-loop in subroutine BABB and is stored as BR(i,uv) for the
derivative of the real part of va with respect to the ith parameter, and
BI(i,uv) for the derivative of the imaginary part of Ruv' The quantity in
the second square bracket is energy-dependent but channel-independent.
Therefore, it must be generated for each energy and is temporarily stored
as UPR(i) and UPI(i) in subroutine ABPART.

From Eq. (IV.l4), W may be written in terms of R as

24P /P: \/PT
WwT == Gwr < -1 > + 21 T YUJT T (V.10)
® W T

where we have set

v = [(%— R)_l} : (V.11)

In Appendix A, we show that the derivative of Y with respect to R is given

by

oY
wT

= + — . V.1
BRUv YleYvr Ymv YUT a 5uv) ( 2)

Substitution of Eq. (V.12) into the derivative of Eq. (V.10) gives
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(V.13)

WwT ,
= 21

oR
UV

oW VPw VPT
Lw Ymu Yvr wv Yur (1 6uv) Lr

The derivative of the cross section with respect to W differs for each

type of cross section, For total, it is

actotal B . 21¢£ 5
aWJ EZ_gJ € WwT for w an incident channel
wT
0 otherwise.
(V.14)
For elastic scattering, the derivative is
2i¢
. 2m _ 2 J _
agelastlc B kZ &5 |I”¢ GwT4~wa(2 6w1?] for wand 1T incident
J channels
oW
WT
0 otherwise.

(V.15)

For the reaction cross section, we must have w £ 7, which gives for the

derivative
reaction 27 g WJ
B Tk BT et for w an incident channel
e and T an exit channel
wT
O otherwise.
(v.16)
Finally, the derivative of the capture cross section is
—2m
aocapture kZ 85 VW . for at least one of y and t an
7 = entrance channel
awmr
0 otherwise.

(V.17)
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The partial derivatives Gl defined in Eq. (II.7) and required in

K’
Bayes' equations, are then found from Eq. (V.4), using Egs. (V.6) through
(v.9) for %E , BEq. (V.13) for'%% , and Eqs. (V.14) through (V.17) for %% ’
all evaluated at energy Ei, Subroutine PARSH oversees the evaluation of
the partial derivatives and the cross sections.,

To avoid problems arising from the computer's limited precision, and
to minimize computing time, partial derivatives for non-s-wave resonances
are truncated to zero far away from the resonance. The working definition
of "far away" is 20 times the sum of the partial widths for that resonance,
i.e,, far beyond the region where a resonance can produce any noticeable
effect.

Doppler- and resolution-broadening of the cross sections in SAMMY is
accomplished in precisely the same fashion as in MULTI; in addition, par-
tial derivatives are broadened in SAMMY (but not in MULTI). An auxiliary
energy array is set up in subroutine ESCALE, including all (primary) ener-
gies at which input data are provided plus enough additional points to
ensure proper broadening (a minimum of nine points across the width of each
resonance, and extra points at the beginning and end of the energy range).
Cross sections and partial derivatives are generated at each auxiliary
energy, as described above., Doppler-broadened cross sections and partial
derivatives are calculated at each auxiliary energy by forming linear com-
binations of the unbroad-ned values, approximating a Gaussian convolution.
Total cross sections are then converted to transmissions (with appropriate
conversion of the partial derivatives), and resolution-broadened cross sec-

tions (or transmissions) and partial derivatives are formed at each primary

energy from linear combinations of the Doppler-broadened values. The
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resolution-broadening function can be either Gaussian, exponential, or a
combination of the two. Finally, transmissions are converted to total
cross-sections if input data are in that form. Subroutine BROADN performs
the broadening operations., For details regarding the precise form of the

broadening functions, the reader is referred to the documentation of MULTI

(AUTY).
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VI. CALCULATIONS AND COMPARISONS

The computer code SAMMY has been extensively fine-tuned and debugged
via test calculations and via comparisons with the least-squares mul-
tilevel R-matrix code MULTI (AUT4). Results of four such calculations are
reported here, The first example is a repeat analysis of Ni6o transmission
data, including direct comparison of MULTI and SAMMY results,- The second
and third examples use artificial data to demonstrate how off-diagonal data
covariances can be used to decouple a p-wave resonance from an improperly
fitted s-wave and to offset the effects of improper background subtraction.
The final example illustrates the extent to which a sequential analysis of
(uncorrelated) data sets is equivalent to a simultaneous analysis, in the
extreme case where data from an s-wave resonance is divided near the reso-

nance energy.

60

1. Ni Transmission Data

Preliminary results from C. Perey's (PE80c) MULTI analysis of Harvey's
(HA80) Ni60 transmission data were used as starting values for a SAMMY
analysis of that data. Data consisted of 2593 total cross sections and
uncertainties in the energy range from 10 to 550 keV. 1Included were 212
resonances, of which 189 were within the data range (the others being dum-
mies inserted in order to reproduce the backgrounds). Neutron widths (rn)
for each of these 189 resonances were varied; all resonance energies and
gamma-ray widths (TY) were held fixed. Initial uncertainties on the neu-

tron widths were arbitrarily set at 10% of the width.
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A sampling of the results from this analysis is shown in Table VI,1.
In general, SAMMY results (Column B) did not deviate far from the MULTI
results (Column A) used as starting values for SAMMY. Theoretical curves
generated from the two sets of parameters are rarely distinguishable.

A second SAMMY analysis of this same data was performed, using arbi-
trary starting values of Tn; these values were in the range 0.5 to 1.5
times the original starting values. Partial results from this analysis are
also shown in Table VI.71, Results (Column C) are generally in closer
agreement with both MULTI results (Column A) and previous SAMMY results
(Column B) than with the starting values (Column D). One notable exception
is parameter number 127; in this case, however, the output uncertainty is
10% of the value for Fn' Since 10% Fn was given as the starting value for
the uncertainty, this result indicates that the parameter is unaffected by
the data.

A modest attempt was made to use these same starting values (Column D
in Table VI.1) as input to a MULTI analysis (five iterations only) of this
data, though by no means was a complete analysis performed. Preliminary
results are shown in Column E. From these partial results, it appears that
MULTI has more difficulty than SAMMY in arriving at reasonable answers when
starting values are far off. MULTI could, of course, do better were it
allowed to iterate to convergence,

It should be noted that SAMMY results are obtained in a more straight-
forward fashion than MULTI results. With SAMMY, it is necessary to divide
the almost 2600 data points into 24 data sets, analyzing each data set in
turn but using output from one as input for the next. All 189 parameters

are varied all the time, though of course most are virtually unaffected by
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any given data set. Results thus obtained are valid and consistent over
the entire energy region., Total time required for the SAMMY analysis was
less than one week,

In contrast, the initial MULTI analysis required over six months of
effort; this included searches on both energies and widths., Data were
divided into seven data sets (more points per data set are allowed since
MULTI need not store covariance matrices), each of which was analyzed
independently. Frequent intervention and decision-making were required from
the physicist doing the analysis, in order to ensure consistency between
the various data sets. For our MULTI "analysis" (Column E in Table VI.1),
the intention was to see how well MULTI could perform given only slightly
more user-intervention than SAMMY requires. Only the Fn for resonances
within the data set being analyzed could be varied, first because MULTI
accepts a maximum of 150 search pafameters, but more importantly because a
search on "“outside" parameters often yields drastic (and unrealistic)
changes in the values of those parameters. Updated parameters from five
iterations on one data set were used as input for the next data set, with
the initial value being substituted when unphysical values were output.
The "analysis" was discontinued after the fifth data set, since output
values were too far afield to have any hope of reaching reasonable results
from the two remaining data sets.

Parameter uncertainties presented in Table VI.1 may be viewed as
unrealistically small. As discussed in Section II, this is because we have
improperly assumed the data points to be independent, rather than included
an off-diagonal covariance matrix to describe corrections made to the data

and approximations made in generating the theoretical values. Correctly
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Fig. VI.1l. Theoretical curves resulting from MULTI and SAMMY analyses of Nif0 data
(HA80), corresponding to the five parameter sets listed in Table VI.l1. Part a uses
parameters generated by the MULTI analysis of Perey (PE80c) and part b those from the
first SAMMY analysis. Curves shown in part ¢ are from the second SAMMY analysis and part
¢ from the second MULTI analysis, both of which used the arbitrary starting parameters
whose curve is shown in part d.
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including these effects would produce more reasonable values for data
uncertainties,

One might naively expect the two SAMMY results (columns B and C of the
table) to agree to within the quoted uncertainties. This does not happen
for two reasons: First, the quoted uncertainties are unrealistically
small, as discussed above., Secondly, the different starting values for the
two runs do affect the resulting parameter values as can be seen directly
from Bayes' equations, However, the different starting values produce only
second-order effect on the uncertainties, especially when data uncertain-
ties are much smaller than input parameter uncertainties, as they are in
this example. Thus parameter values will differ slightly with different
starting values, but parameter uncertainties will not,

Theoretical curves generated by using the five parameter sets
corresponding to the columns A through E of Table VI.1 are given in Figure
VI.1, For clarity, only a portion of the energy range is shown. Note that
the complete MULTI analysis (part a) and both SAMMY analyses (parts b and
¢) provide reasonable fits to the experimental data, while the second MULTI
analysis (part e) appears more strongly affected by its starting values

(part d) than by the data,

2. The Effect of Improperly Fitted S-Wave on Neighboring P-Wave Resonance
Artificial data were generated in order to study the effect of off-
diagonal data covariances in fitting a small p-wave located near the peak
of a large s-wave resonance. Elastic scattering "data" for 123 energies
were generated from the parameters shown in Column A of Table VI.2. No
random noise was added to the data, so that these values are, in fact,

exact, An arbitrary 1% uncertainty was assigned to each data point.
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PARAMETER VALUES FOR ZXAMPLE NUMBER 2,

DECOUPLING P-WAVE RESONANCE FROM AN IMPROPERLY FITTED 3~WAVE BACKGROUND

A. B. C. b E.
Results Results
from from
SAMMY SAMMY
Input Results without with
Exact Param- from Off-Diagonal Off-Diagonal
Values eters MULTI Covariances Covariances
. 156,
Eres(S) 156.00 keV 156.00 keV
Fn(s) 3000.0 eV 3200.0 eV
Eres(P) 160.00keV 160,00 keV 159.39 + 0.0004 160,000 + 0.003 160.000 £ 0.003
I (P) 50.000 eV  55.000eV 84.894 + 0.832 42.954 4 0.945 50.012 + 1.149

n
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It is assumed that the s-wave parameters are fixed (perhaps from ear-
lier experiments) at the values shown in Column B of Table VI.2, The
"known" value for I’n is noticeably different from the "exact" value, as
shown by the discrepancy between "data" and the "“theoretical" curve in Fig.
VI.2, but is nevertheless fixed for this calculation. In other words, we
have deliberately introduced a systematic error in the theoretical values.
The purpose of this calculation is to obtain the hitherto "unknown" p-wave
parameters, starting from arbitrary initial values, and thereby to illus-
trate how the effect of such systematic errors can be incorporated in SAMMY
analyses.

Three distinct calculations were performed, each using all 123 data
points. The first, using program MULTI, gives the erroneous results shown
in Column C of Table VI.2. This is to be expected, since systematic errors
must be handled external to MULTI and we have not done so. The second cal-
culation, using SAMMY, treats each data point as independent, and leads to
a value for the p-wave Fn (see Column D of the table) which does allow the
theory to reproduce the data at the p-wave resonance. This value for Pn
differs from the exact value, since the calculation attempts to fit both
the p-wave peak and the s-wave background by adjusting only the one parame-
ter, How well this is accomplished is illustrated in Fig. VI.2b, in which
only the neighborhood of the p-wave resonance is shown.

The third calculation makes use of the "decoupling" procedure in SAMMY,
described in Section I11.3, to incorporate the effect of the systematic
theoretical error. A constant on- and off-diagonal term is added to the
original (diagonal) data covariance matrix in the neighborhood of the p-

wave resonance; this allows the theoretical values to deviate from
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with no decoupling between the s- and p-wave resonances; only the energy region near the
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"experimental" values in a coherent fashion, Results of this calculation
are in excellent agreement with the exact values, as shownh by comparing
Columns A and E of Table VI,2, Part c of Fig., VI.2 illustrates the degree
to which these values reproduce this data: The upper curve was produced
directly from the parameter values given by the calculation., The lower
curve is the upper curve displaced by 0,37 barns, and falls directly on
each data point.

1t is interesting to note that the precise value chosen for the off-
diagonal term is not critical, as long as it is big enough, The calcula-
tion reported here used the value 0,02, which is the same order of magni-
tude as the diagonal terms of the data covariance matrix, Values of 0,20
and 2,00 yielded equivalent results; the value 0,002 yielded rn smaller
than the exact result but still larger than that obtained with no off-
diagonal covariances, Thus, it appears that one should take care to accu-~

rately estimate the decoupling term,

3. Errors in Background Subtraction

Other artificial data were generated to consider the problem of back-
ground subtraction. Elastic cross sections from two s-wave and three p-
wave resonances were evaluated at 123 data points; the maximum cross sec-
tion was approximately 16 barns. To these values was added a constant
background of 2.00 & .02 barns, with the error normally distributed,
Poisson~type noise was then added, and the results were taken as the raw
"experimental" data. Data uncertainties ranged from 0.2 to 0.6, so that
diagonal members of the covariance matrix were in the range from 0.04 %o
0.40, To simulate improper background subtraction, pg background was sub-

tracted from the raw data.
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Three separate analyses were again performed; results are tabulated in
Table VI.3. Although many codes handle this kind of problem by adjusting a
background (see, e.g., SI@B, (DE78)), neither MULTI nor SAMMY is equipped
to do so. Thus the MULTI analysis (Column C of the table) strayed far from
the "exact" values (Column A), as did the first SAMMY analysis which used a
diagonal data covariance matrix (Column D). However, when a constant value
of 0.04 was added to the data covariance matrix in SAMMY, results (Column
E) are in good agreement with the exact values. Thus SAMMY can be used to
obtain reasonable values for resonance parameters when the background level
is not well determined and it is so communicated to the code,

Fig. VI.3a shows the curve generated from the results of the first
SAMMY analysis. Note that the shape of the theoretical curve is consider~
ably distorted from the shape of the data. Part b of the figure shows the
curve generated from the results of the SAMMY analysis with off-diagonal
data covariances; the solid curve is exactly as generated, and the dashed

curve is displaced by 2.00 barns.

4, Simultaneous vs. Sequential Analysis of S-Wave

The ability to perform a sequential analysis of independent data sets,
and obtain results which are equivalent to a simultaneous analysis of that
same data, is a major strength of Bayes' method and represents a signifi-
cant improvement over the sequential (and therefore separate) analyses per-
formed with conventional least-squares methods. Because the aerivation of
Bayes' equations from Bayes' theorem involves several approximations (Gaus-
sian distributions and linearity), the asserted equivalence of simultaneous
vs. sequential analysis is also approximate. To examine the validity of

this equivalence, the artificial data of example 2 were analyzed three
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TABLE VI.3., PARAMETER 7ALUES FOR ZXAMPLE NUMBER 3

USING CONSTANT DATA COVARIANCE TO OFFSET

IMPROPER BACKGROUND SUBTRACTION

A. B. C. D. E.
Results from Results from
Results SAMMY with SAMMY with
Exact Input from no Correlations  Additive Constant
Values Values MULTI in Data Set Data Covariance
Eres(S) 156.31 kevV 156.50 156.29+.01 156.32+.01 156.31+.01
rn(s) 480.00 ev 500.00 730.18+10.72 654,28+11.46 486.85+9.75
Eres(S) 161.69 keV 162.00 161,.624.01 161.71£.01 161.69£.01
Pn(s) 1330,0 eV 1300.0 1350.6421.69 1204,3421.0 1326.3£22.07
Er‘es(P) 151.36 keV 151.40 151,214, 01 151 414,01 151.37+.01
Fn(P) 17.000 eV 18.000 59.908+2.094 29.295+1.675 18,229+1.801
Eres(P) 154,30 keV 154,40 154,304.0: 154,314,071 154,304.01
Fn(P) 166,00 =V 170.00 349,0945,20 310.67+.5.92 170.77+4.95
Eres(P) 160,16 keV 160,20 160,194,017 160.21£.01 160, 17+.01
18.000 eV 17.500 65.117+£1.504 33.888+1.663 17.272£1.616

?n(P)
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different ways: First, all 123 data points were included simultaneously;
results are given in Column C of Table Vi.4, part a., Secondly, a low-
energy piece (65 data points, from 150 keV to 158 keV) was analyzed first,
followed by the remaining data (58 data points, 158 to 168 keV); results
are in Column D of the table. Finally, the order of the two segments was
reversed, and the analysis repeated; results are in Column E. In all
cases, the resonance energies were held fixed and neutron widths varied;
only diagonal data covariances were included. Agreement among the three
calculations is well within the quoted uncertainties.

In part b of Table VI.U, the calculations are repeated with more accu-
rate values as input. Again agreement among the three calculations is
within the quoted uncertainties. (It is interesting to note that the out-
put values are only weakly dependent on input values; this is to be

expected when input uncertainties are large.)
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VII, SUMMARY AND CONCLUSIGONS

This report is intended as a users' guide to the Bayesian multilevel
R-matrix code SAMMY. Bayes' theorem and our reasons for preferring its use
to the customary least-squares approach are discussed in some detail, as
are the assumptions required for the derivation of Bayes' equations from
Bayes' theorem, A summary of multilevel R-matrix theory, as implemented in
SAMMY, is presented, Four examples of data analyses are presented, illus-
trating both the strengths of Bayes' method and the necessity of including
data correlations (off-diagonal data covariances). Thus in this report, we
have attempted not only to explain how to use SAMMY, but also to indicate
some of its advantages over MULTI, a code incorporating the same R-matrix
theory formulations but using conventional least squares.

The code SAMMY is available from the Radiation Shielding Information
Center (RA80). The authors would appreciate any comments on all aspects of

SAMMY, including suggestions for refinementis.
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APPENDIX A, ALGEBRAIC DETAILS

In this appendix are presented those algebraic details which, though
important for complete understanding of the theory manifested in SAMMY, are
sufficiently complex so as to obscure the broad understanding of our method
were they to be presented in the text, Included here are the derivation of
Bayes' equations from Bayes' theorem, development of an appropriate itera-
tion scheme for Bayes' theorem, a derivation of least-squares equations
from Bayes' equations, a proof that a constant covariance matrix is
equivalent to a coherent data correction, and evaluation of the derivatives

of X1,

1. Deriving Bayes' Equations
In Section II, a detailed discussion of Bayes' theorem and its appli-
cation to neutron physics is presented. It is stated there that Bayes'

equations may be derived directly from Bayes' theorem,

p(A|BX) = p(A|X)p(B|AX) , (A1)

provided the three basic assumptions are met, These assumptions are:
i) the prior pdf is a joint normal. That is, the pdf for the

parameters, prior to consideration of the data B, is
1 =t -1 =
p(A|X)oc exp —E-(P—P) M ~(P-P) (A2)

ii) the likelihood function is a joint normal, That is, the pdf for

the experimental data is

p(B|AX) = exp{—% (D—T)tv_loa—'r)} (A3)
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iii) the true value is a linear function of the parameters. That is,
a Taylor expansion of the theoretical values around the prior
expectation values of the parameters truncates after the linear

term:
T =T+ G(P-P) (AL)

where the sensitivity matrix G is defined by

. 1

¢t = 9T (A5)
N

P=P

and the theoretical value Tl is also evaluated at P = P,
Given these three assumptions, the posterior pdf p(A|BX) is also a

joint normal distribution and may be written
p(A[BX) = exp{-% (P-§'>t<M'>’1(P—?'{} : (46)

Substitution of Eq. (A2) through (A6) into Eq. (A1) and equating the

exponents yields, in matrix form,

-t ey sy -BWM e - (A7)

-1

+D-T-c¢P-B)1v'DD-T-c (-5

where Y represents the normalization constant and is independent of P.
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Setting P - P = P - P' + P' - P in Eq. (A7), and rearranging terms, we
obtain
@2 ) L @e-P )y = (-p)E (v ety ey (=B (A8)
+ @B o ety o) BBy -t v L (0-T) ]

+ [@'-B) o tetv o) - -Tytv e (- )

+ [D—T—G(?‘—E)]tv"l[D—T-G(ﬁ'—ﬁ)]

Because Eq. (A8) must hold for all values of P, we may equate
terms quadratic, linear, or constant in (P -P'). Equating the quadratic

terms gives Bayes' equation for updating the covariance matrix:
m") =M "+ GV G (49)
Multiplication of both sides by M on the left and M' on the right yields
M= [1emetvT a1 M (A10)

Using the identity X~ = (YX)™'Y with ¥ = GU(N+V)~'G, substituting

N for GMGt, and rearranging give
m' = et ey taaw e et awny Ten (A11)

The quantity in curly brackets in Eq, (A11) is equal to V-1; introducing

the identity V™'V = I into that equation gives

mro= e e Vet lvanen) T Ten (A12)
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Algebraic manipulation then yields
t -1 -1 t - -1 -1t .~ -
v = retvrer et ien - retv ey tetv T eme vy Lou (A13)

which reduces to

MY o= M - MGY(N+V) T TGM ) (Al4)

This is exactly Bayes' equation for updating the covariance matrix, Eq.

(I1.11) or (ITI.2). Explicitly, this equation may be written

K L L K
) i ~1\ij.j]
Wip =Mip= Y Y 2 % Ml n((N”V) > ol (215)
n=l i=1 j=1 w=1
where N is given by
2 et . (A16)
1M
k=1 Qz% 2

To obtain Bayes' equation for updating the parameter values, we equate
the linear terms of Eq. (A8). Since the left-hand side of that equation
has no terms linear in (P-P'), the coefficient of (P-P') on the right-hand

side must be zero. That is,
o vy @3-P) = ¢tvio-T) . (a17)

From Eq. (A9), the first quantity on the left is just (M')—1; we therefore

multiply both sides of Eq. (A17) by M', using Eq. (Al4), and obtain

= = t -1 t.-1, =

P'-P = (M-MG (MV) "GM)G V ~(D~T) (A18)
which reduces to

P'-P = MGt(N-*-V)—l (D-T) . (A19)
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Explicitly, this equation is

P' =P +
R g

[WH
RO L

L . .
) MkQGlQ, ((mv)_l)lj(nj—fj) ) (A20)
=

Finally, we note that the constant term in Eq. (A8) may be simplified

using Eq. (R19) to give

v = -0 [awn tanet s e (- oen Ty 1veen ] 0D @)
which reduces to

Yy = o-Dfawvy To-T) . (A22)

2. Iteration Scheme
The linearity hypothesis, i.e., the assumption that the Taylor expan-
sion of the theoretical values around the prior expectation value truncates
after the linear term, is in fact only approximately true. Therefore, the
parameter values P' resulting from application of Bayes' equations are also
only approximately correct. To obtain more accurate values, the Taylor
expansion, Eq. (A4), may be performed not around P but around the new

=(n)

(intermediate) values P , where n represents the nth iteration and

(0) = 5:

T T @y G(n)(P—13 m) ) (A23)
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(n) =(n) are

Here the sensitivity matrix G and the theoretical values T

evaluated at P = F(n). With Eq. (A23) for T, the formula analogous to Eq.

(A7) is

(P—§ (“H))t(m(ﬁl))_l(?—? (n+1)) + v = (p-P)M(P-P)

+ [D—'T'(“)—G (“)<P—§ (n))]tv"l[n-"r(“)-c () (P—§ (“>>} . (A24)

13(n+1) + }3(n+1)

Setting P equal to P - everywhere in the right-hand side of

Eq. (A24) gives the formula analogous to Eq. (A8), with T in that expression
(n)

_(n)—G(n)(ﬁ—F(n)), and G by G'/. The iterative Bayes' equa-

replaced by T

tions follow immediately:

P L5 4 e () 49) 1 (p 50 ) (1;_1—)@))) (A25)

WD) et (N(n)+v)-1 c(My (A26)

where

N(n) - G(n)M G(n)t (A27)

3. Derivation of Least Squares from Bayes' Equations
The equivalence of the least-squares method with Bayes' equations in
the 1imit of large M (i.,e., in the extreme case where there is no prior
knowledge of the values of the parameters) is best demonstrated by

considering Eq. (Al7):

( gty G>(13'—13> -ctv? (D—T) (A28)
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or, in the iterative form,

(M—l 4 @t 1 G(n)) (ﬁ(n+l)_l—)>

ey (g g (Gpm)) (429)

For large M, the term Gtv_1G overwhelms M_1, and this equation reduces

immediately to

D) _ 5 (e g@) -1 (e 1 (b-7™) (430)

which is the well-known least-squares formula.,
Similarly, parameter uncertainties and covariances can be found from

the iterative form of Eq. (A9):
-1 - -
(M(“+1)> w4 @™ (A31)

which reduces to

) (G(n)tV—lG(n)>_1 (A32)

in the 1limit of large M. In least-squares applications, the quoted covari-
ance matrix is usually the value given in Eq. (A32), multiplied by x2,

where
2 =% <D_:f.(n)t)v—l (D-f(“)> (A33)

d being the number of degrees of freedom in the problem (d = number of data

points minus number of parameters).
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4, Use of Data Covariances to Indicate Coherent Data Corrections

In Section III.3, we indicated that a constant term added to the data
covariance matrix is mathematically equivalent to a constant, coherent
correction to either the data or the theory. To see that this is so, write

the covariance matrix in the form
- t
V=V+a4 (A34)

where V is the original covariance matrix, and A is a column matrix whose
elements are zero outside the range where the correction is to be applied,
and constant inside the range. Bayes' equations require the inverse of

N+ 7+ AAt, which is equivalent to

<N+\7+AAt)'l - <N+€r>"l [1 - 1+Atl (N—-I-—V:>—1A an® <N+\7)~l} (A35)

- t
as can be verified by multiplying the right-hand side by (N + V + AA ).
Substitution of this expression into the first of Bayes' equations (Eq.

II1.1) gives
-y — - ..]_ -—
P =P + MG <N+V> (D—AD—T) (A36)

where the correction term D is given by

= —— g A (N+\_7>—l (D—T) : (437)
1+ A éﬁﬂ» A
Thus, the presence of an additive constant term (AAt) in the data covari-
ance matrix is equivalent to a coherent correction to the data or to the
theory. Also, note that if the elements of column matrix A are not zero or
constant, Egqs. (A36) and (A37) remain valid, but the correction term AD

varies from point to point.
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5. Derivative of X~ with Respect to R

In Section V, we require the derivative of Y = X—1 with respect

where the matrix X is given by

To determine the derivative of Y with respect to X, note that the

derivative of

with respect to X is
uv

oY
Ba
6 - -+ = 0
ZB: 6811 Bv * 68\) 6Bu (l dw)} Ych XB: XeB 8Xuv
Multiplication by sz and summation over e give
Y
Y Y +Y Y (1—6 >+——‘*-’9=0
WU Vo WV uo uv aXuv

to R,

(A38)

(A39)

(A40)

(A41)

where we have used the fact that Y is the inverse of X. Finally, we note

that the derivative with respect to R is the negative of the derivative

with respect to X; this gives

Y
wa

- =Y Y + Y Y 1-8
BRUV Wy ve wv  ua TRV

for the required derivative (Eq. (V.12) in the text).

(AL2)
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APPENDIX B. DESCRIPTION OF THE COMPUTER CODE SAMMY

The computer code SAMMY was developed for ease and efficiency of run-
ning on the DECsystem-10 (PDP-10) at ORELA. (Conversion to other machines
should nevertheless be straightforward; helpful suggestions are given at
the end of this appendix.) Because core storage rather than CPU time is
the 1imiting factor on the PDP-10, a number of techniques have been used to
preserve core, occasionally at the expense of runtime., These techniques
include dynamic allocation of array storage, use of temporary data files to
store intermediate results, and division of the program into four substa-

tionally independent segments,

1. Dynamic Allocation of Array Storage

All arrays required by the computer program are stored in one location
in COMM@N/EXPAND/A(n) where n is a large number. Allocation of space in
this common block is accomplished via a call to FUNCTI@N IDIMEN, which
remembers the last location allocated, and appends the new array to that
position. When an array is no longer needed, its space is released for
future use via another call to IDIMEN. IDIMEN issues a warning if more
than n words are required in COMM@N/EXPAND/, and also indicates the maximum
size actually used in each segment of the program.

Dynamic allocation of array storage is best illustrated with a simple
example, Let us suppose that two vectors V1 and V2, both of length N, are
to be initialized, added, and stored in V1, after which V2 is no longer
required. A program to perform these operations is given in Table B.1.
Notice that mnemonic names can be used in the usual manner in all subrou-
tines, provided arrays are input to the subroutines through argument

listings.
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TABLE B.1. ILLUSTRATION OF DYNAMIC ALLOCATION OF ARRAY STORAGE

10

PRGGRAM MAIN
COMMON/EXPAND/A(10000)
COMMON/@VER/NSIZE
NSIZE = 10000

»

N=50

IV1=IDIMEN(N)
IV2=IDIMEN(N)

CALL SET(A(IV1),A(IV2),N)
CALL. ADD(A(IV1),A(IV2),N)
I=IDIMEN(-IV2)

*

*

I=IDIMEN(O)

ST@pP
END

SUBR@UTINE SET(V1,V2,N)
DIMENSI@N V1(N),V2(N)
READ (11) W1

READ (11) V2

RETURN

END

SUBRGUTINE ADD(V1,V2,N)
DIMENSI@N V1(N),V2(N)
D@ 10 I=1,N
V1(I)=v1(I)+V2(I)
RETURN

END

allocate storage for V1
allocate storage for V2
initialize V1 and V2
add V1 = V1 + V2
release storage for V2

request that IDIMEN print out the maximum
length used
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There are several advantages to using dynamic allocation of array
storage: First, core requirements are kept to a minimum, since only the
array length actually needed is allocated and temporary arrays are released
when no longer needed. Secondly, because allocation is made during the
execution of a program, substantial changes in the dimensions for a
specific case do not always require recompilation of the program, Finally,
when recompilation is required (when the maximum array space requirement is
larger than n), only the main routine need be recompiled; other routines
using C@MMON/EXPAND/A(1) will have array A dimensioned 1, since the loader

allocates COMMON storage space according to the first subroutine loaded.

2. Use of Temporary Data Files to Store Intermediate Results
Qutput to and input from temporary files is a time-honored method of
saving core space at the expense of runtime, Temporary files generated by
SAMMY are listed in Table B.,2, Upon successful completion of a run, SAMMY
deletes these files. An aborted run can sometimes be restarted if the user

takes care not to destroy these files.

3. Division of the Program into Four Stand-Alone Segments

The structure of program SAMMY makes it ideally suited for overlay,
since each major operation is independent of the others. However, overlay
is not particularly efficient on the PDP-10 computer; instead, SAMMY makes
use of the DECsystem-10 "CALL RUN" option, which allows a FORTRAN program
to initiate execution of another program. Thus SAMMY consists of four
semi-autonomous programs, which pass information to each other via tem-
porary files and which pass control to each other via the "CALL RUN" state~
ment. Table B.3 describes the functions of the four segments. Tree charts

showing the subroutine structure of each segment are given in Figs. B.1-B.d.
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TABLE B.2, TEMPORARY FILES USED BY SAMMY
File Name Use
SAMY2 . DAT store covariance matrix for physical parameters
SAMU3,DAT store data and covariance matrix for the data
SAMYY [ DAT store data and modified covariance matrix
SAMU6 .DAT store covariance matrix for u-parameters
SAMA 7. DAT store covariance matrix for updated u-parameters
SAM4S . DAT store partial derivatives
SAM4G, DAT pass minimal information from THEORY segment to

RESULTS segment

SAM20.DAT pass complete information between any two program

sSegments
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‘SAMMY—RESULTS’
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Figure B.#, Tree charts showing the subroutine structure of segment SAMMY-RESULTS. A subroutine
is ealled by the routine above it in the chart.
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L, Conversion to Other Computer Systems

Most of the programming in SAMMY is standard F@RTRAN IV, with rela-
tively few operations specific to the PDP-10 for which SAMMY was designed.
For this reason, conversion to another computer should proceed without
major difficulties.

No plotting options are available within SAMMY. Instead, an @DF
(QRELA Data Format) file may be generated, from which plots are produced
using the in-house data-manipulating and plotting package @PR@DF (CR78)}.
Persons converting SAMMY to other systems should simply drop all references
to @DF files, including subroutine TH@DF in segment SAMMY-THE@RY, and the
auxiliary program SAM@DF. Plotting routines suitable for the particular
computer system can then be substituted.

File naming, opening, closing, deleting, and renaming are all done
with FORTRAN statements in SAMMY on the PDP-10 computer. Other computers
may require JCL (job control language) to accomplish these functions.

Some computer systems may not allow one F@RTRAN program to call
another; in this case, JCL can perhaps be used to couple SAMMY's four seg-
ments. Alternatively, the four segments could be reunited (thus probably
eliminating the SAMZ20.DAT temporary file) and, to save core, overlaid if
possible.

The authors would appreciate feedback corncerning the ease or diffi-

culty of implementing SAMMY on other computers,
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APPENDIX C. INPUT TO SAMMY

A minimum of three user-supplied input files are required to run
SAMMY. The first, or "INPut" file, contains general information about the
interaction being studied, quantum numbers for nucleus and resonances, and
output control information., The second, or "PARameter" file, gives initial
estimates for resonance parameters and (perhaps) initial estimates for
correlations between parameters. The third, or "DATa" file, provides the
experimental energies, data, and uncertainties. An optional fourth, or
"C@gVariance"™ file, contains the covariance matrix for the parameters in
binary form, as generated by a previous SAMMY run. An optional fifth, or
"DCV" (data covariance) file, provides off-diagonal data covariances.,

The PAR and DAT files are identical to the analogous files required by
program MULTI, except that the PAR file may have information about parame-
ter uncertainties appended to it., The DAT file is not restricted to those
data points needed for a particular calculation; SAMMY will search through
the file to find only those points within the desired energy range.

SAMMY's INP file contains much of the same information as does MULTI's INP
file, but formats have been changed and controls are now written in English
rather than as numbers in certain columns. These changes were designed to
eliminate input errors as much as possible. Details and formats for the
INP file are given in Tables C.1 and C.2, for PAR in Table C.3, for DAT in
Table C.U4, and for DCV in Table C.5. Note that this format for the PAR
file permits a maximum of three neutron + fission channels, though there is
no such limitation inherent in SAMMY; modifications of input and output

formats to permit more than three channels will be made as they are needed.
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TABLE C.2. ACCEPTABLE "ALPHANUMERIC IMFORMATION CONCERMING PROGRAM
OPTIONS'", FOR CARDS 3, 4, ... IN THE INPUT FILE. Any of the listed state-
ments may be used, in any order, terminating with a blank line. Only the
first twenty characters and occasional others (capitalized below) need be
exactly as shown here. Defaults are indicated in the first column.,

Default? Statement
X D@ N@T PRINT INPUT Data
PRINT INPUT DATA
X D@ NO@T PRINT ANY INPut parameters

PRINT ALL INPUT PARAmeters
PRINT VARIED INPUT Parameters

X D@ N@T PRINT PARTIAL derivatives
PRINT PARTIAL DERIVAtives
X D@ N@T PRINT THE@RETical values

PRINT THE@GRETICAL VAlues from input parameters
PRINT THE@RETICAL CRoss sections
X D@ N@T PRINT WEIGHTEd residuals
PRINT WEIGHTED RESIDuals from input parameters
D@ N@T SUPPRESS INTErmediate printout
X SUPPRESS INTERMEDIATe printout
X BROADENING IS WANTED
BROADENING IS N@T WAnted
@DF FILE IS WANTED~--XXXXXX.XXX,ZER@-th order guess*
@DF FILE IS WANTED-~-XXXXXX.XXX,FINAl guess*

X @DF FILE IS NOT WANTed
X CHI SQUARED IS WANTEd
CHI SQUARED IS N@T Wanted
X D@ N@T DIVIDE DATA Into regions - do entire energy range

at once

DIVIDE DATA INT@ REGions with a fixed number of data points
per region

D@ N@T SOLVE BAYES Equations - just generate chi squared

X SOLVE BAYES EQUATIONs

D@ N@T @UTPUT C@VARIance matrix in binary form
X @UTPUT COVARIANCE MAtrix in binary form
X DATA C@OVARIANCE IS Diagomnal

DATA HAS OFF-DIAGONAl contribut%on to covariance matrix
of the form (a + bE)

DATA COVARIANCE FILE is named YYYYYY.YYY"

PRINT DEBUG INF@RMATion

X D@ N@T PRINT DEBUG Information
DECZUPLE S-WAVES FROm other resonances
X D@ N@T DECOUPLE S-WAves from other resonances

*
Before using this option, execute program SAM@ODF to initialize
file XXXXXX,XXX. Substitute your own file for XXXXXX.XXX,

*Substitute your own file name for YYYYVYY,YYY,
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TABLE C.3. FORMAT OF THE PARAMETER FILE
Variable
Card Column Name Format Meaning (Units) Values
1,2, -1 ERES E11.4 Regonance Energy (eV)
ete,
12~22 rY E11.4 Gamma-width (Milli-eV)
23-33 Ty E11.4 width for channel 1 (Milli-eV)
34-u4 L E11.4 width for chanmel 2 (Milli-eV)
y5-55 Fc3 E11.4 width for chanmnel 3 (Milli-eV)
56-57 ISERES 12 vary ERES? 0 = no
1 = yes
58-59 1s 12 vary I'? = no
1 = yes
60-61 ISO‘ 12 vary Ic\? 0 = no
1 = yes
62-63 ISC2 12 vary 152? 0= no
1 = yes
64-65 Is 12 vary T .7 0 = no
e3 c3 1 = yes
66-67 IGRAUP 12 quantum numbers for this

resonance are those of
group number IGR@UP
(See cards 11, 12, etec.
in Table C.1.)
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FORMAT OF THE PARAMETER FILE (CONT'D)

Variable
Card Column Name Format Meaning (Units) Values
68-80 ncev £13.4 constant off-diagonal data
covariance to be used under
this resonance
3 blank
L] 1-11 FUDGE E11.4 prior parameter uncertainty 0. < FUDGE
is FUDGE times parameter value (0.1 33 default)
5,6, 1-5 NN(1) I5 If KK and LL are zero, the NN and KK
ete. 6-10 MM(1) I5 prior uncertainty in < the number
11-15 KK(1) 15 resonance NN, parameter MM of resonances;
16-20 LL{1) 15 (ERES, I, Topr Topr To3 fOr
21-30 vv(1) F MM and LL <

MM = 1,2,3,4,5, respectively)
is VV.

For KK and LL not equal to
zero, the prior correlation
coefficient between resonance
NN, parameter MM and resonauce
KK, parameter L{L is VV. Here
Jvvf < 1.

If NN is negative, parameter
uncertainties are stored in a

binary covariance file geunerated

by a previous SAMMY run.

the number of
channels +2.
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FORMAT OF THE DATA FILE

Energies are assumed order from high to low, with three data points

per line,
Card Column Variable Format Meaning (Units)
1,2,ete. 1-15 ENERGY1 £15.8 energy (eV)
16-30 DATA, E15.8 experimental cross
section (barns)
or transmission
31-17 FRACT1 F7.5 fractional
uncertainty in
DATA1
38-52 ENERGY2 E15.8
53-67 DATA2 E15.8
68-T4 FRACT2 F7.5
75-89 ENERGY3 E15.8
90-104 DATA3 E15.8
105-111 FRACT F7.5

3
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TABLE C.5. FORMAT OF THE DCV FILE

Card Columns Variable Format Meaning
1 1-10 VARDAT(1,1) F10.1 Variance for data point 1
2 1-10 VARDAT(2,1) F10.1 Covariance between data
points 1 and 2
11-20 VARDAT(2,2) F10.1 Variance for data point 2
3 110 VARDAT(3,1) F10.1 Covariance between data
points 1 and 3
11-20 VARDAT(3,2) F10.1 Covariance between data
points 2 and 3
21-30 VARDAT(3,3) F10.1 Variance for data point 3
b 1~-10 VARDAT(4,1) F10.1 Covariance between data

points 4 and 1
ete.

Note that the ordering of data points is low energy to high, and only
those data points to be used in the calculation can be referenced in
the DCV file. A more convenient format for input of off-diagonal data
covariances will be implemented as it is required.
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Execution of SAMMY can proceed interactively, with the user
responding to teletype prompts from SAMMY, or in the BATCH mode with
responses given as part of the input stream., Teletype prompts and
appropriate responses are described in Table C.6.

Output from SAMMY consists of two (or three) files, described in
Table C.7.

Conversion of a MULTI-type INP file to a SAMMY-type INP file may be
accomplished by running Program SAMSWI; teletype prompts and appropriate
responses for SAMSWI are given in Table C.8. The user is urged to compare
the SAMMY INP file to Table C.2, to be sure the appropriate options are
chosen.

Plotting routines are not an integral part of the code SAMMY.
Rather, SAMMY writes theoretical values for cross sections or transmissions
on an ODF (QRELA data format) file, from which plots may be produced using
@PRODF (CR78). Because of the sequential nature of data analysis in SAMMY,
it is necessary to initialize the OBF file prior to running SAMMY. To
accomplish this, program SAM@DF generates a five~ (or nine-) section @DF
file and inserts energies and experimental data in the appropriate sec-

tions. Details are given in Tables C.9 and C.10.
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TELETYPE INPUT FOR SAMMY

SAMMY Prompt

User Respornse

What is the name of
the input file?

What is the name of the

parameter file?

What 1s the first data

file name? EMIN?

EMAX?

What is the name of
the covariance file?
(Optional question,

asked only if parameter
file indicates there is

a covariance file.)

What is new EMIN?

EMAX?

Data set name?

Input file name plus extension, e.g.,
AAAAAA.INP*

PARameter file name, e.g., AAAAAA.PAR¥*

DATa file name, e.g., AAAAAA.DATH,
followed by the minimum and maximum
energies (in eV) for this step in F
format, separated by commas., EMIN and
EMAX need not be repeated here if they
are correct in the INP file, card 2.
Caution: Be sure EMIN does not start
prior to Column (or Space) 11.

Binary file from a previous SAMMY run,
e.8., AAAAAA.CQV*

Energy range (in eV) for the next step,
in F format, separated by commas. If
EMIN = 0., program will terminate. If
the data set name is blank, the
previous DATa file is assumed,

¥File names may be chosen for convenience; extensions need not be INP,
PAR, DAT, and C@V,
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TABLE C.7. SAMMY OUTPUT FILES

File Name Contents

SAMMY.LPT Descriptive output, to be queued to the line printer
for examination.

SAMMY.PAR New resonance parameters, in the same format as the
input PARameter file. For binary output of the
covariance matrix, "-1" will occur in columns 4 and
5 on the last card of SAMMY,PAR.

SAMMY.C@V New covariance matrix for the parameters, in binary

(optional)

form.
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TABLE C.8. TELETYPE INPUT FOR SAMSWI

SAMSWI Prompt User Response

1. What's the name of the file name and extension
MULTI "INP" file?

2. What would you like the file name and extension
new SAMMY "INP" file to
be called?
3. What's title? alphanumerical title for the

problem
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TABLE C.9. TELETYPE INPUT FOR SAM@DF

SAM@DF Prompt User Response

1. What's name for output filename and extension, e.g.,
@DF file AAAAAA,@DF

2. 1Is data total or other T if data 1s total cross section
cross section? T = or transmission; blank otherwise
total

3. Is data transmission T if transmission; blank
or cross section? T = otherwise
trans. (Optional
Question)

4, What's thickness? thickness of target in atoms/barn

(Optional Question)

5. What's name of the file name plus extension for the
first data file lowest-energy data, e.g.,

(lowest energy)? AAAAAA.DAT#*

6. What's EMIN and EMAX energy range in eV¥*
for this data set?
(in ev)

7. What's name of next filename plus extension, or blank
data file (next lowest if there are no more files
energy)?

Repeat steps 6 and 7 as ueeded.

*¥In SAM@DF, the entire energy range for a given file may be
included simultaneously; it is not necessary to divide into small
pieces as is done in SAMMY.
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SECTIONS OF @DF FILE GENERATED BY SAM@DF

Section Number

Contents

6*

7*

8%

9*

energy (keV)
experimental cross section (barns)

uncertainty in experimental cross section
(barns)

zeroth order theoretical cross section as
evaluated by SAMMY

final theoretical cross section as evaluated
by SAMMY

experimental transmission

uncertainty in experimental transmission
(absolute)

zeroth order theoretical transmission as
evaluated by SAMMY

final theoretical transmission as evaluated
by SAMMY

¥These sectlions are omitted for the partial cross sections, included
for total cross sections or transmissions.







89

APPENDIX D. SAMPLE INPUT AND OUTPUT

Input and output for example number 3 in Section VI are presented
in the microfiche inside the back cover of this report. SAMTRY.BAT is
the file which should be submitted to the PDP-10 to run SAMMY in the
batch mode; equivalently, one could run SAMMY in the interactive mode
(via the R SAMMY command) and respond to SAMMY's questions with the
answers given in that file,

The file SAMTRY.INP is the INPut file for this example, SAMTRY.PAR
the PARameter file, and SAMTRY.DAT the DATa file. The two output files

are SAMMY.PAR and SAMMY,.LPT.
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APPENDIX E. F@ORTRAN LISTINGS

F@RTRAN listings of all the SAMMY programs are shown on the micro-
fiche inside the back cover of this report. File SAMPAR.F4 contains the
listing of the program SAMMY-PARAMETER, SAMDAT.FU4 contains SAMMY-DATA,
SAMTHE.F4 contains SAMMY-THE@RY, and SAMRES.FY4 contains SAMMY-RESULTS.
The LINPACK subroutines required by SAMMY-RESULTS are listed in file

LINPACK.F4. Program SAM@DF is in file SAM@DF.F4, and SAMSWITCH in

SAMSWI,.F4.
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