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INTRODUCTION

This report is a collection of the talks given at the Meeting of the
Resonance Region Subcommittee of CSEWG, held at the Brookhaven National
Laboratory on May 8, 1972. This was a special one-day meeting organized
in connection with the CSEWG Meeting, held on the next two days. The
purpose of this meeting, and its objectives were the following.

A number of formalisms are being used to analyse and represent the
resolved resonance data of nuclei. Amongst these are the different multi-
level formalisms in addition to the usual single-level Breit-Wigner represen-
tation. The need of the multi-level formalisms to give a good representation
of the experimental data is well known. However, it is not at all clear
whether the additional effort involved in obtaining such multi-level
parameters and using them in reactor codes is necessary from the viewpoint
of practical reactor calculations. Hence, one of the objectives of the
meeting was to review and emphasise the salient features of each of these
formalisms and arrive at some conclusions regarding their usefulness in
reactor calculati ons.

In addition, there is the question of extending these formalisms to
the unresolved resonance region and whether the parameters obtained in the
resolved resonance region could readily be used in the unresolved region.
This is related to the more general problem of data representation and
calculations in the unresolved resonance region. It was hoped that
discussions at the Meeting would resolve or clarify some of these difficulties

When an outline of the Meeting was drawn up in March 1972, the Probabilit
Table Method was one of the newly proposed methods of data representation

for the unresolved resonance region. It had been suggested by L. B. Levitt



as being particularly suited for Monte Carlo calculations. Its advantages
are that it is fast, needing only a modest amount of computer storage

as compared to the conventional methods using either a ladder of resonances
or average parameters in the unresolved resonance region. Though the
method was considered as being basically correct, there were a few reserva-
tions about it which could hopefully be settled by further calculations of
suitable test cases. Hence, it was felt that extensive discussions on
this new method would stress the basic principles on which it is based

and emphasise those areas which needed further clarification before its
final acceptance as a suitable alternate format of data representation in
the unresolved resonance region.

Lastly, 1t was recognised that the time had come to assess the usefulness
and determine the role of preprocessed data in the resonance region, its
effect on the evaluated data files, reactor codes and future applications.

The Meeting was attended by thirty-nine persons and there were extensive
discussions of the subject matter of the invited talks. A tape recording
of the talks and the discussions was made but could not be reproduced
verbatim due to the cost of labour involved. It was also felt that the
discussions and exchange of ideas would be less inhibited if persons were
not held responsible for the exact wording of their questions or comments.
However, the tape recording was used to elaborate on some of the topics
discussed during the course of the talk by M. K. Drake summarising the
Meeting. There were also two extensive and significant contributions by
M. S. Moore and D. E. Cullen, whose texts are reproduced along with those
of the invited talks.

It has been nearly a year since the Meeting was held and perhaps one

should summarise here what were its results and to what extent its-objectives
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were met. The different single-level and multi-level reaction formalisms
were reviewed and their interrelationships clarified. As regards the
estimates of multi-level effects in reactor calculations, during the course
of discussions it became clear that there were no such calculations in
published literature in spite of the claims of the authors. This led to
a better understanding of what form such calculations should take and
M. K. Drake, in summarising the Meeting, suggested procedures for such
calculations. Some of these details and specifications were later distri-
buted amongst the CSEWG Members and their criticism and suggestions
solicited. These calculations are now being carried out in a few laboratorie
and it is hoped that the results would be available soon., At the Meeting,
there was a general acceptance of the Probability Table Method as some of
the questions of detail had been answered in the meantime. Though this
method was originally proposed in connection with the Monte Carlo calcula-
tions, it was pointed out by D. E. Cullen that it could be extended to
deterministic methods, e.g., multi-group calculations of neutron and photon
transport problems using existing codes. Recently, he has also shown how
the Probability Tables could be easily calculated using the parameters
presently given in the evaluated data files. Such a procedure would
obviate the need for separate programs for calculating the Probability
Tables and make their extensive use more acceptable. The discussions at
the Meeting also reviewed the role of pre-processed resonance region data
and some useful comments and suggestions were made which would be helpful
in planning future reactor codes.

It is my privilege to thank the speakers and all the participants at

the Meeting who contributed to the fruitful discussions and exchange of
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ideas. My thanks are due to M. K. Drake for agreeing to the difficult
task of summarising the Meeting at short notice when the scheduled speaker
could not come., Again, I would like to thank him and S. Pearlstein for
their help in drawing up an agenda of the Meeting and its organization, and
Georgia Irving for a commendable job of retyping parts of the manuscript.

April 23, 1973 M. R. Bhat
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Text of an invited talk presented at Resonance Region Meeting
Brookhaven National Laboratory, Upton, New York, May 8, 1972

RESONANCE REACTION FORMALISMS FOR FISSILE NUCLEI#
by
Gerard de Saussure

Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830

*Research sponsored by the U. S, Atomic Energy Commission, under contract
with the Union Carbide Corporation.
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ABSTRACT

In this paper we describe very briefly some of the
multilevel formalisms most frequently used to
represent the low-energy cross sections of the fissile
nuclei. We also discuss some of the properties and
applications of the resonance parameters.



I. Introduction

It is now well known that the neutron cross sectlons of fissile
nuclei cannot be adequately represented by the single-level Breit-
Wigner formula. Indeed there are asymmetries in the resonances of the
reaction cross sections caused by interference in the fission channels.

Various multilevel formalisms have been developed which account
for the observed asymmetries. These formalisms have proven very
successful for' representing the cross sections of the main fissile
isotopes in the resolved resonance region.

The multilevel formalisms have been extensively described in the
literature. In this paper we will very briefly discuss the formalisms
which have been wost frequently used to represent the cross sections of
the fissile isotopes. In particular, we will review how these formalisms
can all be derived from the Wigner-Eisenmbud R-matrix theory.

We will also describe some of the properties of the resonance param-
eters entering the various multilevel formalisms, and discuss some appli-

cations of these formalisms, particularly to the interpretation of

measured neutron cross sections.

IT. Multilevel Formalisms

The different formalisms used to interpret the low~energy cross
sections of the fissile nuclei have been reviewed by Moore.l The relations
of these formalisms to different nuclear reaction theories have been dis~
cussed by Adler and Adler.2 Complete reviews of the formal nuclear reac~-
tion theories have been given by Lane and Thomas3 and by Lynn.4

Three different multilevel formalisms have been extensively used to

describe the low~energy neutron cross sections of the fissile nuclei,



These formalisms, developed by Vogt,5 Reich and Moore,6 and Adler and
Adler,’ can be derived directly from the R-matrix theory.

The expression for the neutron cross section which proceeds through

the outgoing channel ¢ is given by:

. 3 _d 2
cnc 11*2 Z g 16 nc Uncl ? (l)
J

vwhere # 1s the neutron wave length divided by 2w and gJ is the statistical

factor for resonances of spin J. The collision matrix element Uic may be

written as:8

i(é_+ ¢ )
J _ n c :E:: ]
Upe = ¢ ( $pet3 _ Aa (rAnrA'c) 1 2
AR!
where ¢n and ¢C are potential scattering phase shifts, PAc is the partial
width for the decay of the level A into the channel c¢ and the A ., are

AA
elements of the Wigner level matrix. The inverse level matrix is given by

A L L UEE D DGR &)
c

In order to obtain the cross sections from the R-matrix parameters EY
and TYC, Vogt5 inverts the inverse level matrix Al directly considering
only a finite number N of levels. A smooth "background term" then
accounts for the contribution of the neglected distant levels.

The technique developed by Adler and Adler7 consists of diagonal-

izing the inverse level matrix by an orthogonal transformation:

D =S8 AS
A - E Skvsk'v
At = d, - E (4)




The collision matrix is obtained by combining Eqs. (2) and (4):

1(¢_+ ¢ ) r
Coee B sy e, )
ne nc dv E
v
and
T =1Z (r, T )lis S . (6)
ve am A'e v Tatvy

A’

In terms of the new complex parameters dv and LN the Adler and
Adler cross-section formulag given in Table I can easily be derived.
These expressions are particularly well suited for reactor calculations
and "least-squares fitting" of experimental data.
When the number of levels, N, is large, and the number of fission
channels, n_, is known and small, the formalism of Reich and Maore6 is very

f

1
convenient. Reilch and Moore exploit the fact that the sum :z:(T )f
[od

Acrk'c
over the many radiation channels can be assumed to be diagonal to obtain an

expression for the collision matrix not in terms of the NxN level matrix A

but in terms of a much smaller (nf + 1) x (nf + 1) channel matrix (I-K):

iCe_ + ¢ )
J - n [« _ =1 _
o RIC-0 -8, ™
and
L
(r. T, )
_ 1 ac e’
(T-K =8, -3 ZE —— (8)
A AT R T 2 Ny

-9~



The Reich-Moore formulas for the neutron cross sections are obtained
by combining Eqs. (1), (7), and (8) and are listed in Table 2.

It is interesting to noteg’l0 here that the Adler-Adler formalism
can also be derived by directly expanding the Reich-Moore cross sections
into partial fractions, as is shown in Table 3.

Another representation of the cross sections of fissile nuclei has
been much used in reactor calculations. This representation could be
called "pseudo Breit-Wigner' and consists essentially of describing the
symmetric part of the resonances with the Breit-Wigner single level formula.
The "interference part," however, is not parametrized but described on a
point-by-point basis and denoted as a ''smooth background".ll’lz’sl This
pseudo Breit-Wigner representation can, of course, be derived from R-matrix
theory, in fact it can be obtained directly from the Adler-Adler formalism
by a trivial change of notation.

In Table 3 we illustrate the relation between various expressions for
the fission cross section. The first equation in the table is the Reich-
Moore expression for one fission channel. This expression can be rationalized
as the ratio of two polynomials in E, by multiplying the numerator and denom-
inator by the “rationalizing polymomial indicated. The ratio of two poly-
nomials can then be expanded in partial fractions with complex roots dk' This
expansion immediately yields the Adler-Adlex expression which can be separated
into symmetric and antisymmetric parts. A change of notation then yields the
pseudo Breit-Wigner representation.

The parameters entering this representation. [Eq. (IIIA) of Table 3]
have been denoted by primes to distinguish them from the resonance ener-

gles and partial widths entering into the R-matrix formulation [Eq. (IIIl),

for instance]. It is very important to realize that the parameters entering
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the pseudo Breit-Wigner representation are not the usual R-matrix parameters.
In particular the partial widths and spacings of the pseudo Breit-Wigner
representation do not follow the Porter—Thoma513 and Wignerl4 distribu-

tion laws.

" III. Energy Dependence of the Multilevel Parameters
The R-matrix formalism of Wigner and Eisenbud is derived by assuming
real, energy independent boundary conditions at the surface of the nucleus.,
Hence, the R-matrix resonance energies and reduced widths are energy
independent. On the other hand, the Adler-Adler parameters and the
parameters entering the Pseudo Breit-Wigner representation are somewhat
energy dependent, for the transformation S [of Eg. (4)] which diagonalizes
the level matrix, is a function of the neutron widths which are proportional
to the neutron momentum. This energy dependence, however 1is negligible
so long as the neutron width Fn = F; /E is very small compared to the total
width, [ = Tf + I‘Y + Pn. This is the case for the main fissile nuclei up
to 10 keV, at least. For imstance for 235y, (F;_>= 0.13 mv, (Pf + FY )=

180 mV, so that at 10 keV (I‘n Y= 13 mV <<{T )= 190 mV.

1V. Nonuniqueness of Multilevel Parameters

It is we11 known that multilevel fits to measured cross sectioms are
not unique. Different sets of parameters may describe the existing data
equally well. This lack of uniqueness is due in part to the uncertainties in
the measured cross sections: Precise scattering and capture measurements
in the fissile nuclei are exceedingly difficult. Often there is very
little information on the spin of the resonances so that assumptions must

be made as to which resonances interfere with each other. Finally,
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due to the natural width of the resonance and due to Doppler and instru-
mental broadening some levels are usually missed in the analysis because
they are concealed in the wings of other levels.15’16

More fundamentally, Auchampaughzl has recently shown by a computer
study, ;nd Adler and Adler23 have demonstrated mathematically that, in
some cases, at least, different sets of partfal fission widths will yield
the same set of fission, capture, and scattering cross sections. Hence,
even if the cross sections were known exactly, and for each spin state,
some R-matrix parameters may not be determined uniquely. Of course, as
pointed out by Moore,22 the R-matrix parameters could still be determined
uniquely if additional data were availlable, such as the partial fission
cross section for each fission channel. One consequence of the non-~
uniqueness of multilevel parameters is that no meaningful uncertainty can
be assigned to a given parameter. Hence, it would not in general be
correct to average parameters from different sources for the same reso-
pance. Because the multilevel parameters are not unique, their inter-
pretation in terms of nuclear physics is subject to question; in some
cases, for instance, it would be erroneous to conclude from the apparent
interference of two levels that those levels belong to the same spin
state. On the other hand, the multilevel parameters yield precise cross
sections, hence they are very useful as a mathematical tool for data
reduction or for reactor computations. As long as the parameters are

used only as a tool to compute selfshielding, thelr nonuniqueness is not

too important.
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V. Applications of the Multilevel Formalisms

It is perhaps appropriate to discuss here some of the applications
of resonance analysis, particularly in interpreting neutron cross-section
measurements.

Not only does the resonance analysis of nuclear data provide information
on the statistical distribution of resonance parameters which is of interest
to nuclear physics, but it is also an indispensable tool to correct meas-
ured cross sections for a number of instrumental effects such as resolution
broadening, selfshielding and multiple scattering effects, contamination
of the data by resonances due to isotopes or chemical impurities, etc.

In the resolved resonance region, the multilevel formalisms permit a
concise and precise analytical representation of the cross sections, which
results in an appreciable economy of information storageza and allows easy
comparison of data taken with different resolution or at different tempera-
tures.25 As an illustration, in Fig. 1 we show the low-energy capture
and fission cross sections of 235U and a multilevel fit to these data.lo’27
There are more than 8,000 data points in the figure, whereas the solid
line is described by only 300 parameters. The multilevel representation
is fully consistent with the data, in the sense that the difference between
the data and the computed curve is always small compared to the uncer-
tainties in the data.

In the unresolved resonance region, measured cross sections cannot
usually be corrected reliably for the instrumental resolution broadening,
For the selfshielding and multiple scattering corrections teo the data, as

well as for using the cross sections in reactor calculatioms, it is
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necessary to rely on a resonance reaction theory. This is illustrated

in Fig. 2. The upper curve in the figure represents the assumed behavior
of the unbroadened 23%y fission cross section between 2,000 and 2,060 ev.
The true shape of that cross section is, of course, not known, but it
might look similar to the upper curve of Fig. 2. {(This curve was ob-
tained by assuming, in that energy region, the same spacing and reduced
widths that are found between 0 and 60 eV. This 1s not unreasonable
since p-wave contributions to the fission cross section are still very
small at 2 keV and since the S-wave average spacings and reduced widths
are not expected to change much over the small change in excitation
energy.) The second curve in Fig. 2 was obtained by Doppler broadening
the upper curve, for a temperature of 300°K. This Doppler broadened
crogs section is the cross section which should be used in computing
selfshielding or multiple scattering corrections to a measurement done

at room temperature, or to compute a reactor operating at that tempera-
ture. The lowest curve on Fig. 2 was obtained by Doppler and resolution
broadening the upper curve. The resolution corresponds to that of a
typical time-of-flight spectrometer. (It is the resolution corresponding
to the ORNL-RPI measurement27 on which the cross sections for 235U in the
ENDF/B III file11 are partly based.) This lowest curve in Fig. 2 is the
cross section that would be measured experimentally if the upper curve
were the true unbroadened cross section. It is clear from the figure
that at some energy the Doppler broadened cross section, which is the
cross section required, cannot be obtained reliably from the measured
cross section. As the resolution of time-—of-flight spectrometers is

improved, the measured cross section approaches the Doppler-broadened
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cross section, but since the instrumental broadening is proportional

1/2
to 17.‘.3/2 /

whereas the Doppler broadening is proportional to E s there
will usually be some energy where the instrumental broadening dominates
the Doppler broadening.

The statistical features of the Doppler broadened cross section
may be obtained by generating a mock-up cross section by selecting
parameters from the appropriate distributions. This mock-up cross
section can then be resolution broadened to verify that it displays
the same qualitative features and has the same average values as the
measured cross section.26 1t is for such statistical study in the

unresolved region that the multilevel formalisms and the statistical

distributions of the parameters are most needed.

VI. Comparison of Multilevel Formalisms
There are now computer codes available to "least squares f£it"
measured cross sections to both the Adler-Adler and the Reich-~Moore

28-31
multilevel formalisms, . as well as sophisticated automated cross

section analysis programs which use live visual display.32’33

The
question arises as to which of the formalisms is most desirable teo
represent the cross sections in the resolved and unresolved regiom.
The Vogt and Reich-Moore formalisms are essentially equivalent, since
they are based on the same parametric representation. These two
formalisms differ mostly in the technique used to invert the chanmnel
matrix. The Vogt formalism is to be preferred when many channels and

few levels must be considered simultaneously, whereas the Reich-Moore

formalism is more convenient when many levels and few channels must
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be considered, as is generally the case for the low-energy cross sections
of the fissile isotopes.

The R-matrix formalisms and the Adler-Adler formalism are complementary
in that the statistical properties of the R-matrix parameters are much
better known,13 but the Adler-Adler formulation is best suited for a
variety of applications.34 For this reason various techniques have been
developed to transform a set of R-matrix parameters into an equivalent set
of Adler-Adler parameters, using the mathematical connection between the
R-matrix and Adler-Adler cross section formalisms.9’35‘37

Hence, it is possible to rank the multilevel formalisms in the sense
that it is relatively easy to obtain equivalent Adler~Adler parameters
from a given set of R-matrix parameters. The inverse process, of con-
verting Adler-Adler parameters into equivalent R-matrix parameters, 1s
very difficult and impractical except in some very special cases.38
Similarly the conversion of the Adler-Adler representation into an equi-
valent "pseudo Breit-Wigner" representation is a trivial operatilonm,
whereas the Adler-Adler parameters cannot be obtained from a "pseudo
Breit-Wigner" representation except by fitting the smooth background
with the appropriate parametric representation.

For 2¥Py a meaningful R-matrix analysis can be done, because the
low-energy cross sections of this nucleus are relatively simple and
because the spin of many resonances has been determined. For such a
nucleus, an R-matrix simultaneous analysis of several partial cross

sections3l will yield valuable nuclear physics information and the
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R-matrix parameters can always be transformed into equivalent Adler-Adler
parameters. For 233U, on the other hand, no meaningful R-matrix analysis
can be performed at the present time: The resonance structure at low
energy is very complicated, due to the larger value of T'/D, and none of
the resonance spins have been determined reliabl.y.19 For such a nucleus,
an Adler-Adler type analysis is probably to be preferred20 since it will
yield a precise description of the cross section and it does not require
an a priori decision as to which resonances belong to the same spin state
and hence interfere. The nucleus 235U falls between these two extreme

cases.

VII. Some Limitations in Extrapolating Cross Sections into the
Unresolved Resonance Region

One of the most important application of the multilevel formalisms
is the generation of mock-up cross sections in the unresolved region,
in order to compute selfshielding effects, such as the Doppler coefficient,
in that region where the measured cross section does not fully reflect
the structure of the Doppler broadened cross section. Such applicatiomns
require a knowledge of the statistical distribution of the resonance
parameters and of the resonance spacings, and a knowledge of the varia-
tion with energy of the average values of the parameters.

The statistical properties of the R-matrix parameters and level spacings
have been investigated extemnsively by Porter and Thomasl3 and by Wigner.lh
The statistical properties of the S-matrix parameters have been investigated
analytically and numerically by using the connection between the R-matrix

and the S-matrix parameters.3g_43

-17-



In the neutron S-wave region, up to a few keV, it is usually
assumed that the average capture width and reduced neutron width remain
constant, and that the average fission width follows a Hill-Wheeler

44

penetration law,

-1
(p E - E;
(I'f}=—é-; 1+ exp =27 ——
W

where Ef is some threshold energy and Ww some characteristic width.

Recently Lyl'u'tl*5 has called attention to the possible influence of
the (n, vf) process in which an excited nucleus emits a gamma ray before
undergoing fission. If this process 1s important it will distort the
apparent distribution of fission width, and more small widths will be
observed than are expected from the Porter-Thomas distribution. Such a
distortion of the fission width distribution has usually not been ob-
served experimentally. However, there are large uncertainties in the
observed fission width distributions, particularly toward the small
width end, due to "missed levels," to ambiguities in the resonance
analysis of the fissile nuclei and to the small statistical sampling
of the distributions. The effect of the (n, yf) process on the calcula-
tion of average cross sections has been investigated by Stavinsky and
Shaker,46 Garrison,47 and Lynn.45

The intermediate structure recently observed48 in the fission cross
section of various isotopes implies that the simple Hill-Wheeler

formula 1s not applicable in the vicinity of a fission threshold. In
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many cases the average fission cross section shows a considerable amount
of intermediate structure that can be understood on the basis of the
double-humped fission barrier recently introduced by Strutinsky.49 The
incorporation of this intermediate structure in the calculation of

50
average cross sections has been investigated, particularly by Kikuchi.

VIII. Conclusions

Adequate multilevel formalisms have been developed to describe the
low-energy cross sectlons of the fissile nuclel. In the resolved resonance
region, the cross sections canm be parametrized with great precision by
any of those formalisms. The generation of mock-up cross sections in the
unresolved resonance region requires a knowledge of the statistical
distributions and of the average values of the parameters. The statistical
distribution of the R-matrix parameters can be derived from general con-
siderations concerning the nuclear Hamiltonian. The statistical properties
of the generalized Kapur-Peierls parameters can be investigated numerically
and sometimes analytically, using the mathematical connection between the
R-matrix and Kapur-Peierls formalisms.

Many problems remain to be solved, such as, for instance, the incor-
poration of processes like the (n, vf) reaction or the subthreshold
fission through a double-humped potential, into the mechanism to compute
cross sections in the unresolved region. Some information on these pro-
cesses will probably come from more extenmsive investigations of the pro-

perties of the parameters obtained by fitting data in the resolved region.
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Table I

Adler and Adler Formulae for the Neutron Cross Sections

T T
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(Is) Gri = o, cos (2ka) + BA sin (2ka)
T
HA = BA cos (2ka) - ay sin (2ka)

€ =6.52 « 10° beeV.
9 7 an, 9.5 %ng and Uny are regpectively the total, absorption, fission,

scattering and capture cross sections, k is the neutron momentum and a

the nuclear radius. The other symbols are defined in the texts.

The smooth 'background" which accounts for the neglected "far-away" levels

has been omitted from Il, I and Is for simplicity.
2
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Table I1

Reich and Moore Formulae for the Neutron Cross Sections

2ika
(IIy) GiT = 2mx2 gl - cos (2ka)] + 4122 g Refe pnn)
a1y o), = 4m? glke(o ) - [o (%)
Jo_ 2 2
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= _ - -1
(1I1,) Phe = Gnc (1 -X) le
]
(r, r,,)
A A
(11s) (T - K)cc' = 6cc' - %- S i
A E. -E-5T
A 2 Ty

The symbols are defined in Table I and in the text.

The scattering and capture cross sections can be obtained by (Iq).
The cross sections and parameters refer to omne spin value.

The sum in (113) extends over the fission channels only.

A constant term representing the contribution of the neglected "far-away"

levels has been omitted for simplicity.
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NEW HOPE ANG WHY BOTHER

The purpose of this very brief discussion is to point out the
importance of new data on spins and fission-channel quantum numbers
for resolved resonances of fissile targets. Such data will help to
resolve problems of nonunique multilevel descriptions. There is also
some evidence that the data may be of importance for reactor design.

The variation of K, the projection of the total angular momenium
on the nuclear symmetry axis, can be determined by measuring the anisc-
tropy of fragments emitted in the fission of aligned target nuclei by
slow neutrons. Measurements of this type, in which the target nuclei
are aligned by quadrupole coupling at low temperatures, have beea carried
out for a number of years by J. W. T. Dabbg’:nd associates at ORNL. Moszt
recently, significant new results have been obtained by Patteanden and
Postma at Harwell. A somewhat different cxperiment is planned by Keyworth
et al.Q(LASL), in collaboration with Dabbé on the ORELA. In this measure-
ment, the target nucleil will be polarized, to permit the determination of
J: sirce the polarization also produces alignment, weasurement cf the sniso-
tropy wilil allow them to determine K at the zame time,

The results of this experiment will not remove the nonuniqueness of
multilevel descriptions completely (because there are more than two fission
charnsls in each spin state), but they will certainly help. In principls,
if one could measure the Ay and Aé terms in the Legendre expansion descric-

ing the fragment angular distribution, the unique set of multilevel parameters

-32-



could be obtained. However, this will not be done in the Keyworth
experiment.

Let us assume that J and X will be known in the near future. The
next question to be asked is, "Why does one want to bother with a multilevel
description?”” The most important reason hinges on the variation of V from
resonance to resonance, depending on J and K, and the concomitant variation
of the fission width. This leads to an apparent effective ¥ dependence of
self-shielding and tempevature, These are effects which have not yet been
included in sensitivity calculations as far as I know, but they could be
important--especially for 2:”gPu.

The situation is perhaps best summarized by considering the lowest
energy resonance, at 0.28 eV, in 235U. Figure 1 shows some old data which
Lowell Miller and Iareported at the Salzburg conference. Plotted (in
arbitrary units) is the variation of the relative yield of the highest energ
heavy binary fragments. The solid line is the multilevel fit to these data
using the parameters reported by Vogfﬁ ard simply rotating the fission
vectors in channel space until one gets the best fit.

Figure 2 shows the A2 values determined by Pattenden and~Postma? The
z0lid ling 1¢ the zame fit {to the data of Fig. 1}. The simplest inter-
pretation is that there are twe channels effective, having K=0 and K=2,

with no contributions from X=1 or 3.

Next, we want to ask about V. Figure 3 shows the results of a rather

crude experiment which Loweil Miller and I did in 1965. The four data poin:
we obtained seem to show a K dependence over this resonance; the solid line
is a best fit to these data, and represents a guess as to what the variatio

of V might be. Finally, after going through this exercise, 1 went back to

. . . LB, 8 . .
Simon Weinstein's thesis’and plotted his data (slightly renoxmalized); agai
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there seems to be consistency with the same curve, as shown in Fig. 4.
Unfortunately, there was no reported value for y between (.28 and 1.1 eV;
this would have perhaps been the definitive test.
Finally, to complete the picture, Fig. 5 shows the correlation between
the Pattenden-Postma A2 and the total width of the resonance. The corre-
lation does exist, and indicates (somewhat surprisingly) that the widest
resonances are associated with higher K values.
My own conclusions from this study are summarized as follows:
(1) J and K are associated with physical observables,
in particular the fragment mass and kinetic-energy
distributions, the fission widths, and V.

{2) 1 believe that these results tend to corroborate the Weinstein
measurements of V. The reason there is no clear correlation
of Weinstein's V with K is that there is also a strong J de-
pendence as well, and the spins are not yet knowh. This implies
that the Weinstein 239Pu results are also correct.

{(3) It is important to be able to account for such effects, both in

the resolved and in the unresolved region. A multilevel descrip-

tion appears to be required.
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I. INTRODUCTION

The treatment of the rescnance absorption in the unresolved energy
region is generally based on concepts directly related to the statistical
theory of nuclear reactions. In reactor applications, one of the most
difficult problems is to estimate the resonance self-shielding effect and
the related Doppler effect on a statistical basis. The rescnance self-
shielding effect is characterized by the correlation between the reaction
cross section and the neutron flux in energy and space. The neutron flux
is generally related to the cross sections in an extremely camplicated
way through the integral transport equation. The problem is further com-
plicated by the fact that the temperature-dependence of the cross sections
must be considered. Because of the important role that the Doppler effect
plays in large fast reactors, there have been a great number of studies
concerning this subject. Numerical methods and codes that treat the prob-
lem to various degrees of sophistication have recently became available.
However, unlike the problem of treating the resolved resonances, the cal-
culated results in the unresolved region are usually subject to signifi-
cant statistical uncertainties which are difficult to estimate. The
interpretation of the calculated results, the efficient use of various
methods, and application of newly developed statistical methods and
nuclear theory are still active fields of research.

The primary purpose of this paper is to improve understanding of the
fundamental aspects of problems concerning the statistical treatment of
the resonance absorption in the reactor applications. Section II des-
cribes same general problems that one encounters in estimating the reso-
nance self-shielding effect. In Section ITI, various calculational
methods and their theoretical justifications are discussed. Particular
attention is devoted to the discussion of the cross-section sampling tech-
niques. Finally, the role of the miltilevel effect on reactor Doppler—
effect analysis is examined in Section IV. Simple examples that illustrate
the statistical behavior of the S-matrix parameters are given. Numerical
results obtained using the single-level and the multilevel representations

are compared.
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. II. Problems Associated with Estimation
of Resonance Self-Shielding Effect

The treatment of the resonance self-shielding effect in the unresolved
energy region is a natural extension of the statistical theory of average
cross sections such as described by Moldauer1 and Ericson.z Since the
theoretical foundations may often be obscurred in routine applications,
it is useful to summarize briefly some conceptual aspects of the problems
prior to the detailed discussions of the basis for the calculational
methods.

The quantities of interest in the reactor calculations are generally
of the form

E@ = (505 and @) , w

which represent the expectation values of the reaction rate of a given
reaction process and the neutron flux over a large number of events
within a given energy interval. Here, the neutron flux ¢ depends on the
macroscopic total and scattering cross sections as described by the inte-
gral transport equation. Without loss of generality, the cross section
of any given process X can be represented in the R-matrix formalism in
terms of parameters Eoi and Yei

9% = cx(Ycl’ E-Epps Yoo E=Bpp o v v vepo Eoi] ’ (2)

where Eoi and Yo are the R-matrix state and the reduced width for various
channels ¢, respectively. From the statistical theory of spectra,u the
distributions of these parameters are well known. The distribution of
EOi for a given spin state is characterized by the Wigner distribution
and by the long-range correlations described by Dyson.l‘t’5 Y, are sta-
tistically independent and normally distributed with zero means and
variance of unity according to Porter and Thomas . ® Given

<lEoi - E; +1l> and Yii » Eq. 2, in principle, includes all the statis-
tical information and the explicit energy dependence of the cross sections
fram which, and through the integral transport equation, the randam vari-
able q; and its expectation values are completely specified.
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For practical applications the R-matrix representation, which requires
the inversion of a level matrix, is clearly too complicated, especially
when the temperature dependence of the cross sections is considered.
This, of course, excludes the cases where the natural widths of the reso-
nances are much smaller than the level spacing and the Breit-Wigner equa-
tion becames valid. TFor special cases where the Breit-Wigner equation is
questionable, one convenient alternative is to use the S-matrix repre-
sentation fram which a simple energy and temperature dependence can be
derived.1’7‘8’g One disadvantage of the S-matrix representation is our
lack of a statistical theory that will adequately describe the statisti-
cal behavior of the S-matrix parameters. The problem, therefore, beccmes
that of finding the statistical properties of the S-matrix parameters
fram those of the known R-matrix parameters. Numerical approaches are
usually required in practical calculations with the exception of some
oversimplified special cases. A further discussion of this subject will
be given in Section IV.

Two special problems must be considered in the application of the
statistical theory to self-shielded average cross sections. First, the
presence of the neutron flux in Eq. (1), which attenuates as energy
decreases, camplicates the problem significantly. The statistical des-
cription of q within any given energy interval becomes meaningless if
the neutron flux attenuates too rapidly. Consequently, significant uncer-
tainties in the estimated self-shielding effect are expected in the low
energy region where the resonance absorption becames strong. Secondly,
there does not appear to exist any simple way to relate the statistical
behavior of the self-shielding effect in the unresolved energy region
directly to the cbserved statistical behavior of cross sections from
various experiments. The latter problem is particularly important in
the application of Monte Carlo techniques.

The problem can be best illustrated by using the narrow resconance
approximation which is widely used in the reactor applications. For
simplicity, consider the case of a infinite hamogeneous reactor system.
Under the assumption that the extent of the resonance is small compared
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to the maximum energy loss per collision, the neutron flux becomes in-
versel proportional to the total macroscopic cross section of all isotopes
in the system. The self-shielded reaction rate for a given isotope i be-
cames simply

Efq.1 ~ {0 .- {(o_. ——-——ZR z (3)
{ql] <"1> e P’
P

vhere EP and I; are the macroscopic total potential scattering and total
resonance cross sections respectively. The quantity (oxi) is the
unshielded average cross section which is temperature independent. The
second term represents the degree of the self-shielding effect and is
temperature dependent. In terms of the cross-section statistics, the
self-shielding term clearly relates to the higher-order moments not only
of 9ys and o, but also of the total cross section of different iscotope
i” in the mixture. Hence, an adequate statistical description of the
means (crxi) alone may not be sufficient in estimating the self-shielding
effect especially when the energy interval under consideration is rela-
tively small in practical applications. Of particular interest from a
theoretical point of view is a special case in which Eq. (3) approaches
asymptotically to

A%l L Caad %) T CpdCes) L
by k k?

W)

I

in the limit of high energy where the Doppler width becames relatively
large. The constant k is the average macroscopic total cross section
{z,) per atam concentration of isotope i under consideration.

It is interesting to note that, under this limiting condition, the
self-shielding effect can be identified directly with the correlation
between the microscopic reaction cross section s and the corresponding
total cross section o oy This is, of course, true only under the
idealized condition where the number of resonances for all the isotopes
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present is large. Under such condition, the correlations between the
uncorrelated resonances vanish, It is, therefore, reasonable to assume
that the minimum requirement for any meaningful statistical method is to
reproduce at least the first- and the second-crder moments defined in
Eq. (4) when compared to the observed values from the cross-section
experiments. More realistic conditions appear to require the preserva-
tion of the correlation between o ; and I if the energy interval under
consideration is relatively small. It appears that a reduction in sta-
tistical uncertainties may be possible if experimental information on
such correlations is available. The importance of such conditions in
practical calculations will be further discussed in the next section.

ITII. BASIS AND PROBLEMS CONCERNING THE EXISTING METHODS

The validity of the Breit-Wigner equation is usually assumed in
practical reactor applications. The temperature and energy-dependent
cross sections are expressed in terms of the well-known Doppler-broadened
line shape functions. The joint distribution function is specified once
the independently distributed probability functions for each partial
width and the distribution of level spacing are known.

There are generally two methods in estimating E(q); namely (1) the
Integral Mthod, in which a multiple integration is performed over the
distribution functions and energy; and (2) the Discrete (or Monte Carlo)
Method in which the expectation value is considered as the sum of the
appropriate discrete values generated from known distribution functions.
The detailed descriptions of these methods are available in the literature
and will not be discussed in this paper. Instead, same important aspects
of the statistical theory pertinent to these methods will be discussed.

A, Integral Method

The expectation value E(q) of interest is generally much too campli-
cated to be treated by the integral method unless same simplified assump-
tions are made on the space and energy dependence of the flux. It is
customary to assume that the narrow resonance approximation and the
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Wigner rational approximation of collision probabilities and the equiva-

lence relations are valid.ln 11

Under these assumptions, the expectation
values of interest are of the form defined in Eq. (3) and can be written

in the relatively simple forms:

<cx¢>E0 <1~XJ*>BO /(D> (5)

e

and

g,

e

b (/0]
P

where c;eq) and (D) are the "equivalent" potential scattering cross sec-
tion and the average spacing respectively. The characteristic integral
J * is defined and discussed in Ref. 12. All the expectation values are
evaluated at Eg which may be conveniently taken to be the midpoint of the
energy interval of interest. It should be noted that the J*—tr*ea‘anent

12 has been improved in conjunction with
the recent development of the MC2-2 code. Efficient algorithms have been
developed to treat <I‘XJ*>. In particular, the in-sequence overlap effect
is treated more accurately taking into account the long-range correlation

of levels described by ]'.:yson.5 The detailed discussions are given in
Ref. 13.

described in the previous work

Of particular interest in the present paper is the implicit assumption
involved in the Integral Method. One of the most important assumptions is
that the ergodic theorem must be valid. The validity of the ergodic
theorem required that the following limit condition must exist for any
given energy interval

AE

E; - E

Eq . N
E(q) LJ QB & % 1wl ] pE)gNL)
AE /E, (D) W+ N 4=1 * 1

<TXJ*>E /< D> 7

e
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vwhere { l‘iLi')J";(L }is a subsit or a "ladder" of the stationary sequence
of resonance integral {r_,J 1} The discrete sum is required to approach
<1‘xJ >ED ergodically when N becomes large. This assumption provides a
natural transition between the resolved resonances and the unresolved
resonances. The results obtained using the integral method represents

the theoretical mean values under the idealized conditions.

B. Discrete (or Monte Carlo) Method

In contrast to the integral method, the cross sections may be con-
sidered as an energy-dependent discrete sequence sampled from the appro-
priate distribution functions in estimating the expectation values. The
discrete method is clearly less restrictive, and assumptions on energy
and space dependence of neutron flux are not required. Hence, it is
extremely useful in more rigeorous calculations. If the same assunptions
are used, the results cobtained by the discrete method must approach those
obtained by the integral method ergodically according to Eq. (7) under
idealized conditions. In practical calculations, however, the energy
interval in which the expectation values are defined is finite and some-
times small. Consequently, large dispersions in E(q) obtained using
various cross-section sequences are expected if the sample size is small.

There are two methods of generating discrete cross sections. One
method is to construct the resonance sequences directly fram the distri-
bution functions of the partial widths and level spacing and is often
referred to as the "ladder" technique. Another method is to sample the
cross sections from conditional distributions of various reaction cross
sections deduced from the ladder technique. The latter method will be
referred to as the cross-section sampling technique.

1. Ladder Method. This method is most straightforward. All the
energy dependence of the cross sections within the energy region under
consideration is included explicitly in the calculations. Considerable
wcertainties in the self-shielding effect are expected when the total
number of resonances within the given energy interval is small. From a
practical point of view, some bias is obviously needed in order to repro-
duce the observed behavior of the microscopic cross sections as a func-
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tion of energy. For this reason, Dyoslq has suggested two criteria in
selecting resonance ladders. First of all, the means and variances of
the nuclear parameters for the selected ladder must match the theoretical
values as closely as possible to be representative of the characteristics
described by the theoretical distribution functions. Secondly, the
unshielded average cross sections within the given energy interval must
be equal to the observed value. It was hoped that the biased selection
of resonance samples would reduce the uncertainties in the Doppler-effect
calculations. As discussed in Section IT, the self-shielding effect and
the Doppler effect depend on the higher-order moments in a rather compli-
cated way. Adequate statistical samples for the unshielded average

(cx) may not be sufficient in estimating the Doppler effect.

Investigation of this problem has been carried out using the narrow
resonance appro:nd_mation.15 The resonance integrals in Eq. (5) can be
represented by the unshielded term <°x> and the self-shielding term (say
<Sx> ) similar to that given in Eq. (3). The point in question is then
to estimate the relationship between the variances of the discrete sum of
temperature derivatives

N
L.

i=1 o7 *
for the unbiased and the biased samples. Two interesting results were
found: (1) the variance of

N

75,
i1 a1 **
was found to be approximately inversely proportional to N, the total number
of levels present within a given energy interval; and (2) the conditional
variance of (3/3T) Sxi for any given L is related to the variance of

(3/3T) S,; for the wnbiased sample by the simple relationship

G 2 vt )] -]

47~



where p is the correlation coefficient for o, and S_.,. Hence, the biased
sampling technique of ‘1‘,‘vyosl!1l will generally ,rclladuce thxela dispersion of the
calculated Doppler effect and its effectiveness is characterized by the
correlation coefficient p. p, in turn, depends strongly on the camposi-
tion of the system under consideration.

To illustrate the magnitude of p in practical applications, calcu-
lations have been carried out for two realistic cases in the energy inter-
val around 1 keV with the temperature increment of AT = 750-300°K. Case 1
is equivalent to an isolated Pu0, sample with o;eq) = 71.7 barns per atam.
Only the S-wave resonances are considered. Case 2 is equivalent to a
system with 238U:23%y = 7:1 with o, = 300 barns per 239Pu atom. The
resulting ¢ for 239Pu in two cases are given below:

Fission Capture
Case 1 -0.644 ~0.953
Case 2 -0.408 -0.849

It is seen that the scheme of Dyoslu' will significantly improve the
capture contribution to the Doppler effect, but the improvement for the
fission contribution is much less. In the presence of a strongly over-
lapping sequence of 238U resonances, however, p for the fission contri-
bution is so small that the corresponding conditional variance, and the
variance for the unbiased samples are substantially the same. Under such
conditions, very little improvement is achieved by suing the scheme of

Dyos ., 14

It is believed that the method can be further improved if the
selected sample is chosen not only to reproduce the cbserved value in
(ox} but also the "observed" correlation between o and o, (and/or I.).
This requires additional experimental information which may not be
obtained easily. Further studies are obviously needed.

2. (Cross Section Sampling Technique. The most serious limitation

of the ladder method is that it requires not only large storage but also
considerable camputing time in calculating the Doppler-broadened line-
shape functions at various energy points for a given temperature. One
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alternative to the ladder method is the cross section sampling method,
whereby the cross sections are sampled directly fram the probability
distributions of various cross sections deduced fram the known distribu-
tions of resonance parameters using Eq. (2). One simple but useful
technique of this kind has been proposed by Levitt for the fast reactor

applications. 16,17

Of particular interest in the following discussions
are the theoretical foundations and limitations in the application of the

cross-section sampling technique.

Let h(cx, 0 s O t) be the joint density function for random variables

o and o N corresponding to the reaction, scattering, and total cross

sections respectively. In principle, hio_, o

O,y O
. o Ut) can be deduced from
the joint distribution of the rescnance parameters through the transfor-
mation of variables as long as the Jaccbian of the transformation does
not vanish. It should be noted that, while the correlation of various
resonances is described by the appropriate correlation functions, the
energy correlation among cross-section values within a given resonance
depends on the explicit description specified by the cross-section for-
malism. If one is only interested in the proper statistical description
of the means and various moments in the cross sections, it is possible
to construct h(ox, Ogs © t) nurerically fram the pointwise cross-section
values determined from the resonance ladders. These values at various
energy points within a given interval are assumed to follow uniform
statistics. The joint distribution h(crx, ags © t) determined this way
does not have the explicit energy dependence of the cross section. All
moments of the forms E 02 and E c:o:ci remain unchanged using this joint
tributions. The joint distribution is related to the conditional densi-
ties by

h(ox, O s ot} = ht(ot)hx[oxlot)h[cslox, ct] . (9

For practical applications, two Questions arise immediately:
(1) while h(ox, 9g> ot) is sufficient in determining all maments in cross
sections, the question is whether it is also sufficient in estimating
E(o ¢)5 and (2) Eq. (9) implies the need of multidimensional tables which
may make this method wnattractive. Extensive studies concerning these
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questions have been carried out by Prwael18 at Argonne National Laboratory.

These questions, which were found to be closely related, do not appear to
present any serious problem in cases of practical interest. To illustrate

what is relevant in practical applications, a simple example is given.

Without loss of generality, consider a two-region problem which is
of considerable interest in reactor calculations. Let ¢; and ¢, be the
neutren fluxes in spatial regions 1 and 2, respectively. The fluxes are
related to the collision densities by

(1)
t

(2)

¢1 = Fy/2 and ¢, = Fz/zt s (10)

. . . 19
and the collision densities are described by Chernick's equation

(1) u explu” - ul zéi’)(u’) . .
Fi(w = E- PI{Zt ﬂ z f Xp -0 F1(u”) du
- T

l-a,
u-c. 1
El

+ Pz[ii”}Fz : an

where F; and P, are the resonance escape probabilities for Regions 1 and
2 respectively; €5 and @, are the maximum increment in lethargy and the
maximum fractional energy loss per collision for a given isotope i. For
simplicity, 21(:2) and F, are taken to be constant. P; and P, vanish for
an infinite homogeneous system.

Strictly speaking, F} depends not only on the cross-section values
at a given u but also on those within the interval es from u. Hence,
the question is whether the energy-independent joint distribution func-
tion h(cx, o> ct) is sufficient in describing ¢;(u). Qualitatively,
this question clearly does not arise if the extent of the resonance is
small campared to the maximum energy loss per collision. Under this

condition, the events taking place within a given resonance become
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uncorrelated since the neutrons, when suffering elastic collisions, are
scattered outside of the resonance for practical purposes. The question
of what types of conditicnal distributions are actually needed in the
calculations is also closely related to the narrowness of the resonance.
The first-order solution to the slowing-down equation, say f [zil),z?)) s
does not depend on the rescnance-scattering cross sections explicitly.
Hence, the corresponding first-order estimate of the expectation value

E(ox$y) for the case of one resonance absorber becames

(W] (1 fll"*(l)[ ) L
(1 1 1 t
EE,X )cb;} ~ EEX lct J N ht[ot ] dot s (12)

I u
t

(1)
t

where EE)({D |c,(tl)] is the conditional mean of 0}({1) for any given o
defined as

1)
g
t
(L] Ly - (1) (GRINNEN)] (1)
E\jx ct:\ = j o, thfx ct] do . (13
0

The relevant statistical descriptions that appear in the first-
order estimate are the conditional mean and the marginal p.d.f. of the
total cross sections, and the conditional densities do not enter the
calculation explicitly. Both EEJ)((l)lciliI and ht [01(:1)] are functions of
the variable cil) only. The contribution of the resonance scattering
cross section will appear in the second-order sclution of the slowing-
down equation. In the unresolved energy region of interest, the reso-
nances of the heavy nonfissionable isotopes are generally narrow compared
to the maximum energy loss per collision. For fissionable isotopes, the
resonance-scattering cross sections are generally small campared to other
reaction processes if the resonances are not narrow. Under the latter

condition, the first-order estimates are generally satisfactory in prob-
lems of practical interest. For narrow rescnances it can be shown that
the contribution of the resonance-scattering cross section in the second-
-order estimates of El}u)dn] exhibits the same form as Fq. (12)

X
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characterized by EE:S')\G,(CD] and h{cil)] if one replaces the lower limit
of Eq. (11) by zero. Thus, only conditional means of various reaction
processes and the marginal p.d.f. of o, are needed explicitly in estimat-
ing E[oxep) if the resonances are narrow or if the first-order approximation
is valid. It is fortunate that these conditions are generally satisfactory
for practical problems of interest in the unresolved energy region. Since
the statistical behavior is characterized by the functions of one variable,
it is, therefore, feasible to construct one-dimensional tables of the
cumulative density function H, (0 t} and various conditional means for the
practical application.

It is beljeved that the same theoretical foundations are implicitly
used in the method proposed by Levitt.'® After extensive studies by
Preel ‘18 it was found that the probability tables described by Levitt
are, in fact, identifiable with H_ [0 t)
For mumerically accurate tables, it is reasonable to expect that Levitt's
method will estimate E{cx¢] adequately within the limit of the conditions
described.

and various conditional means.

IV. APPLICATION OF MULTILEVEL FORMALISM FOR REACTOR CALQULATIONS

In reactor applications the explicit energy and temperature depen-
dence is generally required. One convenient way of examining the multi-
level effect is to extend the procedure described by Moldauer® for
treating the average cross section in the unresolved region, using the
S-matrix formulation in which the energy dependence of the cross sections
is represented by means of the resonance pole expansion. The Doppler-
broadened cross sections can be readily cbtained by integrating the
the unbroadened cross sections over the Maxwell-Boltzmann kernel. For
our purpose, the Doppler-broadened cross sections can be written as

. (S L
4mazg §J <k Inlt H‘(’ ) —-—————e—(tmz (1)
u 5y . at

x c'url(_ls ook E-p -t

Q
1]

and

Q
]

e ] L irff’ (/)2
g + 4m2g Refa dt| , (15)
£or Juris) Vooma) E-P -t




where the complex pole PY'1 and the complex amplitude of residues %y and
a, are related to the usual S-matrix parameters by

iF(S)

P = ¢ - —H— (16)
H H )

g -8 . -

L c®uc
t, = g 8 -1 . an
u ue=pe e {e - ¢ ‘] _ (i/?)[T(S) + I‘(S,))

u u u u
s o2 . _i

O T & exp[-12R/A1 , (18)

and the real and the imaginary parts of the complex probability integral
with the apprdpr‘iate constant can be directly identified with the usual
symretric and asymmetric-broadened functions respectively. The real and
complex parts of various parameters are directly identifiable with those
of Adler»—Adler\.7 From a purely numerical point of view, there is a
striking similarity between the multilevel representation to these forms
and the single-level representation with the exception of the presence
of the asymmetric-broadened line~shape function in the reaction cross
section. It is, therefore, particularly amenable for reactor applica-
tions. It requires very little modification of the existing codes for
calculating the rescnance absorption to accommodate the use of the multi-
level formalism.

In the practical calculations, however, the effect of using the multi-
level formalism is generally difficult to estimate in spite of the simi-
larity in the description of the energy and temperature dependence defined
in Egs. 14 and 15 and the conventional single-level representation.
Qualitatively, the effect may arise from three main sources: (1) the
statistical behavior of the S-matrix parameters is generally different
fram that of the R-matrix parameters; (2) the dependence of the reaction
amplitude 2, for a given u on the separation €, " - gives rise to an
additional term in both the unshielded and shielded reaction cross sec-
tions which does not appear in the single-level equation; and (3) there
exists an asymmetric contribution in the reaction cross section which
does not appear in the single~level equation. One of the most difficult
problems is to determine the precise statistical behavior of the S-matrix
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parameters. There does not appear to exist a general statistical theory
to describe these parameters with the exception of perhaps scme over-
simplified cases. The problem becomes then that of deducing the statisti-
cal behavior of the S~-matrix parameters numerically from those of the R-
matrix parameters well described in the statistical theory of spectr'a.u
The formal approach requires the following computational procedures:

(1) The first step is to generate from appropriate distributions a

set of randon R-matrix parameters whereby the level matrix can be constructed.

(2) The level matrix, which is a complex symmetric matrix, must be
diagonalized. The eigenvalues of this level matrix yield the S-matrix
pole parameters ¢ u and I‘l(JS) directly and the channel pole amplitude Eic
can be obtained from the corresponding eigen-vectars.

A camputer code MarpIAG2Y which allows a level matrix with maxdimum

size of 120 x 120 has been developed for this pwrpose. The computing
time, of which a significant portion is required for computing the eigen-
vectors, becomes large when the size of the level matrix is greater than
50 x 50. An altermative procedure of computing the Adler-Adler parameters
has been developed by deSaussure and Perezzl

using the Reich-Moore forma-
. 22
lism.

In this method the collision matrix is not expressed in terms of
the level matrix but in terms of 'a ‘channel matrix. The size of the chan-
nel matrix is determined by the ;total number of fission channels and is
usually very small. This approéz:h requires the inversion of a small
channel matrix accompanied by the calculation of the S-matrix pole parame-
ters from the complex roots of a N-th order polynamial. Since the method
does not require the diagonalization of a large level matrix of which the
camputation of the eigen-vectors is most time consuming, it is, therefore,
more economical for practical applications.

In Ref. 8, same quantitative and qualitative studies on the statisti-
cal distributions of the S-matrix parameters were carried out. The dis-
tributions of the S-matrix parameters are usually different from those of
R-matrix parameters and are sensitive to the ratio of the average level
spacing (D) and the average total width (I‘) used in the calculations.

For S-matrix spacing €, " By the distribution appears to deviate from
the Wigner distribution near the origin if the ratio (D)/(I) is small.
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Figures 1 and 2 show some of the representative results obtained using
MATIAG.ZD It is generally difficult to deduce the exact shapes of these
distribution functions fram the numerical results. For the purpose of
illustration, analytical distributions have been derived for the simpli-
fied case of two-level and one~channel problems similar to those con-
sidered by Ga:c*r‘ison.23 Figures 3 and 4 show the analytical distributions
of the S-matrix level spacing D) and 1®) for various values of (Dy/{r).
The distributions of D(S) and I‘(S) begin to deviate from the Wigner dis-
tribution and the Porter-Thomas distribution, respectively, as (D}/(F) be-
comes small. The results are qualitatively consistent with the case with
many levels and channels. One of the advantages of the simple example is
that the statistical behavior of the distributions can be examined more
precisely. One quantity of particular interest is the dispersion of these
distributions. Table I shows the variance of D(S) for various values of
{DY/{ry. Similar results using the direct numerical technique were also

obtained by deSaussure and Perez.26

In Refs. 9 and 24, the importance of the multilevel effect in reac-
tor applications has also been examined., Judging from the magnitude of
(D)/(I‘) , ane expects that the multilevel representation may play a role
only when the fissile isotopes are considered. Of particular interest in
the practical applications is its role in conjunction to the analysis of
Doppler experdments. Calculations using either the single-level or the
miltilevel formulation can be carried out using the modified RABBLE

codezs with the appropriate parameters generated from the MATDIAG oode.QD

The most difficult problem in these studies is to establish a reasona-
ble basis for camparing the results obtained by using the different cross-
section representations. The interpretation of the multilevel effect

depends to a great extent on the basic assumptions used. Two possible
assumptions are:

(1) The same set of R-matrix parameters generated from the appro-
priate distributions with given mean values is used for both the single-
level and multilevel approaches. The resulting unshielded and the self-
shielded average cross sections cbtained by the two approaches are cer-
tainly expected to be different unless the level matrix is diagcnal. The
comparison of the results made on this basis will provide a test on the
validity of the single-level equation.
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(2) The random parameters for the multilevel and the single-level
parameters must be chosen in such a way that the resulting unshielded
average cross sections are identical with the observed value. This is
the condition usually required in practical calculations regardless of
what cross~section formalisms are used. The comparison of the results
on the basis of the latter assumption will provide further understanding

of the role that the multilevel formalism plays in the practical
calculations.

Numerical calculations of the self-shielded cross sections for the
highly enriched 1/2-in. U0 and PuO; samples have been carried out under
various conditions using the assumption (l). It was found that the multi-
level representation generally yields greater values of average capture
cross sections and the capture-to-fission ratios than those single-level
results obtained by using the same set of random R-matrix parameters
generated from the appropriate distributions and means. Noticeable dif-
ferences in the Doppler change of the self-shielded cross sections were
also observed if (D) /(T) is small. Tables II and III give some typical
results obtained for 1/2-in. enriched samples of Pu0, and U0, respectively.
The multilevel approach, which yields higher values of 6y/3f and 6ay/ s¢ £
is expected to decrease the positive contribution to the Doppler reactivity.
It is important to realize that only one S-wave state is considered in
these calculations. The role of the multilevel representation is much
less important for other S-wave states due to the larger {D)/{T) ratios.
The overall effect is certainly much smaller than those indicated in
Tables II and III. Furthermore, there is the question of whether the
basis of comparison using the assumption (1) is fair in the practical
application. Regardless of the cross-section formalisms, the calculated
results must be related to the observed values of cross sections. In
absence of precise knowledge of the magnitude of the measured cross sec-
tions and their relevant higher-order moments, conclusions based on the
calculated results are rather artificial. Turther studies using t}xe
assumption (2) may help improve understanding of the problem.
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TABLE I

Average Spacing and Variances for Various Cases
(Two Levels, One Channel)

o®) | @®% - ()°
Distribution (D) (D (2)) 2
Wigner 1.0 0.2732
Random 1.0 1.0
*

fz [D(S) ]:

(Dy/(ry = n 0.9587 0.3150

(DY/(ry = 2.0 0.9273 0.3444

{DY/(T) = 1.0 0.8603 0.4057

(DY T) = 0.5 0.9876 0.4700

(Mr) = 0.1 0.714 0.4910
*fz(ﬁ(s)], p.d.£. of D 1g defined in Ref. 8.

TABLE II

Comparison of Miltilevel and Single-Level Results
for the Highly Enriched 1/2-in. Pu0, Sample
Using the Modified RABBLE (J = 07 only)

Penetration Probability pe = 1.0; 1.0

Number of Poles =

80

AE = 1.0 - 1.725 keV
Unshielded Shielded 750~ 300°K
<°y> <°f> 9y300°k  °£300°k s, 6
SL | 0.1772  2.6131 | 0.1235 2.2373 0.0101  0.0379
ML | 0.4044  2.7664 | 0.2300 2.3188 | 0.0315  0.0476




TABLE III
Comparison of Muiltilevel and Single-Level Results
for the Highly Enriched 1/2-in. U0, Sample
Using the Modified RABBLE (G = 3 only)
Number of Poles = 120
AE = 1.0 - 1.165 keV

SL

Unshielded Self-Shielded
750-300°K
o o °y300°k  %f300°k | % S
T

CASE 1: p, = 1.0, 0.9, 0.18

0.8868 4.3024 0.8112 3.9978 0.0218 ¢.0722
1.0884 4.2503 0.9950 3.9190 0.0279 ¢.0759

SL

CASE II: p, = 1.0, 1.0, 1.0, 1.0
£

0.4280 5.2726 0.3822 4.8797 0.0121 0.0963
0.5728 5.2477 0.5059 4.7570 0.0194 0.1325
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level width using 50 interfering levels for D / I' = /2.

(Neg. No. 112-9980D)

-62-




NORMALIZED p.d.f for D®Y<D>

p.d.f for T¥/<p

o] 0.5 1.0

1.0 R . E— I I I

(=]
n
T
N
<
-~
~
\\
NN
4
’
//
7,

Ly .
\\\ \ — WIGNER DISTRIBUTION

L— N A ~--- RANDOM DISTRIBUTION —

\ N
\\‘
- A \ \\ @>/<T> .
N N R —— 0.1
N
SN

— 0.5
f/ i ~ - \\\\ :IZ?) i
~ RS —
H &\ N - J

| | T e
1.5 2.0

25 3.0

z, - o>
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L. INTRODUCTION

The treatment of resonances in ENDF/B-~III is based, for the most part,
upon the single level Breit-Wigner formalism with only a few materials
described by multilevel parameters. This treatment is essentially
satisfactory for the present reactor design applications. Later require-
ments for more accurate calculations may necessitate more elaborate

treatments, particularly for fast reactors. However, it would be a
mistake to anticipate such a need at this time because changes in the
ENDF procedures lead to expensive and delaying modifications to the

data processing codes.

There are a number of factors in the treatment of resonances in the
ENDF libraries that are important in reactor design applications. These
include the following:

a. The detail which is used to describe resolved resonances.

The averaging capability for unresolved resonances.
¢. The adequacy of the resonance treatment for shielding studies.

d. The use of multilevel versus single level formulae.

Reactor designers are, for the most part, quite happy with the first
two treatments as they are in the present ENDF files. Averaging of
unre§01ved resonances seems to be sufficiently accurate and no surprises
are expected in the near future which would change thils conclusion. The
Probability Table Method looks as though it may save some computing time
and, of course, has a unique application in Monte Carlo, but it is not
expected to improve the accuracy which is achieved with the present
treatment in ENDF/B-III. If the Probability Table Method does save
considerable computing time and is convincingly demonstrated to be accurate,
it would be preferable to the present use of average parameters, keeping in

mind the conversion which would be necessary for the processing codes.

With regard to resolved resonances, some thermal reactor designers
may be somewhat unhappy with the resolved resonances in ENDF/B-III but
necessary corrections should not involve modifications to the processing

codes.

The increasing use of ENDF Libraries for shielding applications has

pointed to the need for accuracy in the intermediate and high energy
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resonance description. The resonance interference minima are of particular
importance. However, the accuracy which is required is primarily a
problem of interpretation and evaluation of basic data and should not

require elaborate treatments.

Probably the most difficult question concerning resonance treatment
is the utilization of multilevel versus single level formalisms. There
is continuing pressure to go to the multilevel formalisms but this pressure
is not from the reactor community. It is recognized that the multilevel
equations give a more accurate discription of resonances for certain
materials, in particular fissile materials, but it is not clear that the
use of such formalisms will significantly improve the accuracy of reactor
calculations. It is the consensus of most users that some direct evidence
for the need of multilevel formulae is required. At the present time direct
comparisons of the consequences of singel level and multilevel applications,

based upon the same data, are essentially non-existent.

IY. MULTILEVEL FORMALISM IN REACTOR APPLICATIONS

Reactor parameters which may be affected by the use of multilevel
equations and which are of concern to the reactor designer include the
Doppler coefficient, the capture to fission ratio (alpha value) for fissile
materials, slowing down due to resonance scattering in materials of
intermediate atomic weight and the cross section interference minima

which are used for shielding applications,

As far as the Doppler coefficient is concerned, the most important
material is ®3%Y and the use of multilevel parameters for this material
is expected to have a negligible effect since the level spacing is large.
The small level spacings in fissile isotopes and the small number of
channels available for fission cause strong interference effects, which
lead to asymmetry and other distortions in fission cross section resonances.
Such distortions of the cross section shape can be expected to influence
the Doppler effect. Thus, 33y, 238y, and to a lesser degree 22%Py may
have non-negligible Doppler contributions which are dependent upon the

resonance treatment which is used. Significant differences in the
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calculated and measured ®2°Pu Doppler have been reported by Fischer,
et al.(2)in the zoned ZPR-3 Assemblies 45 and 45A and by Davey'®) in
ZPR-3 Assembly 48, There was considerable uncertainty in both sets

of measurements but in all cases, except one where the sample was
surrounded by B,C, the measured Doppler effect was significantly less
positive (and for Assembly 48 it was small and negative) than the
calculated values. In contrast, the agreement between measured and
calculated values for the °3%U Doppler was generally good. The 23%Pu
results are an indication that the multilevel approach may be required
to correctly evaluate the 23°Pu Doppler effect. However, the 23°Pu
contribution to the total Doppler in fast pPower reactors is less than
§% and it would require a sigpnificant change in the 22*®°Pu cross
sections to have an appreciable effect on the total Doppler. The
agreement between the calculated and measured Doppler for SEFOR(®) is

one indication that no large surprises are to be expected.

One of the disadvantages of most multilevel formulae is the
difficulty in computing the Doppler broadened cross sections using the
standard b and X functions. Only the Adler-Adler equations which are
specified for ENDF/B-III provide this capability.

There is some evidence that the alpha value for fissile materials
increases in going from the single level to multilevel parameters.
Pennington and Sargis(%’ give the relationship between the single level
and multilevel infinitely dilute resonance integral for two neighboring
resonances in the unresolved resonance region as:

i
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where D is the separation of the two interfering levels and the other

terms have the usual meanings. It is apparent from these equations
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that the multilevel alpha value will be larger than the single level
value. However, it is not clear that the same resonance parameters
should be used for both the multilevel and single level equations.
Rather, it is to be expected that the resonance integrals would be the
same regardless of the treatment which is to be used. Whether adequate
fittings can be carried out to give the same multilevel and single
level cross sections for capture, fission, and scattering remains to be

shown.

The multilevel equation has been found to give a correct description
of the very complicated scattering resonance structure of medium weight
nuclei.(8) 1n particular, it describes correctly the interference between
two closely spaced resonances, with the same quantum number, which destroys
the single level shape of both resonances. The reactor designer is primarily
concerned with the resonance scattering structural materials such as iron,
nickel, and chromium. If the cross section shielding factors are not much
different in multilevel or single level then the effect on fast reactors
will be small. 1In the following section shielding factors based upon the
single level data for iron from ENDF/B-II will be compared with the shielding
factors for the multilevel data for irom in ENDF/B-III.

The adequacy or inadequacy of shielding data is also an important
concern for reactor applications. Extreme accuracy in the interference
minima is required both with respect to the cross section magnitude and
for the energy distribution. An evaluation study is required to determine
the effects that resonance treatment and Doppler broadening have on these

minima and resulting shielding calculations.

ITI. STATUS OF DIRECT COMPARISONS OF MULTILEVEL
AND SINGLE LEVEL EFFECTS

Direct comparisons of the effects of multilevel versus single level
resonance treatment in reactor applications are few and are complicated
by the uncertainty as to what constitutes a meaningful comparison., Taking
account of multilevel effects poses difficulties from the standpoint of
estimating the appropriate multilevel parameters (primarily in the unresolved

resonance region) and of utilizing correct computational techniques.
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A. Comparisons in the Resolved Resonance Region

Multilevel effects on the temperature change in the ?3°U fission
cross section in the 2.4 to 29.0 eV energy range have been reported by
Cohen{®’ and Adler-Adler(7)and were summarized by Hummel and Okrent.(®)
Cohen's results indicated that i for a change in temperature from
1500° to 25009k and based upon the multilevel treatment was about 15%
less than that for the single level evaluation. The effective cross
sections themselves were, on the average, 20 to 50% higher according to

the multilevel numerical computations.

Adler and Adler compared cross sections from their parameters with
those from single level parameters and their results appear to be

reasonably consistent with those of Cohen.

Tmeperature-dependent group cross sectiomns and their Doppler changes
between 300° and 750°K using the single level and multilevel reparesntations
were obtained by modified RABBLE calculations and reported by Hwang(s) for
highly enriched UO, rods. This evaluation was carried out for six energy
groups between 1.3 and 60 eV. The Doppler changes for both the capture
and fission cross sections varied from O to over 407 lower for the multi-~
level results. Hwang substituted I%L for I%L in the Doppler integral of
the single level formula while retaining the same single level amplitude and
the "smooth" data.* The discrepancies in the AGf'S and Acc's were much
smaller than previously reported. From this it was concluded that the
presence of the antisymmetric function is not a major contributor to the
discrepancies for the case under consideration. This conclusion was based
upon one group and was considered to be inconclusive because the existence of
relatively large fluctuations of the “smooth" cross section in the ENDF files,

in other groups, makes the comparison not meaningful,

B. Comparisons in the Unresolved Resonance Region

The treatment of unresolved resonances in the energy range around

1 keV and above is very important from the standpoint of fast reactor

*#It was pointed out that the estimated average of the total width of the
ENDF/B single level parameters was found to be considerably less than
the corresponding average quantity for the multilevel parameters between
0 and 60 eV. However, the infinitely dilute resonance integrals were
still different by as much as 5-15%.
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applications. Doppler effect studies have been carried out for 23®py,

(10}  These studies involved

in this energy range, at General Electric,
the computations of the infinitely dilute fission cross section of

3adpy dEf) and the reduction of the cross section from its infinitely
dilute value (Acf), due to self shielding of Doppler broadened unresolved
resonances and based upon both the multilevel and single level formalisms,
The comparison was made for an energy of 1 keV, a fuel temperature of
300°K and a potential cross section per absorber atom of 400 barns.

Only the £ = 0, J = 1 state was considered. A y = 10 resonance spacing
distribution was assumed with an average spacing <S> of 3.33 eV for

this 23%Ppy state.

A random sampling procedure was used with 40 resonances to represent
the distribution of neutron width, fission width and resonance spacing.
The results of the calculations are summarized as follows:

of Aog Acf/cf
Multilevel 5.98 0.87 0.145
Single level 5.69 0.84 0.148
The O

formalisms agree within about 5%, and the ratios Acffaf (representative

values computed with the use of multilevel and single level

of the change due to the Doppler effect) agree to within 2%. It was
concluded that the multilevel methods in the unresolved resonance
region would not markedly alter results obtained with single level

methods.

The most comprehensive evaluations of the multilevel effects in the
unresolved resonance region have been carried out for highly enriched
U0, and PuO, rods and reported by Hwang (Reference 9). Six cases were
considered for ?2°Pu and all but one of them involved the J = O state,
for which the multilevel interference effects were believed to be much
more important than the J = 1 state due to the large ratio of the
average total width to the level spacing. (That is, the fractional

change in the J = O cross sections was expected to be much larger than
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the fractional change for the J = 1 cross section. The J = 1 cross
section is, of course, much larger than the J = 0 cross section.) The
number of fission channels for the J = O state was taken to be two for
all cases considered. It was assumed that the average parameters and
distribution functions were the same for both the multilevel and single

level representations.

Changes in the capture and fission cross sections between 300° and
750°K were computed {(for J = 0O only) and were found to be significant.
The multilevel Aoc's were between 60 and 2007 higher than the single

level AT,'S, whereas the multilevel Ag_'s were about 20 to 80% higher

than the single level values. The 1ar§er magnitudes in Ao, and Ao, do
not necessarily imply a laxger Doppler coefficient. Table I gives the
Doppler reactivity AK/K per unit flux per atom with an arbitrary
assigned adjoint flux of unity with appropriate normalizations. The

table includes the contribution of the J = 1 state.

TABIE I
An Illustrative Example of AK/K per Unit Flux per
Atom for 23®Py TIncluding J = 1 (1.0 - 1.455 keV)

)]
Ao, Ao AK/K
300 - 750°K 300 - 750°K | Unit Flux/Atom
J =0 J =1 J =0 J=1 J =0 J =1

SL 0.0134 | 0.2874 ; 0.0393 | 0.1945 0.0625 ] 0.0879
ML 0.0432 10,2869 i 0.0517 { 0.1963 0.0565 | 0.0920

The results in Table I indicated that even though the magnitudes of
Agx for the J = 1 state are much larger than AGX for the J = O state,
the corresponding Doppler reactivities are of the same order of magnitude.
The multilevel effect in this case is to reduce slightly the Doppler
reactivity. Hwang concluded that the multilevel effects may become
important in Doppler reactivity calculations in the energy range where

the contribution from the J = 1 state is small.
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335y calculations were also reported by Hwang for several cases
which used different values of the average fission width and various
numbers of fission channels (an uncertainty). The multilevel values
of on for a temperature change from 300° to 750°K were found to be
from 0 to 50% larger than the corresponding single level values depending
upon the assumptions being used. Integral calculations of the Doppler

effect were not carried out.

The results in Table I indicate that the capture cross sections
based upon the multilevel evaluation is larger than the corresponding
value for the single level evaluation. However, discrepancies in the
fission cross section are not as significant. Hence, the multilevel
approach tends to give a higher capture to fission ratio. The higher
o values have also been reported by Pennington and Sargis (Reference 4)
and are summarized in Table II for ?3°Pu in the energy range from 100

to 300 eV.

TABLE II

Multilevel and Single Level Resonance Integrals

for 23%py from 100 to 300 eV

I I

Yoo £ 3 I

Case (barns) (barns) o QML/QSL
j SL  0.347 8.271  0.0459

T=0 w o0.422 8.107  0.0554 1-249%0.179
) SL  13.789 9.208  1.540

T=1 o 13.809 9.171  1.549  1-006%0.005

SL 14.136  17.479  0.8442
TOTAL vy, 14.231  17.278  0.8578  L-019%0.018

The results in Table II indicate a significant change in the J = 0
alpha. However, since almost all the capture involves the J = 1 resonances,

the total multilevel g was only ~ 2% higher than the single level value.

Similar calculations were also performed by Pennington and Sargis

for @35y, These calculations gave QML/QSL = 1.07. It was concluded that
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multilevel effects on resonance integrals were not sufficiently large
to justify the use of multilevel formulae in place of simpler single

level formulae in reactor physics cross section codes.

C. A Comparison of Cross Section Shielding Factors for Iron

Iron is the only material in the ENDF files which has been specified
by both multilevel and single level parameters. That is, the ENDF/B~II
version of iron was described by single level parameters and "smooth"
background cross sections whereas the ENDF/B-III iron was described with
multilevel parameters. Scattering cross section shielding factors have
been determined for the two versions of iron from ETOX calculations(1?:12)
and are compared in Table III for two different energy ranges. The
shielding factors are tabulated as a function of the "other material"

cross section, Oy and are defined as:

s
e - 0T+ g, E
dE
E

s 1
0T+ CIo

where <bs(m)> is the average infinitely dilute scattering cross section over

/

<Gs (oo)>

/
/

the energy range of interest, and the other terms have the usual meanings.

TABLE I1I

Multilevel and Single level Scattering Cross Section

Shielding Factors for Iron

%

Group* g_ (=) 10° 10 10! 10° 107!

J—— —— —_— —_—

1 ML 20,903 0.977 0.846 0.603 0.487 0.462
1 8L 20.187 0.978 0.854 0.624 0.525 0.508

2 ML 12.330 0.998 0.981 0.914 0.862 0.853
2 SL 10.743  0.997 0.977 0.900 0.841 0.830

*GROUP 1: 25.5 to 40.9 keV.
GROUP 2: 5.5 to 9.1 keV.
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The agreement between the multilevel and single level shielding
factors is very good. This is probably not too surprising since the
single level equation includes the "smooth" background. The important
questions should probably be (a) how many data points are required to
adequately represent the "smooth" effect, and (b) how do we treat
"smooth" data that is very sharply peaked. At any rate, for the iron
example given in Table III, the differences in resconance treatment

appear to be not too important.

IV. SUMMARY AND CONCLUSIONS

Comparisons of the multilevel and single level resonance treatment
for reactor applications have not indicated significant differences.
There is some evidence that the multilevel effect on the 235U Doppler
may be large. However, changes in the ®3%Pu Doppler effect were found
to be small. The multilevel equations do complicate the techniques
for computing the Doppler broadened cross sections. Only the Adler-Adler
approach utilizes the standard j) and y functions and for this reason
there is a tendency to favor this technique should the multilevel

formalism be deemed necessary.

There are some comparisons that indicate that the use of multilevel
equations may result in slightly larger 23°Pu alpha values. However,
the comparisons have not taken into account the energy dependence of the
unresolved resonance parameters which are now being used in the ENDF
files and it is not clear how the resonance treatment affects the cross
section shielding factors. The only direct comparison of multilevel
and single level shielding factor effects has been for the scattering

cross section of iron and the differences were found to be unimportant.

Probably the biggest objections to the comparisons of multilevel
and single level formalisms have been the consistent use of the same
resonance parameters and distribution functions in the unresolved range.
This has, expectedly, led to different group averaged cross sections,
A meaningful comparison should begin with resonance parameters which

can be used to generate the same infinitely dilute cross sections.
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1t is concluded that the comparisons to date have been inconsistent
and are inconclusive in demonstrating or dispelling the need for multi-

level formalisms.

One final point concerns the use of pre-processed data. The degree
of opposition by the reactor designers to putting more elaborate
resonance treatments in the ENDF files and the use of multilevel
formalisms will depend upon the success of any pre-processing and distri-
bution scheme. 1If the ENDF data is centrally processed for both core
and shielding applications, if the processing codes are modular and kept
current with ENDF/B and if a successful distribution scheme is established
then the conservative stance of the designers will shift from the ENDF
files to the pre-processor output. In the final analysis, it appears
that reactor applications would fare best, for the near term, with

essentially no changes in the resonance treatment used in ENDF/B-1II.

-76-




10.

11.

12,

References

G¢. J. Fischer, D. A. Meneley, R. N. Hwang, E. F. Groh, and C. E. Till,
Nucl. Sci. Eng., 25, 37 (1966).

W. G. Davey, Intercomparison of Calculations for a Dilute Plutonium-
Fueled Fast Critical Assembly (ZPR-3 Assembly 48), in Proceedings
of the International Conference on Fast Critical Experiments and
Their Analysis, Argonne, Il1l., Oct. 10-13, 1966, USAEC Repx t
ANL-7320, pp 57-64, Argonne National Laboratory.

L. D. Noble, et al., SEFOR Core I Test Results to 20MW, GEAP-13702,
General Electric Co., (April 1971).

E. M. Pennington, and D. H. Sargis, Nucl. Sci. Eng., 35, 297 (1969).

C. D Bowman, E. G. Bilpuch, and H. W. Newson, Annals of Physics
17, 319 (1962).

S. C. Cohen, Doppler Broadening of the ?%®FU Fission Cross Section-~
Comparison of Numerical Treatment with Conventional Single-Level
Analysis, in Proceedings of the International Conference on Fast
Critical Experiments and Their Analysis, Oct. 10-13, 1966, Argonne,
I11l., USAEC Report ANL-7320, pp 247-262, Argonne National Laboratory.

F. T Adler and D. B. Adler, Calculations of Resonance Integrals for
Fissile Materials, in Reactor Physics in the Resonance and Thermal
Regions, A. Goodjohn and G. C. Pomraning (Eds.), Vol. IL, Resonance
Absorption, The MIT Press, Cambridge, Mass., 1966.

H. H. Hummel and D. Okrent, Reactivity Coefficients in Large Fast
Power Reactors, Monograph Series on Nuclear Science and Technology,
J. Graham (Ed.), American Nuclear Scoiety (1970).

R. N. Hwang, Doppler Effect Studies Using Multilevel Formalism,
Nue. Sci. Eng., 39, 32-49 (1970).

Seventh Quarterly Report, Fast Ceramic Reactor Development Program,
April-June 1963, GEAP-4300.

R. B. Kidman and R. E Schenter, FIR Set 300-8, Multigroup Cross
Sections for FTR Shielding Calculations, HEDL-TIME 71-184, December 197

Private Communication, R. E. Schenter of WADCO, April 1972.

-77-






Text of an invited talk presented at Resonance Region Meeting,
Brookhaven National Laboratory, Upton, New York, May 8, 1972

THE PROBABILITY TABLE METHOD FOR TREATING UNRESOLVED

RESONANCES IN MONTE CARLO CALCULATIONS*t

by

Leo B. Levitt
Atomics International
Canoga Park, California 91304

*Work performed under U.S. AEC Contract AT(04-3)-701
tAn expanded version of this paper has since appeared in Nuclear Science
and Engineering 49, 450, 1972,

-79-



1. Introduction

To derive maximum benefit from Monte Carlo reactor criticality and
shielding calculations, one should use cross section data sets which
are properties of the individual isotopes, rather than group averaged sets.
Throughout most of the pertinent energy ranges this can be accomplished by
using point cross section data with energy grids tailor made for each
isotope.

However, development of a suitable method for producing such data
sets in the unresolved resonance energy range which could be contained
entirely within the confines of even the largest computers, is a difficult
problem. Up to now, two methods have been available:

1) Generation of a point cross section data set based on a ladder

of pseudo-resolved resonances selected randomly from known
average parameters and statistical laws.

2) Generation of point cross sections during the Monte Carlo

calculations, as needed, from stored average parameters.

The first method is hardly feasible in view of the enormous storage
requirements, and furthermore would produce results based on only one ladder.
As an example let us look at the point data storage requirements for 239Pu.
The unresolved energy range is from 300-25000 eV. Approximately 33000
resonances exist in this range. To describe each resonance adequately
would require about 8 points per resonance, for each of total, scattering,
and fission cross sections and the corresponding energy. This amounts to

about one million words of computer storage to contain one continuous point

data set based on only one ladder.
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The second method would require too much computation time in fast
reactor calculations since the neutrons would spend a significant fraction of
their life in this energy range and each such calculation is quite lengthy
if one considers interference effects and uses resonances of all 2, J values.

We are proposing a new approach which we shall call the probability
table method.

2. The Probability Table Method

The basic idea 1s to represent the neutron cross section at a given
energy, not by a unique value, 0{E), obtained from table interpolation or
resonance formulae, but by a distribution function whose mean value is the
infinite dilution smooth average value G(E). These distribution functions,
in the tabular form in which they appear in a data set, are known as cross
section probability tables.

They are generated from point data sets obtained from ladders produced
about a small energy range, sufficient to contain 50 to 100 resonances,
insuring an adequate sampling of resonance interference and overlap effects
while preventing significant variation in the energy dependent average

1)

parameters. The table size is dependent mainly on the application.

In VIM(Z) a table size of 10 appears quite adequate. These tables are
distributed through the unresolved energy range of a given isotope and used
in the intervals containing the energies at which the tables were produced.
The number of tables required for a given isotope is governed by the observec
change in the tables as a function of energy. Thirty tables are sufficient
except where there is siginficant variation in the average parameters. Such
a set requires only 1230 storages in VIM.

The entries to the table (EJ, PJ) are defined as follows. Let there

be a set of oJ's, J=1, N, such that gy > O5.1° 9y > UMIN’ the lowest value
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of g(E) between EO and EM’ and Oy >0 X the highest value of g(E) in this

energy range. Let

E M E. M
MAX i
[Towa-y [T wma-3

MIN i=1 T(i-1) isl

and let each U(Ei), 1 <i < M-1, be equal to one of the cJ's. Figure 1
shows typical point cross section data generated from a ladder of pseudo-
resolved resonances. One can see that Ii would simply be the area under

the curve from E(i-l) to Ei' In the example depicted, G[E(i—l)] = 04, (J=4),

while G(Ei) and U[E(i+1)] = oy Then ¢ s o(E) < 05 with probability

J
M
Py = E AE; GiJ/(EMAX - Eyqg) Where AE, =E -E ., and
i=1
1 if
) R o(E) < 95 for B, | <E<E,

817
0 otherwise.

The probability that the cross section lies below oy is then

M
E:Ii 0i7

J
Z ; - i=1
P = i =
I P> while O3 v
k=1
Z ARy Byg
i=]

represents the mean value of the cross section between 0.1 and oy
The probability table method assumes that the resonance energies are
so close together that the neutron enters a resonance randomly, and that

the resonances are sufficiently narrow to ignore successive collisions in

the same resonance,
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3. Preparation of the Tables

In the preparation of cross section probability tables the following
sequence of operations is observed:

1. An individual ladder of resonances is prepared in the prescribed

energy region from known statistical laws and average parameters.

2. This individual ladder is used to generate a point data set.
At this time the contributions to a probability table are computed and
entered into a table at each of the desired temperatures. This entire
process is then repeated over as many ladders as are deemed appropriate.

The details perhaps require further explanation. Starting with a
given point data set prepared from a ladder of resonances, we have at any
given energy in the set a total, scattering, capture, and possibly, a fission
cross section. One of these, usually the total, is chosen as the basis for
constructing a table. A set of total cross section magnitudes is constructed
to serve as band limits, monotonically increasing. These may be erected
arbitrarily, but at present start at some value above the minimum observed

cross sectlon and follow a geometric progression, i.e., oy kUl’ kzg etc.

1’
where k is a constant such as 1.5 or 1,15, depending on the degree of detail
required of the table. Assume for the moment that our point data set consists
of a large number of equally spaced points to which we assign equal probability
The actual set may not be so spaced but such a set can be obtained by inter-
polation, or a numerical integration scheme can be employed., The assumption

of equally probable points is best for illustrative purposes. For each

point in the set, the total cross section is entered in the band with
appropriate magnitude limits. Simultaneously, a counter assigned to that

band is advanced by unity. At the same time, in appropriate registers with

the same band number, the corresponding values of scattering, capture
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and fission cross sections are entered. When all points of the data set
have been entered we have the following information: The average value
of the total cross section in each band of monotonically increasing magnitude,
obtained by dividing the sum of the cross section entries in each band by
the number of entries in that band. Average cross sections for the other
reactions are similarly obtained. The probability assigned to the band is
obtained by dividing the number of entries in a given band by the total
number of entries in all bands. WNotice that in this way, only the total
cross section band averages need be monotonically increasing. The other
reaction cross section band averages are, in fact, the conditional averages
corresponding to their respective total cross section band averages. Should
they be observed to be also monotonically increasing, note that this is a
consequence of the specific data and not the result of a realignment of the
probability bands to be monotonically increasing for all reaction cross
sections.

When, in a Monte Carlo calculation, the cross section of an isotope in
its unresolved range is needed, it is obtained by a random selection from
the appropriate probability table as follows:

Select a random number, 0 < r < 1, and set G{E) = —J’ where

Pj.p ST SRy
In actuality we select not only the total cross section but the scattering,
fission, and capture cross sections associated with EJ’ simultaneously. 1In
this way the total and all reaction cross sections are correlated at every
neutron collision.
4, A Test Problem

To establish the validity of the method a test program was set up using

the AIRABL code. AIRABL is a modified version of RABBLE(B) which can obtain
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effective cross sections using probability tables as well as point data.
Since a given probability table is based on several ladders generated in

the prescribed energy range, the accuracy of the method can be tested by
comparing the mean effective cross sections obtained for a given problem
using point data sets from each of several ladders with those obtained from
several trials using a probability table based on these same point data sets.
Effective capture and scattering cross sections for three isotopes in
problems emphasizing different portions of their unresolved energy ranges

are shown in Table I. 1In each case, the means were obtained from thirty
samples of each method.(4)

The means based on the probability table method were in statistical
agreement with their corresponding means from the point data set calculations
While most of the calculations were performed using a table size of 45, no
appreciable loss in quality was observed using a table size of 10,

The success of the method in predicting effective cross sections in
both Monte Carlo and analytical calculations now permits full energy range
neutron data sets to be independent of geometry and composition without
requiring inordinately large blocks of computer storage. Probability tables,
therefore, could serve as a standard way of representing neutron cross sectio

in the unresolved energy range.
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APPLICATION OF THE PROBABILITY TABLE METHOD
TO MULTI-GROUP CALCULATIONS
by
Dermott E. Cullen

May 1972

Consider the linear neutron Boltzmann equation:
Q- YN(TL,OLE) + 2p (5L EINGL0LE) =[f £(r,Q',E' - DENG,QTLENN AR + S(x,0,E) 1
Q' El
Multi-Group
In the multi-group approach the continuous energy range is divided into a

s ; le: . . . ia g
number of adjacent intervals: E1 < EZ < E3 < EKmax Equation (1) is integrated

over each energy range and divided by the width of the group to define group

averaged quantities:

Q- W GED }:TK(F)NKG,B) o)) ‘f £(,0',M - QION, (7,00)d0" + 8, £,0) (2)*
M -
O‘

where by definition:

) (group averaged flux) (3)

== EK+1 — =
NK(r,Q) =£ N(r,Q,E)dE/(EK+l - EK

K

E
. P K+1 —
Z&K(r)NK(r,Q) = e o (?,E)N(?,Q,E)dE/(EK+1 - EK) (group averaged cross sections) (4)
K

~E
£G.0' M - DONG,0',M) =/IK“j e S AENGE,T LR R/ (B, - B
E

Ey M

Qo ®

(group averaged transfer matrix)

*In practice the angular variable is eliminated by one of a number of available
methods. It has been carried along to simplify the equations and to indicate the
results of this paper are independent of the treatment of the angular variable.
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Multi-Group, Multi~Band

The multi-group approach as defined above is of course not the only approach
to defining group averages. In many applications Equation (1) is first multi-
plied by a function f(E) before performing the integration over the group. In
this way it is possible to change the variable from the flux N(;,ﬁ;E) to
f(E)N(;,ﬁ,E): e.g., in dose calculations, heating calculations, etc. However,
in most applications f(E) is continuous and non-zero over any portion of the group.
Therefore, the group is still treated as a single entity and the number of multi-
group equations obtained by this approach would be the same as in the case of the
multi-group approach as defined by Equations (2) through (5).

However, it is also possible to further sub-divide one or more groups
according to ranges of the total cross section (other criteria are of course
also possible). The resulting algorithm has the desirable property that the
resulting equations can be cast in a form that is identical to the multi-group
equations and the average flux and the input data {averaged cross sections and
transfer matrix) can be simply related to the corresponding group averaged
quantities. Therefore existing transport codes can be used simply by preprocessing
the input data and correctly interpreting the flux output.

Defining a number of partition functions in each group (K) which are one (1)

within a given cross section range and zero (0) outside of this range:

Py (B) = 1 if < (E) <, : L=1,2, ..., L
KL EIKL EI‘ ‘TKL‘H. max

=0 ifz;r >Er(E) or 2I(E)>zr
KL

KL+1

*Note that the partition functions pKL(E) are also functions of space and vary
from region to region.
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where:

Tp = min(g(E)) B SESE

K1 K+l
€)
= < <
Z&KL max(EI(E)) EK <E "’EK+1
max
zTK&
zﬁ«
e Ep
Tkz
Tki
Ey £ Eat

some of the properties of these partition functions are:

1.

2.

The sum over all bands is one (1) within the group

; P (B) =1 B SESEen &

The integral of ome partition function over the group is merely the

the cumulative probability of the cross section lying in the band

(PKL) times the width of the group (EK+1 - EK)
E
j; K+ b (B)AE = B (B 1 = E) ®
K

Any integral over the group can be further partitioned using these

partition functions:

E
{ K+l f(g)dE =Z£K” Py (EVE (E)E (10
K T “Ex
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In order to derive the multi-group, multi-band equations the linear neutron
Boltzmann equation is first multiplied by one of the partition functions pKL<E)’
the continuous energy range is divided into a number of adjacent intervals:

E, <E, <E, -- <E max’ Equation {1) is integrated over each energy range and

1 2 3 K
divided by the width of the group to define group-band averaged quantities:

M JM) ar
where by definition:

E
== K+l ~ =
NKL(r,Q) =L pKL(E)N(r,Q,E)dE}(EK+1 - EK) (group~band averaged flux)
K

[ E -— - -
5 OV @D - _L' L BV, C BN, ENE/ By - By

S (group~band averaged crosg sections)

£G.0 M - BRLN (L) =
Bl Emal . o
' ' ' ' ] -
jE fE P, (E)Byy (BDEE,B B BENG, 0B )AE B/ (B, | -E,)
K M

(gxoup-band average transfer matrix)

In the definition of the group-band average transfer matrix, the partitioning

property defined by Equation (10) above has been used to further sub-divide the
integral over the source group (M) into a sum of integrals over the source group-
bands (MJ).

Essentially sub-dividing one or more groups into cross section bands allows
the flux within these groups to interact not with merely one cross section as in

the multi-group approach but with any number of cross sections, properly weighted
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according to the probability of these cross sections occurring within the group.
The effect of this approach is that fairly broad groups can be used but since the
population of each band (i.e., flux interacting in each cross section band) is
allowed to vary as a function of position, the resulting "group” averaged cross
sections (based upon reaction rates) can vary as a function of position.
Furthermore, since the weighting function which is used to define the band averaged
cross section and transfer matrix is not the group flux but rather the fiux only
within the cross section band, self-shielding effects due to cross section
variation are minimized.

However, the applicability of this method depends upon the ability to
actually calculate the group-band cross sections and transfer matrix and to
relate the resulting group-band averaged flux to the group averaged flux.

It will be shown that the group averaged flux is merely the sum of the
group~band averaged fluxes over all bands within the group. It will further
be shown that the group-band cross sections can be simply related to the
probability table and that at least in the unresolved energy range the group-
band transfer matrix can be simply related to the group transfer matrix and the
probabiltiy table.

To illustrate how to define the group averaged flux in terms of the group-
band averaged fluxes consider the definition of the group averaged flux defined

by Equation (3) and the partitioning property defined by Equation (10):

E E o
N G, =f SN @ LENE, @y, - B =¥j; L L NG TLENE/ (B, ) (1)
E X

K
or upon employing the definition of the group-band averaged flux (Equation (l1)):
T,0) = *,0 (15)
N ED = 2 N G
L
Therefore, the group averaged flux is merely the sum of the group-band averaged

fluxes over all bands in the group.
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Similarly from the definition of the total reaction rates within the group
as a whole (Equation (4)) and the reaction rates within the individual bands
(Equation (12)):

5, D 2 5 v G

L KL
Once a solution to a problem is obtained, Equations (15) and (16) may be
used to define an equivalent group averaged cross section. Since the population
of the individual bands are spatially dependent the resulting group averaged
cross section can also be spatially dependent.
In order to define the group-band averaged cross sections, one could simply
choose a median value of the cross section within the band (I/Z(Z&KL + Z&KL+1)).

This choice infers that all cross section values are equally probable within the

band. However, since the probability table method supplies the true distribution

of total cross sections within the group it can be used to define a more accurate

average cross section for the band.

B, o e mepen [ napn,
ErL ZIL

= fEI Ll Zppy (Bp)dgy ey,
%,

L

where PK(Z&) and PKL are merely the partial and cumulative probabilities of the

cross section lying between and 3} .
z;1‘1(L JTKL+1
However, this approach ignores effects of the flux as a weighting factor in
the definition of the cross section: both local effects (i.e., 1/2&(E)) and

continuous trends (i.e., 1/E). 1In principle, for wide groups the 1/E weighting
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can be significant, however, in practice in the unresolved region one has
sufficient mixing of the cross section values over the entire group to virtually
eliminate the influence of the 1/E factor (i.e., the 1/E factor will change
averages over the group only in the casé where the statistical distribution of
cross sections is significantly varying as a function of E). However, if one
wishes to eliminate the effect of the 1/E, consider using lethargy units instead
of energy.

In considering the flux as a weighting function in the definition of the
group-band cross sections and transfer matrices once consideration of the 1/E
factor is eliminated the resulting approximate weighting function N(;,E,E) may
be considered in the form N(;,ﬁ,z&) and instead of considering the integrals in
the z&(E) vs. E plane one can use the pK(z&) vs. Z& plane (where pK(Zi) is the

partial probability of obtaining a cross section ET in the K-th group).

p(Zy)

-96-



The inclusion of a 1/2& weighting for the flux in the definition of the

band cross sections is simple in this plane:

T.

5
=f L+1 )_-TNG,?z‘,zr)p(sz)drT/éeru N(F,(‘z,z:r)p(zr)dr,r
L

41

kL v,
ia?

However in practice since the integral of the flux (weighting function)
is only over bands of cross section the 1/2& factor does not play as important
a role as in the case of multi-group calculations where the integration is over
all cross section values within the group.

In summary in order to define the group-band cross sections one can include
the influence of the flux as a weighting function to compensate for 1/E and
1/2&(5) effects, however, in practice it is not necessary and a straight
weighting according to the probability of the cross section appearing within the
band is sufficient (i.e,, use Equation (17)).

Turning to the problem of defining the transfer matrix for the group-band,
consider the differential definition of the transfer matrix:

pKL(E)pMJ(E')fG,E',E' - 0,E)N(z,q',E")
or simply re-grouping terms to a transfer probability and the definition of the
band flux:

P EYEERE' ~ QE) oy BONGQ',EN) ]

From this grouping one can see that the transfer of the group-band flux is
modified by a termhpKL(E) which is simply the probability of the c¢ross section
lying within the band Z& < Z&(E) < Z& . In the unresolved region one has

KL KL+1
sufficient mixing of the cross section values over the entire group so that the
probability of the final energy having a cross section in the range Z& to Z&
KL KL+l

is merely the cumulative probability of the cross section lying in this band

averaged over the group: i.e.,
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g .
K+1 — = - - -
.’; pKL(E)f(r,n',E' - Q,E)dE/(EK+1 - EK) = PKLf(r,Q',E' ~ {,K) (21)
K

which simply states that the probability of transfer to the L-th band of the K-th
group is simply the probability of transfer to the K-th group times the

cumulative probability of cross section lying in the L-th band (Z& to T )

[
averaged over the group.

The remaining integration over the source group-band is of the form:

P Bl TTLE - 0 e, BONG,GLE) 1B 2
KL f EY ) - s pMJ > 3 (2)

Fy

In order to define this group-band averaged transfer matrix, one can proceed
as in the case of the group-band averaged cross section to argue that effects
such as 1/E play no significant role if the cross sections are significantly mixed
and that the 1/2&(E) is not that important since the integration is only being
performed over a band of cross section values.

The transfer function f(;,a‘,E' - O,E) can be represented as a cross section
z&(E') times a normalized transfer function g(r,Q',E' = (,,E), normalized to the
average number of secondaries per event when integrated over all Ga,E). When the
term pMJ(E')N(;,ﬁ',E') is considered to be a statistically continuously distributed
quantity over the group the integral becomes identical to that encountered in
multi-group calculations with Z&Kgfg,a',E' - B,E) replaced by I&KLg(;,a',E' - E,E).

The result of these considerations is that the group-band transfer matrix can

be simply related to the group transfer matrix properly normalized to the band

reaction rate:
KL

KL %
Tk

£(r,0',MT ~ (0,KL) = p £(r,0' M - 0,K) (23)

However, before proceeding to a summary of these simple relationships

between the group averaged values and the group-band averaged values it
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should be pointed out that Equation (23) does not account for an effect that may
be of importance in calculations. The transfer matrix as defined includes not
only effects involving the probability of transfer for one energy group and cross
section band to another, but also the probability of surviving (or multiplying)
due to a collision in the source group-band. The group transfer matrix naturally
also includes this effect, however, integrated over all cross section bands.
Therefore, if the probability of survival is a stromgly varying function of cross
section (e.g., the ratio of ZE(E)/Z&(E) in strongly absorbing resonances), the
definition of the group-band transfer matrix must be modified to account for
this effect by considering a probability table not only for the total cross
section but also the "'secondary’” cross section.
In summary the following relationships can be established between available
group averaged and probability table data and the required group-band averaged
data:
BI'KL =fEIL+1 P (T4, fEfLﬂ P(DAT, (2!
I, Zp

L (group~-band averaged
cross section)

£(6,0' M7 2 QL) = B, -EE—KL £(£,0' M - 0,K) (2
K {group-band averaged
transfer matrix)
The following relationships between group-band and group averaged fluxes

and reaction rates can also be established:

N @, =§ NKL(}',E) (2

O, @, = N, T,0 '
ErK K ; z;rKL kLT @
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These two equations can be used to define an equivalent group averaged
cross section based upon a reaction rate balance:
% (@) #Er () n,_ (0 EN r,m (28)
-‘I‘K T -TKL KL T KL
Since the population of the individual bands can vary as a function of
position the resulting group averaged cross sections can also vary as a function
of position.
Consider a simple application of the proposed group-band method. To illustrate
the method, the unresolved region will be considered to be a single group with a

number of bands. A flat flux distribution will be considered to be incident upon

a slab which has the following total cross section probability table:

0.15

piZy)

™~
-

p(zy) = 0.15 - 0.006(%, - 10)2

-100-




The effects of self shield as a function of probability of survival
(i.e., Z%/z&) will be studied.

In the case of a totally absorbing medium one obtains simple exponential
attenuation within the various cross section bands. The effect is a clustering
of the flux in the low cross section regions., The result is a continuous
decrease in the group averaged cross section from 10 barns at the boundary toward
a limit of 5 barms at infinity.

Using mean free path (MFP) units s defined by the cross section at the
boundary (i.e., 1 MFP ., 10 barns) the following changes in the group averaged
cross section cccur:

Distance 2&‘
0.0 10.0

0.5 9.7%
1.0 9.5
5.0 7.85
10.0 6.75

The difference in the scalar flux 10.0 units into the slab between using
E& = 10 and the true self-shielding cross section is almost a factor of 10
(see: Figure 1).

For the case of a pure scattering medium one naturally obtains a somewhat
different result. In this case a reaction balance is reached between the bands
where the low cross section bands feed the high cross section band via spatial
transport effects. The effect is to have a group averaged cross section that
varies from ?; = 10.0 at the boundary with a flat flux over the group to
;& = 9.47 at infinity with a 1/2&(8) flux over the group (i.e., Z&(E)N(E)
balance between the cross section bands),

In conclusion, calculations indicate that the method is a practical means

of obtaining numerical solutions to transport problems involving the unresolved
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resonance Yegion. Furthermore, it has been demonstrated that starting from
existing transport codes and an unshielded cross section library, one still
obtains correct self-shielding effects such as spatially dependent group

averaged cross sections.
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Figure 1, Flux in Totally Absorbing Medium.

-102-




Text of an invited talk presented at the Resonance Reglon Meeting,
Brookhaven National Laboratory, Upton, New York, May 8, 1972

USE OF PRE-PROCESSED DATA IN THE RESONANCE RANGE*

by

0. Ozer
National Nuetron Cross Section Center
Brookhaven National Laboratory
Upton, New York 11973

*Research supported by the U. S. Atomic Energy Commission.

-103-



USE OF PRE~PROCESSED DATA IN THE RESONANCE RANGE

O. Ozer

May 1972

I Introduction

The increasing quality of the ENDF files has often resulted in
the data being given in greater detail and use being made of more
complex representations. This in turn has caused the files to become
more expensive and difficult to process and use,

Even a simple problem such as the determination of a cross section
at some specified energy may necessitate a rather lengthy calculation
since for a large fraction of ENDF materials the cross sections are
given in two separate parts: resonance and background. The resonance
part must be reconstructed from resonance parameters according to
a specified formalism. The corresponding background section must
be interpolated and added to the former to give the final value of
the cross section.

The ENDF processing codes are correspondingly becoming quite
elaborate since they must have the capability of processing all combinations
of permissible formalisms. In general changes in the ENDF formats
or procedures or the addition of new formalisms have resulted in need
for extensive reprogramming, updating or patching up of existing codes.

A great amount of computing time and effort can be saved by pre-
processing and storiqg the ENDF data at an “"intermediate" or simplified
level.

Obviously a compromise must be made between the amount of "pre-

processing" necessary to bring the data to this “"intermediate" level,

-104-




and the general usefulness of the pre-processed data. Application and
composition dependent group constant libraries will save a very large

amount of time for a small number of users but will be useless to others.
Whereas ENDF/B like files for which the only pre-processing consisted of
replacing the resonance and background data by a set of reconstructed point
cross sections will be useful in a wider range of applications but may still
require a fair amount of processing.

This paper will discuss two levels of "pre-processed" files: The first
level consists of an ENDF/B like file of point cross sections. The seceond
level will be a multipurpose, multigroup library of group constants and transfex
matrices to be used in reactor calculations. Since a Level I library has
already been generated at NNCSC, the library, codes used in its preparation
and its applications will be discussed in some detail.

Plans for formats and contents of a Level 2 library will be presented

only briefly.

I1 Generation of Level I Pre-Processed Data

The Level I pre-processed files are generated using the code RESEND.

The purpose of this code is to process all of the permissible ENDF/B resonance
range formalisms and to generate infinitely dilute, unbroadened point cross
sections in an ENDF/B like format.

The program is written in a modular fashion with two major sections
operating as overlays on the PDP~10 system. The first section does the
resonance calculation and stores its results on a scratch file. The second
section combines the resonance points with the background and prints out the

results. The program is written entirely in Fortran-4 with liberal use of
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descriptive comment cards. It makes use of no machine dependent techniques.

A. Resonance Section

The resonance se¢tion operates by first reading all the resonance
information of an ENDF material &and storing it in a compact form in a
dense array. However the data for thé various sections (isotope/energy
range) are kept separate. The calculation of the cross section at an
energy point is done by calling a single subroutine SIGMA. This subroutine
determines which sections contribute to the energy of interest and
the formalisms to be used, then calculates the contribution of each
section by calling a secondary subroutine depending on the formalism to
be used. A separate subroutine is used for each of the formalisms to facilitate
the addition of new formalisms or the replacement of the treatment of existing
ones.

An advantage of calculating the contributions of each section separ-
ately is that correct results will be obtained even if some present ENDF/B
procedures are violated on the input files. (eg. overlapping resolved-
unresolved ranges, different ranges and/or formalisms for the different

isotopes of the same material.

1. Formalism

The formulae specified in appendix D of the ENDF formats and proced-
ures manuall are strictly followed for single or multilevel Breit-Wigner,
Reich-Moore or Adler-Adler formalisms in the resolved resonance range.
(Although Adler-Adler and Reich-Moore subroutines have not been implemented

in the present version of the code).
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since only infinitely dilute and unbroadened point cross sections
are calculated there are no ambiguities in the calculations and the formulae
of Ref-I will not be repeated here.

The only ambiquity may appear in the treatment of the cross sections
in the unresolved ranges. Here the RESEND code calculates only averaged
cross sections in a manner similar to the one used by M.R. Bhat in the
codes AVERAGE 3 AND AVERAGE 4%. This procedure is ocutlined on Table I.
It basically consists of replacing the average of the ratio of resonance
widths by a ratiow:of the average values ‘times a fluctuation integral S.
Since the resonance parameters are subject to statistical fluctuations
according to a Chi-squared distribution the fluctuation integral S will
in general consist of double integrals of products of Chi-~squared distri-
butions. 1In the present version of the code this integral is evaluated
by using the standard 10 point numerical quadrature method of Greebler-~
Hutchins. However in the future a method developed by M. Beer3 in which
the double integral is reduced to a single integral ideally suited for

gaussian gquadratures will be implemented.

2, The Energy Grid
Great care must be applied in the selection of an adequate energy
grid. The grid must be fine enough not to miss any important features of the
cross section; yet it must be flexible enough in order not to generate an
unnecessarily large number of points in areas where the variation of the
cross section is slow.
The RESEND code uses a grid generated by a convergence algorithm develop

ed by D.E. Cullen* and shown shematically on figure 1. The algorithm
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consists of first assigning node points to each resonance energy {in

order not to miss any resonance peaks). Next the cross sections of the
node points are computed (exactly). The grid between two adjacent node
points (points A and B in figure 1) is determined by calculating the cross
section ¢ at the mid-point X; and comparing it with a cross section E&
that would be obtained at this energy by linear interpolution between the

last two converged points (in this case A and B)., If

igl'&-ll
> e

o1
where ¢ is an input convergence criterion then the interval A-B is assumed
not teo have converged. xi becomes the new pivot point and the convergence
of the interval BR-X; is tested in a similar manner. The procedure is repeated
until convergence. Note that the cross sections calculated at the intermediate
points are not lost but are stored and used to test the convergence of
later intervals. Thus for example if the interval A-X3; was converged the
next interval tested will be Xj3-X; etc.

An additional convergence criterion is introduced in order not to
generate an unnecessarily large number of points in areas where g;= 0.0.

Thus the grid will be assumed to have converged within an interval if the
cross section at both ends of the interval is less than an input number

1
£ .

This method has been fairly successful in representing even highly
structured cross sections. Figure 2 shows a small section of the cross
section curve obtained for U-235. Figure 3 shows the distribution of the
grid points between two resonances.

The total number of points generated depends very strongly on the
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complexity of the material (number of resonances) and on the accuracy desired
Table 2 shows the number of points generated for a selected number of ENDF

materials with two different convergence criteria.

3. Acceleration

The running time of the code can be reduced by treating far away
and weak resonances in an approximate manner. If this option is selected
the cross section at the two nodes will be assumed to consist of two parts
0A=GAR+0AS. The contribution of all resonances within n I' of node A, where
N is again an input no., is included in the "rapidly varying" section cAR.
The contribution of all other far away or weak resonances is included in
the "slowly varying" section GAS. Note that both of these parts are calculat
exactly at the nodes. However in the calculation of the intermediate grid
points only the resonances which contributed to UAR will be treated exactly.
The contribution of all other resonances will be obtained approximately
by interpolating between GAS and UBS. (This technigque has not been incorpor-

ated into the present version of the program).

B. Background Correction

The second section of the program RESEND combines the resonance data
written out onto a scratch file by the first section with background cross
secticns read from the ENDF file. The unusual feature of this section
is that the resonance data file as well as the background data file are
read, combined and printed out in small fixed size blocks or pages. Thus
the dimensions of the program are completely uncoupled from the size of

the data arrays that are being generated. 1In fact only 24K19 of core is
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required when running on the PDP-10 system.

III Description of the Level I Pre-processed data files.

The Level I pre-processed data files consist of infinitely dilute,
un=-Doppler broadened point cross sections in ENDF/B format with one possible
exception: The present ENDF (version 2 and 3) formats restrict the maximum
number of points that can be given for a reaction type to 5000. The dimensions
of the data arrays in the pre-processed files are unlimited.

In order to conform to ENDF formats the pre-processed materials are
supplied with a dummy file 1 Hollerith information section (MT=451) which
only contains the accuracy criterion used in the reconstruction of the
data file. A dummy file 2 is also supplied. The reconstructed cross sections
appear in file 3 as reaction types 1, 2, 18 and 102. These cross sections
are supplied over a master energy grid consisting of the union of the resonance
and background grid. A linear-linear interpolation law is used in the
resonance range. Outside this range the original interpolation law is
left unchanged. In addition any other reaction types present in file 3
of the original ENDF material are also transfered to the pre-processed
files without any changes. However in order to preserve space files higher
than 3 are not included in the present version of the files.

Level I files for all ENDF/B Version 3 materials with resonance para-

meters have been generated using convergence criteria of 0.05% or 0.1%.

IV Uses of the level I preprocessed data

The steps followed in the generation and some of the applications of

the pre-processed files are shown on the flow diagram on Figure 4.
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A. Doppler Broadening: Program DOPEND

The pre-processed files generated by RESEND are not Doppler broad-
ened. A numerical Doppler broadening program Dopend is being designed
in order to broaden the data to any desired temperature.

The formalism followed by DOPEND is shown on Table 3. The Doppler
broadened cross section o* at energy € consists of two parts I and Ijp.
However the I, part is only non negligible at very low energies or high
temperatures and will only be calculated when

80 kT

E A

The integrals are evaluated numerically by Rhomberg integration. End proble
near the very top and bottom of the data tables where the integration range
exceeds the range over which the data is defined are avoided by adding
two extrapolated points at E;-95 and En+9A where Ej and'En are first and
last energies of an array.

Since very large data arrays are expected to be processed the code
will be designed in a .manner that will allow the processing of these arrays
a small section at a time.

Some important advantages are obtained by Doppler broadening the data

after it has been processed through RESEND:

a. The broadening process becomes very simple since it is complete
uncoupled from the formalism used in the generation of the point data set.

b. The broadening is not restricted to the resonance range but
can be applied to the entire range over which the data is defined.

c. Problems caused by not broadening the "smooth background®

are avoided. In principle this problem should be negligible however in
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practice because of pressures to use single level formalisms it is possible
to have a considerable amount of structure in the background cross section.
d. Because of the inclusion of the low energy correction term

I, the code will be well suited for high temperature (or low energy) appli-

cations.

B. Plotting and Display Capability

The pre-processed point cross section files are well suited for dis-
playing, plotting and publication. The only requirement on a plotting
code is that it be capable of plotting the data a small section at a time.
The interactive graphics code SCOPE5 has been used to obtain plots of all
the ENDF/B Version III materials and will be used for the publication of
selected ENDF/B data.

The standard ENDF plotting and listing program PLOTFB however must

be upgraded to process the larger data arrays.

C. Calculation of Integral Properties

Because of the pre-processing done in generating the Level I files
the calculation of various integral properties of the cross sections becomes
a particularly simple task. Thus a simple special purpose program INTER
has been written to calculate the resonance integrals. Maxwellian averaged
thermal cross sections and Westcott-"g" factors by numerically integrating
the point data files with 1/E and Maxwellian weight functions. All of
the ENDF/B Version III materials have been processed through INTER. Tables
of the calculated values have been generated and are available for reference

purposes.
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A general purpose integration program INTEND is being planned as a
logical extension of INTER. This program will be able to produce up to
1000 group constants with combinations of fission, 1l/E, Maxwellian, 1/2t

or input weight functions.

V Level 2 Pre-Processed Libraries

Recently R. Neuhold of the AEC conducted a study to determine the
need and feasibility of an ENDF/B based data file that would be pre-processed
to a considerably higher degree. This Level 2 file would consist of a
single set of group constant libraries that would satisfy the initial survey-
design needs of the fast reactor, thermal reactor, shielding and possibly
other design communities.

The purpose of the study was to examine the needs of the three major
communities as well as the features of present day codes in order to deter-
mine specifications and desirable features for a new processing code to
be used in the generation of the library.

It was determined that a single pseudo composition independent "Bodnaren
type library of cross sections and shielding factors (such as the ones
generated by the codes ETOX or ENDRUN) would be quite desirable providing
it had a number of additional features such as anisotropic transfer matrices,
larger number of groups, a thermal sink group, etc.

Consequently specifications for two new codes were drafted. The first
code will be used to generate group constants and shielding factors, the
second to interpolate the shielding factor for a particular composition

and energy and space collapse the group constants for use in reactor or

shielding calculations.
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The specifications for the first code include the following selected

points:

A. Group Structure

The code is expected to process of the order of 100 groups which will
include commonly used boundaries such as 10 and 15 Mev. and a thermal group
with a flexible upper energy cut to accommodate cuts used at various install-
ations. The basis for the mesh structure will consider in addition to
important features of the neutron cross sections of important materials,

also peculiarities in neutron-gamma production.

B. Weighting Spectra

A large variety of within-group weighting spectra including possibly

analytical slowing down spectra will be considered.

C. Matrices
Matrices up to order Pg should be calculated with algorithms based
on analytic integration in the Laboratory system. f-factors should also

be supplied.
Anisotropic angular dependence should be considered in the generation

of the inelastic transfer matrices.

D. In the Resonance Range:
a. Interference scattering should be included.
b. Same sequence overlap effects [Hwang, NSE 21, 523 {1965)] should

be implemented although not necessarily in the first version of the code.
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c. All ENDF formalisms should be processable (Breit-Wigner, Reich-
Moore and Adler-Adler)

d. The Intermediate Resonance Method should be considered in both
resolved and unresolved ranges.

e. Use of probability table and integral slowing down theory method
should be studied for future versions.

f. Provisions should be made for storing multilevel point data in
Doppler broadened form so that it will be available for interpolatives re-

use.

E. The output will conform to the CCCC (Computer Code Coordinating
Committee) interface specification.

To accomodate thermal reactor needs the output will include a thermal
edit with breakdown of contributions in the resonance range.

Moreover as a programming requirement it is strongly recommended that
the program be written in such a manner that large ENDF/B arrays are not
read in all at one time but in small blocks.

When this code is implemented, even though it will be possible to
generate the Level 2 pre-processed files directly from ENDF/B, a great
amount of time can be saved if except for a few materials with unresolved
resonance regions-- the Level 1 files are used as the starting base. 1In
the unresclved ranges however the present treatment in the code RESEND

will have to be brought to a consistent level with the processing code.
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TABIE 1: Outline of Unresolved Range Formalism Followed in RESEND
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TABLE 2: Number of Points Generated in the Resonance Range for Selected

ENDF/B Materials With Two Convergence Criteria.

Number of Points

ENDF MAT No. of Resolved TUnresolved c = 1.0% e = 0.05%

Symbol Number Resonances Section

U-234 1043 21 Yes 2083 8124
U-235 1157 130 " 3146 14304
U-238 1158 457 " 16575 39632
Pu-238 1050 14 " 1268 5543
Pu-239 1159 123 " 5367 21683
Pu-240 1105 201 " 12491 33467
Pu-241 1106 44 " . 997 4602
Fe 1180 29" No 988 2045
Ni 1123 294 No 2874 11012

%*
Contains MLBW Parameters.
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TABLE 3: Doppler Broadening Formalism Used by DOPEND

Doppler broadened cross section o¥(e) = I1 + I2

e+ 9 A 2

2
S, bl e g -
where I. ~ 1+ o(E') exp - dE
1 maJ, 94 A A

and 12 - 1 E c(E') exp [- BGE™ + ﬁ)z]dE'

A Y e
in above expressions A = Aé: and B = E%
VB

Note that 12 ~ 0.0 for all ¢ > Sg

o (b)

Figure 1. Generation of Energy Grid
in Program RESEND.
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Figure 3, Sample Grid for Pu-238
with 1 % Accuracy.

GENERATION AND APPLICATION OF PRE-PROCESSED FILES
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DATA s
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Figure 4, Generation and Application
of Pre-Processed Data Files.
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SUMMARY

M. K. Drake

The speakers did a tremendous job today, I don't feel under a
severe obligation to give a detailed summary since most of the speakers
have been kind enough to prepare written summaries of their presentations.

At the beginning of the meeting, Mulki Bhat asked two questions:

YAre multi-level resonance parameters required for accurate application
oriented calculations, such as reactor physics?" and "Is the probability
table method completely understood and valid for use in reactor physics
calculations?"

First, let me say that at the time we put this meeting together
the probability table method was under much more controversy than it
is today. Most of the controversy was due to the fact that it was not
understood by many people. I didn't see the controversy at this meeting
that we expected several months ago. The participants at this meeting
agreed that the method was valid and appears to be very useful for
preparing multi-group constants for Monte Carlo calculations. 1In fact,
Dr. Cullen presented a scheme for using the method for preparing multi-
group constants for use in transport calculations.

The question about the need to use multi-level parameters generated
much more controversy. The question was really never resolved. The
theoreticians and the experimentalists stressed the need for multi-
level formalisms to accurately represent the physics and experimentally
observed cross sections, particularly the fission cross sections. The reactor
physicists tended to agree that the statements made by the experimentalists were

true but they didn't agree that anyone had demonstrated that multi-level
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representations had any significant effect on reactor physics calculations.
I think it is important that we have gathered here and exchanged ideas

on this subject. It is unfortunate that no one has bothered to attack

the problem in such a manner that would demonstrate whether or not one

must use multi-level parameters in reactor physics calculations.

I will digress from my summary to make a few points. I think that
the sought after demonstrated need lies in qualified numerical or experiment
studies. Oh yes, several groups have done numerical experiments and there
have even been a few experimental measurements. As one can observe from
the comments made here, neither approach has thus far been very successful.

Some very good people have done numerical experiments but I don’t
think that the answers proved anything, Most of these experiments have
used the following line. First a set of unresolved resonance parameters
were selected. These parameters were selected by studying the statistical
properties of the resolved resonances. The average resonance parameters
were then used in application oriented calculations. First the parameters
were called single level parameters and a calculation was done. Then the
exact same parameters were called multi-level parameters and the calculation
was repeated. The two calculated results were compared and the difference
was called the multi-level effect. I don't think that such calculations
prove anything.

I think that it would be wore meaningful to perform another type of
numerical experiment. Such an experiment.could be done by the following
steps:

1. Select a nucleus such as 239Pu.

2. Evaluate the total, fission, and radiative capture (or alpha)

cross sections using the best experimentally consistent data
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available. The energy range should cover the unresolved range,
from about 300 eV to 40 keV,.

Divide the energy range into bands. Each band should be wide
enough to represent a statistically significant average (> 100
resonances). The bands should not be so wide that they would
represent an average over the gross structure {intermediate
structure effects).

Select resolved single level resonance parameters for each
energy band. The resonance energies and widths should be
selected in such a manner that they collectively obey the usual
distribution laws. Calculate pointwise cross sections from the
parameters and then average cross sections for each band. 1If
the average cross sections do not agree with the averages
calculated from the experimental data from step number 2, then
a new ladder must be generated. If the bands contain enough
resonances, each band can be represented by the average parameters
obtained from the ladder for the band.

Step number 4 is repeated. In this case multilevel parameters
will be selected. The same constraint must be used.

The final parameters must predict the same average cross
sections for the band. The average multi-level

parameters will likely be different than the average single
level parameters but they will both predict the same average
infinitely dilute Doppler broadened cross sections (to room
temperature or the experimental sample temperature).

At this point two application oriented calculations can be wade.

The calculations should include several different temperatures
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and varying degrees of resonance self-shielding. It is true
that the above mentioned experiment still has problems. For
example, there is no unique set of parameters that will
predict the average cross sections for a band. Also, one does
not know which fission width to vary in order to predict the
gross structure in the cross section.

Question: What experimental measurements can be done?

Answer: I would think that there are some experiments that can
be done. They might be very difficult and expensive. One could measure
the fission and/or the capture cross sections over the energy region from
500 eV to about 10 keV. In this same measurement, various sample thicknesse:
and temperatures should be used. It may be difficult to measure accurate
cross sections with thick samples and at elevated temperatures.

Comment: I think an experiment of the type you are talking about
was done by Bramblett.(l’z)

Comment: There were problems with that experiment and the results
were not very conclusive.

Comment: Marvin, in view of the divided communities on multi-level
vs. single level data, could I suggest that in the future when an evaluation
is done giving multi-level parameters, could the evaluator also provide
an equivalent set of single-level parameters?

Answer: This topic has come up in the past. The GSEWG philosophy
states that the evaluator is free to use the formalism that he feels best
describes the particular data set, If CSEWG recommends the data set, it
becomes the officially distributed material. It is possible to create an
equivalent data set containing single-level parameters and appropriate

background cross section,
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