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NEUTRON RESCONANCE SPACINGS

‘FOR SPHERICAL NUCLEIL

F. Schmittroth

ABSTRACT

Theoretical single-particle level densities ave computed for a Woods-
Saxon potential to estimate average neutron-resonance spacings for spherical
nuclet. This average spacing Dobe 18 a key parameter for neutron-capture
caleulations. Experimental valueg for D pe? which are evaluated for about
85 nuclei using recent data, are used to improve the theoretical estimates.
Special care is given to the identification of p-wave resonance in these
evaluations.
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I. INTRODUCTION

In ovder to compubte average neutron-capture crogs sections, one wmust
know the average spacing between the resonances seen in low energy neutron
scattering(l)@ In fact, these cross sections are roughly inversely propor-
tional to the average neutron-resonance spacing, so that any uncertainty in
this spacing is direcily reflected in the computed cross sections. At low
energies, most of the resonances are due to s-wave neutrons, and we denote
the average spacing observed between s-wave resonances by Dobs” Unfortu~
nately, for many fission-product isotopes where theoretical capture cross
sections are needed, too few neutron resonances have been measured to give
reliable estimates of Dobs° If experimental neutron—-capture data are avail-

able in these cases, Dobs may be treatsd as an adjustable parsmeter. Other-

wise, it is necessary to have some other way to estimate D@bse

There is a long history of thecretical attempts to predict the average

s (2=7) \ . .
regsonance spacing Debs . This spacing represents a direct measurement

of the demsity of levels in the compound nucleus ai the neutron binding
energy and plays a fundamental vole in nuclear physics. In addition, there

(4,7)

have been phenomenclogical studies of Do s motivated by the reguire-~

b
ments of neutvon-capture calculations. In spite of this effort, there are
large discrepancies in the predicted values of Dobs given by various workers

for many isotopes. This is not surprising when one notes that values from

D vary from a few eV to many keV. However, even in the cases where Bo

obs bs

was determined experimentally, there may be large discrepancies among the

reported values due to poor data or to differing evaluation procedures.



In this work we have used recent theoretical developments to give im-

(8,9)

proved estimstes of D@hgg In particular, Strutinsky averaging applied
to a Woods-Sazxon shell-wmodel potential was usead to caloulste the average sin-
gle-particle level densities. At the same time we have made a literature

search for sexperimenial data(zﬁwzz}

in order te obtain the best possible ex-
perimental values for ngso These values were uzed to test rthe theoratical
results and to provide phenowmeunoclogical adjusiments to the theoretical pre-

dictions.

We have limited this study to spherical anuclei between copper (Z = 29)
and samavium {(Z = 62} te reduce the work that g wore cowprehensive study
would entail and to avoid the theoretical problems associated with deformed

. (8,8 . . s
nu@le;< ’ 3@ This region is important for our own neuviron capiurs work.

IT. THEORETICAL ESTIMATES OF D

bs

A, Level Density Formalism

In this section we present %hé theoretical basis for our snalysis. The
problem is to compute the density of levels in the compound nucleus at an
excitation energy equal to the binding energy of the last neutvon. Hearly
all recent theoretical work begins with the independent-particle model of

gzg}é Statistical

the nucleus with corrections made for vesidual interactions
mechanics can then be used te relate the density of levels in the compound
nucleus to the density of states for the individual neutrons and protons (see

(3)

for example the work of Gilbert and Cameron whese formalism we follow

here).

The density of levels in the compound nucleus p(E) is related to the




single-particle states by

1

() = —=———
(2m)2 [D(Q)

axp (Q-aNﬁmazZ—aMM+SE}9 (L

where N, Z, ¥, and E are the total number of neutrons, the total number of
proténs, the magnetic quantum number, and the energy, respectively. The
temperature is t = 1/8, while the ai's are appropriate chemical potentials.
The denominator D(Q) is a Jacobian of Q. The detailed single-particle prop-
erties are found in @, which for the independeni-particle model of the

nucleus, is given by

Q = QN + QZ,

and oy =§§ log [l + exp (&N+u3mNi—6€Ni)j, (2)

with a similar expression for QZ' The i-sum is over all single-particle
neutron states. The neutron energies and magnetic quantum numbers are de~

noted by eNi and Lo respectively.

In order to arrive at a simple expression for the level density, the

‘i=sum in Bg. (2) is replaced by an integral over the single particle level

density:

Z log [1 + exp (@N+a3mNi_S€Ni)]

i

HH

zg jf ds.{gN(a,mN) log [1 + exp (aN+a3mN~85)]} ’ (3)
Ty

3




where gﬁfggmN} is the density of neutron states with energy ¢ and magnetic

i |
quantum number e This "continuous approximation’ breaks down for very low
(24) (25)

excitation energies . Roseunzeig has shown there mavy be errors intre-

duced by this approximation even at the higher energies that interest us.
Theze effects have never been conclusivaly observed, however, and we do not

consider them further.

After a2 considerable amount of algebra and a few less significant ap-
proximations, one finds the following expression for the density of levels

at energy E with spin J:

i
v (J4+2)2
o 2J+1 L
o (E,3) = ——2THL) spl- | e VI ). @)

24,/2 o3 2l U¥, i
This density includes both parities but doss not include the (2J41)
m-degeneracy. The effective excitation energy is U = & - F vhere P ig 2

. e s (28) |
phenomenclogical value for the paiving. A more fundamental approach is
to introduce the pairing interaction directly into Eq. {2). However, the
resulting equations are very complicated. The single-particle level den-

sities for neutvons and protons are combined into the single pavameter a:

]

T % & (5)




. where By and g, are the total single-particle demsities for neutrons and

protons, respectively

gy (el =5 gy (em)
&

gy(e) =2 gylem) (6)

oy

g = gyteg,
The spin-cutoff parameter ¢ is given by

o2 =g @Dt , (N

where the nuclear tewperature is found from

1
e=% ¢ /% . (8)

The average square magnetic quantum number is defined by

<m2>g(e) =T nf gyle,m) +3 ulg (s,m) (9
o, .




Since s-wave neutrons excite only compound nucleus states with a single
parity and with spin J = I + 1/2 where I is a nonzero target spin, the ob-
served s-wave spacing of neutron raesonances ﬁ@%g is related to the density

p(E,J) by

@{En$§} . (10)

For I = O, the only term in the sum ig J = %} Eﬂ ig the neutron binding
energy. This last segquation complstes the connection between observed neutron—

resonance spacings and single-particle level densities.

With the above formulas, the level density p(E) can be computed once
the level density parameter z is known. From Eg. (3), it is seen that the

average single-particle densities 8y and g, should represent averages over

Z
an energy vegion of about 1/8. Sifuﬁi@gkyég} has given 2 simple prescrip-
tion for averaging shell-model level demsities. Although he used his method

to find shell-model corrections to liquid-drop enevgles, it is nonetheless

suitable for ocur purposes.

B. Strutinsky-Averaged Shell-Model Densities

In this section we show how to find 2y and gy from single-particle
states generated by a Woods—Saxon potential. The neutvone and protons are
treated independently throughout so that it is convenlent to define s sub-

script 8 to represent neutrons (s = Nj or protons (s = Z).




Given a set of neutvon and proton single-particle energies (Els’

€ «.+), Strutinsky's prescription is to use a CGaussian weighting function

2s’

to compute the average level densities

1 (gfs—gis)2
B, (eg) = 7 exp |- —pt— (11)

where {Efs’ s = N,Z}are the neutron and proton Fermi energies, and v defines
the weighting interval. As expressed here, the i-sum must include any

single-particle degeneracies.

The actual number of neutrons or protons which corrvespond to a given

Fermi energy is found from

£
fs
NS(EfS) =/gs(a) de . (12)

0

A rather annoying systematic dependence of these densities on the

total atomic mass may be removed by defining a mass independent energy c:
e = ho ¢ . (13)

i
where the mass dependence is given by the factor hw = 41 / A/3 With this

change of variable, Egs. (11) and (12) become



g@ égfg} = exp w s {14)

and
$§5
NS (efg} xfgs(g} de . (15)
0.

where

e=¢ [/ hw {16a)
for all energies, and

Y=y /% (16b)

g, =hwg . (16c)

C. Calculation of Single-Particle Energies

Since we have restricted ocur work to the wmass region where nuclei are
spherical, we use z Woods-Saxen potential to calculate the single-particle
energy eigenvaluesé sis} . That is, we find solutions to the single-particle

Schroedinger equation




(T + V) ¢is =g, ¢, (17)

is Tis .

where the ¢is are the eigenfunctions for a particle bound iun a potential
well V(r) with kinetic energy T. (Recall that s = N,Z for neutvons, pro-

tons.)

The potential energy for neutrons is given by(27)

V) = v £ +v T ed - 4L (182)
where

E(r) = [1+exp ED)™ (18b)
with

Vo= s+ 33 (58 (18¢)

V=044V, (184)

R=r_ 4 A, r = 1.27 (18e)



and

a = (.67 . {18%)
For protong, a coulomb potential is added and VG becones

v o= -s1-33 (55 (19)
A1l energy units ave in MeV, and lengths are in Fermis.

Figure 1 shows the single~particle energies € g in units of Huw for
both neutvons and protons. The mass number A used Lo calculate each differ-
ence was determined as follows: The number of neutrons or protons, as the
case may be, was taken te be the’avarage of the occupation numbers for the
two successive levels. The line of beta stability was thes used to velate

the mass number A to the number of neutrons or protons.

The above equations were used to find ég%gfg} and §§{§§S}§ The occupa-
tion numbers ﬁS{Z§S>% shown in Figure 2 for neutrons, weve then used to ob~
tain the level densities gg as a function of the occupation numbers N .
These vesults, displaved in Figure 3, are expressed in terms of the level
density parvameters 2, and show how the single-particle level densities vary

with the number of neutrons or protons.

The averaging width v should be typical of the temperature t = éé

which appears in Eq. {3). The excitation energiesz of the compound nucleus

10
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are essentially the nesutren binding eﬁ@fgi@s? gn ¥ 6 MeV. With a represen—
tative value of 15 %e?”l for the level density parameter z, we find (Eq.
{(8)) £ T .63 MeV. We have usad v = .2 -Hw in our calculations, which corre-
sponds to v = 1.7 MeV for mass A ~ 100. Although this v is somevwhat lavger
than typical tempersitures, we find that a smaller v does not sufficiently

smooth the levels.

The most striking feature of the single-particle level densities is
the well-known minima at the wmagic numbers ¥ - 20, 28, &0, 82, .... Thus,
nuclei neasr-magic numbers have very ggali level densities. Notice slse
that in addition to the sharp minims due to shell effects, there is a grad-

ual increase in the level densities with W or Z. This behavicor can also be

@
o

explained by the liguid-drop model of the nucleus.

I1l. EXPERIMENTAL LEVEL DENSITIES

A, Introduction

in the previocus section, we presented theoretical estimates for the
single-particle level densities g, which in turn may be used to computs com-
pound-nucleus level densitises, and finally, the ohzerved s-wave resonance

spacing Do In this sesction we examine experimental values of ﬁﬁ% . As

bs " s

explained eaviier, these values are needed to test and to refine our

theoretical estimates.

In spite of recent evaluations there are important discrepancies for
many isotopes as seen in Table I, where we compare our results with those

of other evaluations., Some of the differences are due to different methods.

14




Experimental and Theorstical Valuss fovr the

s-wave Resonance Spacing, D

obs
giiizis Beﬁzi(&} i*/iusgmve{m E&baicé Exp, Theoxsy Ref.
2903 1216 813 1060 8363107 553 10
200u®? 1308 1150 1170 | 13375288 1502 10
302a2% 4300 2450 3400 | 3s18ti230 | 20m 11
30256 6000 4200 5600 | 3251869 6340 11
30za%7 523 671 720 605258 350 11
3102%? 336 232 320 323%109 159 11
316a’t 352 252 190 140%70.9 214 11
326’ ° 3542 1690 2000 | 13893248 1684 12
3200”2 3790 1230 39000 | 17877499 1674 12
326’3 96 124 77 | 74.8T10.8 82.2 | 12
326’ * 5304 3030 8500 | 498771180 | 3349 12
326e’° 3489 6270 8000 | 5430%1490 6738 12
33487 74 60.3 87.3 | 75.4%16.3 67.4 | 11
4ge’ 1628 629 200 353%97.5 329 13
345e’ © 1237 1950 1200 954¥182 944 13
%ge’ ! 100 140 150 | 89.8%11.5 97.6 | 13
348’0 1141 2650 4500 | 2540%300 1875 13
3456°° 5598 3110 1600 | 2002%165 4632 13
345¢%2 2927 15300 6900 | 9136t2300 | 38300 13
358’0 45.2 48.4 61 1 63.1%17.5 55,9 | 11
35850 90 56.3 52 103%54.4 129 11
37Rb5° 127 72.7 1100 308186 272 11
378657 1319 1220 1800 503¥390 2150 11
38554 425 367 350 4407109 672 11
38550 2167 2470 2100 | 1975%062 3827 i1
385:57 308 301 210 324%87.2 345 11
385c°0 7000 21100 12000  |47010%19400 | 18270 11
307%? 2505 1990 1600 | 34785779 1745 i1
40220 6254 6850 3300 | 52825095 6572 14
40227t 572 646 250 5075121 317 15

[
L



Table I {continusd)

Target
Nucleus Benzi f ;
é@zrgz " Musgrove Baba Bap Theory Ref
2 Ia’ oy F & ?A”m :
o, 890 3400 2300775 3178 15
r 3982 3410 3300 ¥33 -
o 568973130 2018 15
7r 4117 2030 1100 136532
.. 1136324 1609 13
41Nb 87 122 36 5.7% .
e gg .0 189.7716.0 101 11
2 82, 1 *.
e 2 100 114535, 2 127 16
o 907 1340 1200 1387%
e : 200 13875597 1313 16
o 75 91.2 120 7.5317.7
e - . 77.5%17.7 62.9 16
, 5 10 ; 14¥
o o 10 790 10142112 1021 16
42Mo 1561 1200 400 3397
e o 4¢ 133971040 1253 16
® .Se y ) g %‘ 5
- ﬁ 25.0 200 34,64, 52 36.9 17
Ru 17 13.8 15 373, 8 f
e 5 18.3%3.80 11.5 17
4Ru 662 784 *
i , 2855810 679 17
5Rh 33 27.3 10.3 | 27.4%3.07 o
éé§,1@5 0.3 27.4-5.07 27.9 i1
d 9.55 12.8 11.1 | 16.1%7
| 1oe 1.1 10.1-1.,60 9,62 i1
47Ag 21 11.8 50 | 32.2%8.45 g
s 50 32.2%8.45 15.5 18
Ag 1 11.8 19.1 | 19.5%2, 54
éggdlii i 19.1 19.5=2.5&4 28,9 18
‘ 30 33,9 34 32.4%7.0 .
éggéiig 4 32.4-7.03% 28,8 i1
25,9 22.7 27 25, 9%a ¢ )
i!g lig b‘cf u‘?ed% gm;j,a éf}; %592 ijﬁi
49Tn 7.32 5.68 7.1 | 23.9%5
. s .1 22.9-5.08 15.0 19
91n 9.14 5.74 9.5 a )
e . 9.5 | 11.6%.996 24.0 19
n 57 20.0 6 57.9% X
Sasﬁllg o 55,0 57.2=18.3 88,2 i1
1 11 7 * )
" > 00 730 6145192 1250 11
n 77 93.8 62.0 + )
- 62.0 | 179%25.7 114 11
Sn 1531 543 240 7447 -
o > 7445577 1807 11
Sn 2116 1100 18867 .
o > 488623780 3008 i1
& W7 i ¢ 14 . Qn%m‘ 5
s 2.5 13 13.731.65 11.3 11
34 27.1 30 *
e 0 23.4%6.03 19.8 11
e 195 120 130 *16 0
- , 132516.0 102 20
2Te 19 24,0 33 t
" | 26.3%4.07 13.5 20
Te 499 293 475125
147%12.5 199 20

ie




. Table I {(continusd)
Target
Hucleus Benzd Musgrove Baba Exp. Theor Ref.,
5210127 48 54.9 46 | 37.8%2.7 18.6 | 20

. 521620 741 936 207%20.0 475 20
5216148 2250 1930 263%33.4 | 1477 20
5216130 6290 5610 5700 872%147 8400 20
531447 13 12,1 19 | 14.7%2.42 6.31 | 11
537129 27.1 21 26.1%6. 66 21.7 11
54xe1%7 3 10.9 36.2%10.7 10.7 | 21
54xe13t 34 25.0 31 | 39.257.62 25.0 | 21
55¢s133 22 18.5 20.7 | 20.2%3.32 18,6 | 11
s5¢st38 272 71.7%12.9 258 22
568227 45 3.9 35 | 37,1537 31,0 | 11
568217 214 215 460 522%312 763 i1
5702238 39 30.0 41 35.7%7.58 38,5 | 11
570a13? 484 257 110 3128458 362 19
s0pp 14t 114 75.5 83.8 | 63.9%10.4 68.6 | 11
sonatt? 2340 781 415553, 957 20
sonat43 3 27.9 19 | 32.0%2.30 22.0 | 20
6oNats? 677 225 537571.3 73 20
6onatt? 24.1 24.3 25 | 18.9%1.10 20,4 | 20
sonat4e 370 184 211%24 9 354 20
eonaté? 217 138 72.0%6.86 104 20
625m™ 47 6.5 3.96 7.9 | 8.18%1.43 6.46 | 11
625m"47 3.1 1.67 3,22 2.88%.345 .795 | 11
{a) Ref. 7
{b} Ref. &
(c) Ref. 5

@




T,

Musgrove 4)

; for example, has used neutron-capture results to some extent o .
PR} [ 3.2 = g 1 3 5 {;5} &
provide indirect values of E@b§t On the other hand, Babs . whose tech~

nique is close to ours, relies strongly on data from BNL-325, data which are

already ocutdated for manv cases.

B. Data Analveis

To find the average resonance spacing ngs from vbserved resonances,
one often introduces the stair-step function Nex?{E} defined as the number
of resonances below the enevgy E. The average spacing may then be found by

s s . . (23)
minimizing the following 1ateg§al§ i

N (e} - W)Y de (20)

%

where

b

in most cases. In a few cases, where it was obvious that due to ewpérimental

One can zllow both E? and DQ to vary, although we have set Ep = E@ = §

reasons low energy vesonances were missed, we fixed EQ at some nonzero value
to exclude the region of missed rasonances. More frequently, resonances are
missed at higher energies. This effect is usually very noticeable in a

graph of NQXP{E)S and for each isotope we have Séieeted Ei to exclude thase

high energy regions. Figure 4 shows a typical staircase plot with a fitted

18
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straight line N{(E). The actual fitting was done by a computer search code .

called STEPIT.

C. BElimination of p-Wave Resonances

We have defined ngs to be the s-wave resonance spacing, and it is
therefore important to eliminate any p-wave resonances that may be counted.
Except for isotopes near a maximum in the p-wave strength Ffunction, p-wave
resonances are so small that they oftenm are completely undetected. Except
for those cases where experimenters made specific 2- assignments for reso-

- , - (28)
nances, we have eliminated p-waves by a wethod due to Bollinger and Thomas .
A probability Pp that a resonance is a p-wave is computed on the basis of

its size. Then if P§ is greater than 1/2 it is taken to be a p-wave and is

discarded. ?p is computed from

n { 1 _ i
i <g?ni> <g?ﬂ9>

where g?n is the usual statistical factor g times the nsutren width Fﬁe The
average s—wave and p-wave neutvon widths may be found from their respective

strength functions SQ and Si and from the s~wave spacing B@bs

<grn@> gg/ E B@bs S@ (23a)

(et gy =B v e)D s . (23b)

20




. The penetration factor vy (kr) is approximately

7 %

v (ke) = 1077 A" E, ev. (24)

In most cases, fortunately, precise values of So’ Sl, and Dobs are not
needed to decide whether or not PP is larger than 1/2. Rough initial guesses
were made fovr D while the strength functioans, §

cbs
interpolating from known values(14’29’3o).

0 and Sl’ were obtained by

D. Uncertainties

In order to have meaningful experimental values for Dobs’ we must ex-
amine the uncertainties involved. The uncertainties associated with Dobs
fall into two categories: 1) errors due to poor quality data, and 2) sta-
tistical fluctuations of the resonance spacings. Errors of the first type
include items like undetected resonances, incorrect identification of s-
and p-wave resonances, and resonances asszoclated with the wrong isotope for
elements with several naturally-occurring isotopes. Statistical errors be~

come smaller, of course, if a larger number of resonances and hence their

spacings, have been measured.

Although we used the move complicated procedure described above to
determine Dobs’ a simple average is easier to analyze for uncertainties.
Let Ei denote the energies of N resonances and take Dobs to be an average
of the N-1 spacings:

1
Dobs = §-1 (By417Ep) (252)

&
ot

]
ot

1
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=wr GE) - (25b)

An unbiased estimate of the variance of the spacings Ei = QEi%imEi> is

(26)

where ngs is estimated from Bg. {(25). The variance of this estimate for

Dobs is then given by

2_ 1 2
° T §1 %p
N-1 )
= m Z (E:Ef%%mgimgabs} ° 27
i=1

A1l of our experimental uncertainties for Q@bs ave given as one standard

deviation, D + g

obs = D

Based on the Wigner distribution of nesrest-neighbor spacings, s theo-

retical estimate of the variance due to statistical fluectuations can be

given for spin-zero tavget nuclei, namely(23>
2 2
sy = 0.273 Dsbs . (28)

We have compared this value with expervimental values by computing

22




8 2 Fe 2
D . D .
= (N-1) (29)
(Dobs) (Dobs)

for about 20 even-even nuclei. The experimental values average to about
(SD / Debs)z * 0.43, which indicates that roughly half the variance is due

to statistical fluctustions and half is due to the quality of data. Re-

(31)

cently, the Columbia group has measured resonances in Ful®® to very high

accuracy. It is gratifying to note that (SD / D, )2 % 0.27 for the first

obs

25 resonances in agreement with the theovetical value.

The source of data(zg} for the Te and Nd isctopes gave evaluated values

for Do along with the number of resonances used rather than individual

bs

resonance energies. To estimate ervors for these isotopes, we assumed, some-

what arbitrarily, that

(SD / Dobs>2 = .6 . (30)

Our evaluated values and uncertainties for DQ are given in Table 1.

bs

In the next section we compare these values with theoretical sstimates.

IV. COMPARISON OF THEORETICAL AND
EXPERIMENTAL LEVEL~-DENSITY PARAMETERS

A, Preliminayy Comparison

With the aid of the formalism discussed in Section 11, we can compare

the experimental values for DObs with the theoretical values for the level

density parvameter a. For each value of D Egs. (4,7.8 and 10) were

obs’

23



solved for the level density pavameter a with the aid of the computer search
routine STEPIT. This procedure was carvied out for each ilsoctope and defines
a set of experimental level-density parameters a . We formally represent

axp
this relation by

> (31)

aexp aaxp obs

By the same means, asymmetrical ervors for aexg are defined by

(+)
a + r=t = D + o) .
exp ~ Ya % exp ¢ obs ~ D’ (32)
These experimental level-density pavameters are given im Table II slong
with values for the binding energies Bﬁ and the required pairing ensrgies P.
The latter were taken from Gilbert and Cameron's w&rkqg}e Yalues for the
average of the square magnetic quantum number {m?) nsedad to compute the

spin-cuteff parameter o (Eg. 7) were obtzined from

2
(m2> * 0,146 A, (33)

(3) (32)

a2 result given by Gilbert and Cameron and derived by Jensen and Luttinger
It has been azgueé<33} that Hg. (33) should be meodified. However, the de~
tailed neglect of the pairding interaction casts doubt on any formula of this
type. In any case, the main effect of changing this rvelation would be to

renormalize the aexpé Partly for this reason, small systematic discrep-

ancies of aexp between various evaluations should not be considered signif-
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Table II
Values for the Level-Density Parameter a Deduced from

Experimental Resonance Spacings, D

ke

Target Hucleus Spin Bn Pairing Energies(a) anp.
29Cu63 3/2 7.9159 0 8.3 * -1
29Cu65 3/2 7.0604 0 8.59 © :gg
302064 0 7.9881 1.06 .04 * :gé
30Zn66 0 7.0534 1.06 10.40 * :gg
302067 5/2 10.2024 2.56 8.76 * :2;
31Ga69 3/2 7.6422 0 9.82 * :g;
31Ga71 3/2 6.5197 0 12,57 © 1:23
32Ge70 0 7.4154 1.36 11.70 * :gé
32Ge72 0 6.7853 1.36 12.48 7 :ZZ
32Ge73 9/2 10.1969 3,24 12,52 © :ig
32Ge74 0 6.4859 1.36 11,36 F :gg
32Ge76 0 6.0321 1.36 12.16 :22
334875 3/2 7.3262 0 12.20 ¥ :gg
345274 o | 8.0255 1.43 1302 F 2
345e76 0 7.4154 1.43 12.55 © :gg
348e77 1/2 10.4909 2.90 12.54 F :i?
343878 0 6.9717 1.43 w9t 2
345280 0 6.7144 1.43 12.09 ¥ 1+39
34582 0 5.9900 1.43 .57 * :Zi
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Table II {(continued)

Ta@et Hucleus Spin Bn Pairing Energiles (2) a@xp@
358279 3/2 7.8789 0 11,83+ :éi
35Br81 3/2 7.5964 0 11.56 © 1:2?
37Rb8S5 5/2 8.6374 0 g.81* ijgg
37Rb87 3/2 6.1306 0 1.5z T 240
385184 0 8.4824 1.24 11.85 * iié
38586 0 8.4372 1.24 9.87 * :Zg
38587 9/2 11.1005 2.17 g.52 7 23
38588 0 6.3924 1.2 g.00 T %
39789 1/2 6.8691 0 8.67 Z§5
40290 0 7.1940 1.20 027 31
402r91 5/2 8.6403 1.92 10.34 * :§§
402192 0 6.7497 1.20 12207 ]9
402x94 0 6.4675 1.20 1,25 T 437
40296 0 5.5756 1.20 16.56 © :éé
41Nb93 9/2 7.2139 0 12,037 -2
424095 5/2 9.1567 2.40 12,49 * :23
42M096 0 6.8161 1.28 13.17 ¥ Ezzg
42M697 5/2 8.6422 2.57 14,39 * :ii
424098 0 5.9187 1.28 16.04 T °§5




Table I1 {(continued)

Target Nucleus Spin Bn |Pairing Energies(a) anPe
42Mo100 0 5.3901 1.28 17.14 ¥ i:gg
44Ru99 5/2 9.6711 2.57 13.77 + :ig
44Ru101 5/2 9.2161 2.22 14.98 * :gg
44Rul04 0 5.9765 1.28 18.73 + :;g
45Rh103 1/2 7.0020 0 15.81 * :ig
4L6PA105 5/2 9.5474 2.50 16.07 7 2
47Ag107 1/2 7.2756 0 15.08 * -39
47Ag109 1/2 6.8240 0 16.85 :gi
48CdL11 1/2 9.3996 2.50 15.86 * :g;
48Cd113 1/2 9.0479 2.68 17.53 F :gg
491n113 9/2 7.3114 0 13.93 © :gg
49Tnll5 9/2 6.7244 0 16.21 F :%Z
505nll7 1/2 9.3310 2.34 .83 3
50Snlls 0 6.4810 1.19 15.60 © :gi
5080119 1/2 9.1100 2.43 13.60 © :g;
5080120 0 6.1812 1.19 16.06 © i:ig
5050122 0 5.9319 1.19 13.06 T 2-3
5186121 5/2 6.7982 0 6.0 7 %
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Table L1 (continued)

{
Pairing Energies ™

Target Hucleus Spin En SXD.
5156123 7/2 6.4316 0 1598 7 22
52Te122 0 6.9434 1.14 7277 %
52Te123 1/2 9.4084 2.57 16.50 7 -2
52Tel24 0 6.6034 1.14 18.05 7 2%
52Tel25 1/2 9.0924 2.23 15.87 7 13
52Te126 0 6.3134 1.14 18.25 7 2
52Tel28 0 6.1164 1.14 w41t
52Tel30 0 5.8954 1.14 16.59 T 37
531127 5/2 6.7971 0 16.06 * 22
531129 7/2 6.4984 0 15527 3
54%e129 1/2 9.2594 2.32 5.8 % 2
54Xe131 3/2 8.9323 2.16 15.02 F 3%
55Cs133 7/2 6. 7044 0 15.55 7 +20
555136 5 8.6114 0.85 .88 T X
568al35 3/2 9.2314 2.28 w.et oY
568a137 3/2 8.5414 2.43 12,24 T 3%
57Lal38 5 §.7894 0.85 12.58 7 32
57Lal39 7/2 5.0004 0 .68 T 3
59Pr14l 5/2 5.8534 0 15.77 7 22
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Table II {(continued)

Target Nucleus Spin Bn  |Pairing Energies(a) Zexp,
60Nd142 0 6.1004 1.18 17.83 * :52
60Nd143 7/2 7.8294 1.94 16.70 :ig
60NdL44 0 5.7434 1.18 18.48 © :gg
60Nd145 7/2 7.5614 2.10 18.94 7 12
60NA146 0 5.2874 1.18 22.59 * :gg
60Nd148 0 5.0414 1.18 26.81 7 30
60Nd150 0 5.4054 1.18 23.57 + 2
625m147 7/2 8.1424 2.14 19.00 7 3
625m149 7/2 7.9824 2.21 21.86 * 27

(a) Ref. 3
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icant.

The values forv ﬁgxp are plotted versus the target mass nuwbar A in Fig-
ure 5 to show their overall behavior. The striking dips at (A+L) * 90 and
140 may be readily correlated with dips in the theoretical neutron and pro-
ton level-density parameters shown in Figure 3, the first dip corresponding
to ¥ = 50 and Z = 40, the second corresponding to ¥ = 82. Also, the lowest

values In the range A = 110 - 125 are due to indium and tin isotopes which

are neayr the Z = 50 dip in a, .

Because the level-density parameter a depends on both W and 2 (Eq. 3),
it is awkward to compare theoretical and experimental values on a plot like

Figure 5. Instead, in Figure &, we plot the differences

ha = 8. agzg {343

=

where an is the theoratical value. Straight linss are used to conmect all
the isotopes for sach element. In view of the fact that no paremeters have
been adjusted, the agreement iz good: that iz, da is small. Hevertheless,
in addition to fluctuations of about + 1 %@?mié the theory is svstematically
low (Aa <0), especially near A ¥ 115. Because of approwimations, such as
the neglect of vesidual intevactions, and problems, such as the difficulry

in estimating the spin-cutoff parameter, these gystematic discrepanciss arve

not surprising.

B. Adiustment of Theoretical Values

In ovder to provide the best estimates of §@b§§ minor adjustments of
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Values for the Level Density Parameter a.




the theoretical estimates for ay and a, were made with the computer program

STEPIT by minimizing the function

N ) 2
2 o1 Z 8 (P72, () . (35)
=y
2
i=1 o,
4

The sum is over all isotopes for which we obtained an experimental value

aexp with standaxrd deviation 40 The adjusted theoretical value for the

i-th isctope is given by

ath(i) = FN(N) aN(N) + FZ(Z) az(Z) ) (36)

where the adjustment functions FN and FZ are smooth functions near the

value 1 for all N and Z. Several functional forms for the F's were tried.

The following form worked as well as any:

3

i,
Fs(l) = Cos 011+ Cks exp ——G; . (37

k=1

where s designates neutrons or protons and i is the respective number of
neutrons N or protons Z. The 20 constants 0059 Cks’ Mks’ and Gks were ad-
justed to minimize y? determined by Eqg. (35). Actually, to prevent very
, the G

local adjustments to a were set equal to 2 even though smaller

th ks
values gave a slightly better fit.

These final values, given in Table III and used with Eqs. (36) and
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Table 111

Parameters for Adjusting the Theoretical

Level Density Parametier, a

th
Neutrons |Protons Neutrons [Protons Neutrong  Protons
QO 1.29 1.04
Ci 0.351 0.053 Hl 40.5 32.9 Gl 2.0 2.0
C2 "9223 _ezza'é MZ 5493 4’&4@8 GZ 2@@ 29@
= e 4 @ e og °
CB . 366 163 NB 85.6 53.3 Gg 2 2.0
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(37), represent our best prescription for estimating the level density pa-
rameter a. The differvences between these adjusted values and the experi-
mental values are shown in Figure 7. Although it is awkward to display
errors on this figure, it is gratifying to note that wmany of the large dis-
crepancies are correlated with large experimental uncertainties. There are

some notable exceptions; for example, the tellurium and neodymium isotopes.

Theoretical estimates for Dobs were computed from our adjusted values
for the level density parameter a and are cowmpared to experimental values

in Table I.

C. Error Estimates

In this section we give a quantitative measure of the ervors in the

theoretical values for D0 In general, these errors are large enough

bs”

that the usual descripticn, D = I appropriate for a normal distribution,

is wrong. In the Appendix, the entire problem of assigning asymmetrical

RS

errors of the form D is discussed in detail.

Basically, we assume that the variables x; = 1n(Dti) - ln(Dxi) are
normally distributed with mean value zere where Dti and D,; represent the
theoretical and experimental values of Dobs for the i-th isotope, respec—
tively. Because of the fitting procedures used Lo determine the theoret-

ical level density parameters a the differences, a_, - a_ss should be

£i’ £i

distributed about zero, see Figure 7. It follows that the Xy have a mean

value of zero.
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‘ An estimate for the variance of the X, is given by

2 1
o, = ==

x  N-l

W =

] [in(Dti) - ln(DXi?]zs

where the sum is over all isctopes. Now define a new variable BD by

Gx
8. = e

1 - e
exp {[ﬁ-_—f > an(Dti/Dxi)] }

i=1

]

Since o_ is the standard deviation for %, = In(D_.) - In(D .), 6. isc a

X i ti zi D
corresponding factor for the ratio Dti/Dxi° In other words, @D is the
factor by which the theoretical and experimental level spacings are likely

to differ at the usual one-sigma confidence limit.

For the isotopes in this work, we find GD = 1.87. TFor comparison and

(3

using the prescription of Gilbert and Cameron” ', we recalculated the {Dti}

for all the isotopes. These values of {Dti} lead to 6_ = 2.31, a value

D

considerably larger than our own.

V. SUMMARY
. Experimental neutron rvesonance spacings were evaluated for over 80
spherical nuclei (29 < Z < 62). A partly phenomenological and partly theo-

retical prescription was used to estimate these spacings to within a factor

37




of 8 = 1.9. Thie factor compares to a value of

b 2 2.3 obtained for these l

o
same nuclei with the older formuls of Gilbert and ﬁamer@nig}

@

Finally, we wish to point out that theve are exceptions to our assump-
tion that all the nuclei in the region studied are spherical. Xel2% ig
deformed, for example. The parameter adjustments probably overcome this
difficulty to some extent. Nevertheless, any results obtained for deformed

nuclei in this region should be used with extra caution.
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APPENDIX A

Statistical Variables of the Form exp (oca)

A. Introduction

Many statistical pavameters associated with neutron cross sections
are always positive. Unless the variance of these parameters is small so
that the confidence limits associated with normal distributions are appro-
priate, it is not obvious how te express confidence limits. Suppose, for

example, that the average resconance spacing D is expressed as

D=0 *g¢ (A1)

at the one-sigma confidence limit. Since D is alwave positive, these limits

are clearly meaningless for oy > Do°

The computation of dose rates in reactor shielding provides another
example. Roughly speaking, the attenuation of radiation through a shield

of thickness x gives a dose rate

DR = § exp(-ux). (A2)

Uncertainties in the dose vate, a quantity which is always positive, arise
from uncertainties in both the radiation source strength 5 and the attenu-

ation factor u.

An intuitive way to treat a positive variable D ig to use logarithms

to define a new statistical wvariable d:




d = In(D) . (43)

Superficially at least, since d is not vestricted to positive values, it

makes more sense to apply the statistics of a normal distrvibution to d than

to D. The confidence limits of D may then be expressed in terms of confi-

dence linits for d:

The (&) supersecript on 4

explicit.

Dt ® oo s o) (84)

()

D makes the asymmetrical nature of these limits

We focus our attention on three problems in the following sections:

i)

2)

3)

For what physical quantities are the results appropriate?
How are confidence limits for funciions of seversl variables
combined?

How are these limits most convenlently expressed?

B. Formsl Properties

Define a positive statistical variable & by

Ala) = C  explua), )

A

where CA (CA >0) and o are constants, and & is another statistical variable.

We now make a key assumption. Assume that the varisble a is normally




distributed with mean value & and variance caz. This assumption, together
with Bq. (A5), completely specifies the statistical properties of A; whether
or not A is a good rvepresentation for a particular physical variable depends

on the particular variable involved.

We have already noted the following property of A:

A0, {(A6)

We now find the mean value of A defined by

<A>=/ AfAdA=f Af, da, (A7)
o]

-

where fA ig the distribution function for A. Since g is normally distri-

buted, its distribution function is

3\ 2
® Jimo 2\ %
We note in passing:
da
= ££ . A9
£, = £ (A9)

By the technique of completing the square, we find




QA 1/a-a ]
Ay = e exp(aa) exp| - -—(m)z da
~ %
vam S, 2 a

= @_f explaa) exp| - %{&)}2} da,

<@o‘a )2 . (A10)

The most probable value of A {(dencied by A?} iz given by

il

Afa) exp

o b

=0 . (A11)

= A(3) exp g-ma}i * (a12)
A general picture (Figure AlL) of the distribution funciion, fy for A

may be formed by noting
AP < Ala) < (B>, (A13)

and that (see Egs. A8 and A9)

A-4
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Figure Al. The Distribution Function fA.



£ =0 (A14)

for A= 0 and A = OO0 |
Next, we find the variance Gi for A:
si = <af>-a? . (A15)
The calculation ﬁar<i§2> is similar to that for (A), and we obtain

A% = A2@ exp gZ{cw ;Zj , (A16)
a
ro find

si = gexp E éwé)zj -1 % Ay (a17)

C. Confidence Limits
A main purpose here is to find a convenient representation for the con-
fidence limits of A. We start from the fact that the one-sigma confidence

limits for a are given by

a-g0 < a < a+og . {A18)
Since an element of probability may be expressed as

= = 1
dp £, da £, d4 (A19)

both the left and right-hand sides of the following equation represent the

A=6




same fraction of the total probability:

a-+o Afa + oa)
fa da = £ dA . (A20)

a-g A(a—ca)

Therefore, the following confidence limits for A represent precisely the

same limits as those given by Eq. (Al8):
A(a=o)) < A < Aato) . (A21)

A convenient way to express these results is by

Ae(: <A<8, AG) . (A22)

where

6, = exp(uoa) . (A23)

In other words, A is given by A(Z) te within a factor of GA at the same con-

fidence level for which a is given by a * o>

Toe make these ideas more useful, we want to relate QA directly to the

. 2 , . .
variance 0. Iin this way, one does not have to seek an underlying variable a.



First, we combine Egs. (AlG) and (Al7) to find

Gi = ?exp{{a@a}z} -1 é exp{{u@a}zj ﬁzié} . (AZ4)

In principle, given Sy / Aa), one can compute {ada} and hence egs

Instead, we define 5 variasble, R, by

o, =R Aa) (8,-1) . (A25)

Humerical calculations show that the value of R szatisfies

.92 < R < 1.1 (A28}
for

1<6, <2.5 . (4827)

To within 10%, R © 1 for all values of %A likely to be encounteved. In

any real case, this ervor will likely be unimportant so that

o, = Afa) (8, -1} . (A28)

Given the wariance G,» ODE can find confidence limits from

8, = 1+ A

A e (A29)




The confidence limits, as expressed by the Inequality (A22), may be rewritten

as

Ala) - Ai") < A < Al +A§+), (A30)
where

(+)

AA 9, s (A3la)
and

&S) _f 1 o, (A31b)

1+GA/AC§)

D. Uncertainties For More Than One Variable
In this section, we discuss how to find uncertainties in (A + B) and
(A x B) where A and B ave two independent variables of the tvpe considered

here.

First consider products:

P=AxB . (A32)

With notation similar to the previous sections, we have




P = CA exp gaaE b's CB exp EBb}

= C, Gy exp Eaa%gbj s {A33)

where a and b are normally distributed. This product has the same form as

A and B, namely
P = Cp axp{c) {A34)

where ¢ = oa+fb. If a and b are normally distributed with variance ci and

Gi respectively, ¢ is normally distributed with variance
2 _ \2 2
o, = (@ﬁa} + {ﬁab} . (A35)

The 8-=factor for P is therefore

o=

eP = exp ? {(@Gaﬁz 4 (86532} %e {A36)

The variance for P may be approximated by Eq. (A28):

2 027 02
op = B7(e) (8,m1)° (437)

where

A=-10



P(e) CP exp(c)

L]

CACB exp (na+fb)

A(a) x B(b) . (A38)

Next consider sums:
S = A+ B. (AB?)

We just noted that the product P = A x B has the same exponential form as A
and B. However, the sum § does not. Nevertheless, the variance of § is

still given by
2 2
Oy =0, + op s {442

which is a general property of the variance for independent variables. To
the extent for which the exponential form gives a valid approximation for

the distribution of S, a 6-Factor 9_. can be obtained from g by Eg. (A429).

5

E. Use and Summary

For positive statistical variables which may be adequately represented

by functions of the form

A= CA exp{oa) {A43)

A-11




where a is normally distributed, we have shown how to conveniently express
confidence limits by the concept of a 8-Factor. In this representation,

uncertainties ave sxpressed in terms of 2 multiplicative factor 8 rather

Aﬁ
than the usual plus and minus notation. We might say, for example, that an
experimental neutron flux is known to within a factor of 1.3 as compared

to saying it is known fo within plus or minus 30%.

As a further 1llustration of these idess, we show that our resulis
agree with those given by a normal distribution for swmall @gfés Thus,
variables which are described by 2 normal distribution do not have to be

considered separvately if their uncertainties ave semall.

To the extent that the approximation Bg. (A28}

) . s
é{ / is identical

s valid, Bg. (A31)

e
Gt

shows that the upper uncertalinty A to the standard devia-

fte

o1 C‘ég

£ . For & normal distribution, Ty gives both the upper and lower
uncertainties at the one-sigma confidence level, For 1 + Gﬁfééa} » i,
Fe3

)

Eq. (A31) alsc shows that the lower uncertainty agrees with the results of

)

R e (= . . .
2 normal distribution: Qé T O, Finally, frowm the properties discussed
in Section B, it can be showsn that the mean value and most probable wvalue

coincide, (AD> ® épg for UAZA{a} small.

So far, only distributions defined by 4 = Qﬁ axp{aa) have besen con—

sidered. Our results can be extended to the more general form
A= Qé expif{a)l {A4b)
if £{a) may be approximated by z Tavior sexpansion. It is straightforward

A-12




to show that the vavriance of f is given by

o§ = gD -, (A45)
a2
= o, + (higher order terms), (A46)
where the variance of a is
o2 = <afy-<ad? . (A47)

Hence, the 6-~Factor becomes

GA = axp [¥/§;-j =  exp { %g’aa] . {ALE)

As an example of this last result, consider an approximate form for

the average resonance spacing D:

D = C exp Ea-z v’;ﬁ} . (A49)
Since we have

£(a) = -2 +vau (A50)
then

b, = exp[ o, ﬁfﬁg} . (AS1)
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