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1 Summary

The merced code is one of the computer programs used in the conversion of reaction data
from the GND library [1] of evaluated nuclear data to input for deterministic particle
transport codes. This data conversion is managed by the fudge python script [2], while
the merced code performs the computation of transfer matrices used to approximate the
kernel in the integral operator of the Boltzmann equation.

This document is organized a follows. Section 2 explains how the transfer matrix is
used in the discretization of the Boltzmann equation. Section 3 examines the methods
used for interpolation of data in GND. The remainder of the document is devoted to
a discussion of the considerations involved in computing transfer matrices based on the
various data formats used in the GND library.

For discrete 2-body reactions, the processing of angular probability density data given
in the center-of-mass frame is discussed in Section 4. The treatment here is Newtonian,
with a relativistic version presented in Appendix A.

Section 5 discusses the treatment of the data in GND used for isotropic energy proba-
bility densities given in the laboratory frame.

Sections 6 through 10 deal with double-differential, energy-angle probability density
data. Uncorrelated energy-angle probability density data is presented in Section 6. One
option for energy-angle probability density data is as coefficients of Legendre expansions.
This option is discussed in Section 7 for data given in the laboratory frame and in Section 8
for center-of-mass data. The proof of a mathematical detail used in analysis of the boost
for such data is given in Appendix B. Energy-angle probability densities may also be
presented as tabulated data as discussed in Section 9. The final form of energy-angle
probability density data is in the form of parameters of mathematical formulas, and these
are taken up in Section 10.

Section 11 deals with special data for incident gammas, specifically, coherent scattering
and Compton scattering.

Finally, the document closes in Section 12 with instructions on how to run merced,
along with an explanation of the input parameters.
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2 Transfer matrices

Deterministic particle transport codes solve a discrete version of the Boltzmann equation,
and the transfer matrix approximates the kernel of the integral operator in this equation.
If x denotes the position, t the time, E′ the particle energy, Ω′ the direction of motion,
v the magnitude of the velocity (speed), and n(x, t, E′,Ω′) the number density, then the
flux φ = vn satisfies the Boltzmann equation [3]

1

v
∂tφ(E′,Ω′) + Ω′ ·∇φ(E′,Ω′) +ρσtφ(E′,Ω′) =

ρ

4π

∫
Ω
dΩ

∫ ∞
0

dEK(E′,Ω′ ·Ω | E)φ(E,Ω).

(2.1)
The direction Ω′ is relative to some given “north pole” Ω0, and ρ is the density of the
material. The dependence on x and t is suppressed. The first two terms in Eq. (2.1) give
the derivative with respect to distance of the flux in a coordinate system moving with the
particles. The parameter σt is the microscopic total cross section, so the term ρσtφ(E′,Ω′)
represents the rate of particle loss per particle path length.

The kernel K(E′,Ω′ · Ω | E) in Eq. (2.1) gives the rate of production of outgoing
particles with energy E′ and direction Ω′ corresponding to incident particles at energy
E and direction Ω. Here, the energies E and E′ and the directions Ω and Ω′ are in the
laboratory coordinate system. From here on, the notation

µ = Ω′ · Ω

is used. It is significant that the dependence of K(E′, µ | E) on µ is axisymmetric, because
the orientation of the target nucleus is unknown. The primes are placed where they are in
Eq. (2.1), because the emphasis in this document is on approximation of the right-hand
side of the equation. In that setting, it is natural that E denote the energy of the incident
particle and E′ the outgoing particle energy.

For a given target, the nuclear data in GND is given reaction by reaction, e.g., elastic
scattering, neutron capture, fission, etc. The transfer matrix approximating K is built up
by summing over the reactions r

K =
∑
r

Kr.

The reaction kernels Kr themselves are not given in GND, but their component factors are
given instead, namely,

1. σr(E): the cross section for the r-th reaction,

2. Mr(E): the multiplicity of the outgoing particle,

3. wr(E): the model weight for these data,
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4. πr(E
′, µ | E): the double-differential probability density of the energy and direction

cosine for one outgoing particle.

In terms of this notation, Kr is the product

Kr(E′, µ | E) = σr(E)Mr(E)wr(E)πr(E
′, µ | E). (2.2)

The multiplicity Mr(E) may be constant, e.g., 1 for elastic scattering and 2 for (n, 2n)
reactions, but the number of fission neutrons depends on the incident energy E. The
default is Mr(E) = 1.

Model weight The model weight is usually wr(E) = 1, and that is the default. One
exception is that data for a single outgoing neutron in an (n, 2n) reaction may have
Mr(E) = 2 and wr(E) = 0.5. The model weight is also used to handle the use of different
interpolation rules over different ranges of incident energy. Thus, if the interpolation for
E1 < E < E2 is different from that for E2 < E < E3, the data may be split into two sets,
one with

wr(E) =

{
1 for E1 ≤ E < E2,

0 for E2 ≤ E ≤ E3,

and the other with

wr(E) =

{
0 for E1 ≤ E < E2,

1 for E2 ≤ E ≤ E3.

The GND nuclear data consist of tables of σr(E) and πr(E
′, µ | E) and possibly Mr(E)

and wr(E). The data for πr(E
′, µ | E) take several forms, and the various data represen-

tations are dealt with individually.
The discretization of Eq. (2.1) is based, first, on the specification of a set of energy

groups {Eg} for the incident particles and energy groups {E ′h} for the emitted particles.
The energy groups for neutrons are typically different from those for gammas, and yet
another set is usually used for charged particles. The flux φ(E,Ω) inside the integral
in Eq. (2.1) is discretized according to the energy groups of the incident particle, while
φ(E′,Ω′) on the left-hand side of Eq. (2.1) is discretized according the the energy groups
of the outgoing particles. These energy groups are also called energy bins.

According to the normalization for Legendre expansions used in GND, the angular
discretization of πr in Eq. (2.2) is given by

πr(E
′, µ | E) =

∑
`

(
`+

1

2

)
πr`(E

′ | E)P`(µ)

with P`(µ) denoting the `-th Legendre polynomial and

πr`(E
′ | E) =

∫ 1

−1
dµπr(E

′, µ | E)P`(µ). (2.3)
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The flux φ(E,Ω) in Eq. (2.1) is expanded into spherical harmonics

φ(E,Ω) =
∑
`,m

C`,mφ`,m(E)Y`,m(Ω) (2.4)

with normalization

C`,m =
1∫

dΩ [Y`,m(Ω)]2
.

A discrete approximation to Eq. (2.1) may be obtained by expanding φ(E,Ω) in spher-
ical harmonics and integrating over the outgoing energy group E ′h. This gives an equation
for the vector of values

φ`,m(E′h).

Note that φ`,m(E′h) is a histogram with respect to the energy E′ of the outgoing particle,
constant on each energy group E ′h. Integration of the right-hand side of Eq. (2.1) over E ′h
gives

Ih,` =
∑
r

∫ ∞
0

dE φ`,0(E)

∫
E ′h
dE′

∫ 1

−1
dµKr(E′, µ | E)P`(µ). (2.5)

The integral Eq. (2.5) contains only the spherical harmonics with m = 0, because the
kernel Kr is axisymmetric.

The unknown flux φ appears in Eq. (2.1) both on the left-hand side of the equation
and under the integral sign. It is therefore convenient to start the calculation using an
assumed approximate value of φ`,0(E) in the integral Eq. (2.5), namely,

φ`,0(E) ≈ φ̃`(E). (2.6)

Upon inserting Eq. (2.6) into Eq. (2.5) and taking the incident energy groups Eg one at
a time, it is found that Eq. (2.5) may be viewed as the product of a matrix with a column
vector. Here, the column vector has the components φ`,0(E′h), and the components of the
matrix are given by

Jg,h,` =
Ig,h,`∫

Eg dE φ̃`(E)

with

Ig,h,` =
∑
r

∫
Eg
dE φ̃`(E)

∫
E ′h
dE′

∫
µ
dµKr(E′, µ | E)P`(µ).

The quantities Jg,h,` constitute the entries of the transfer matrix.
The above discussion gives one way of defining the transfer matrix, but the fudge

code has three different representations, depending on whether one wants to conserve the
number of particles, the energy, or both. Traditionally, conservation of particle number
has been used for neutron transport, conservation of energy for gammas, and conservation
of both energy and number for charged particles. These cases are taken up in turn.
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2.1 Conservation of particle number

With the approximate flux coefficient φ̃` in Eq. (2.6) and the representation Eq. (2.2) of
the kernel Kr, the `-th Legendre coefficient of the contributions of energy groups Eg and
E ′h to the integral in Eq. (2.1) by reaction r is given by

Inum
r,g,h,` =

∫
Eg
dE σr(E)Mr(E)wr(E)φ̃`(E)

∫
E ′h
dE′

∫
µ
dµP`(µ)πr(E

′, µ | E). (2.7)

For conservation of particle number the elements of the transfer matrix are the sums over
all reactions,

Jg,h,` =

∑
r Inum

r,g,h,`∫
Eg dE φ̃`(E)

. (2.8)

The merced code computes the integrals Inum
r,g,h,` reaction by reaction, and the operation

Eq. (2.8) is performed by fudge.
Note that the number-preserving transfer matrices offer a simple check. Because the

probability density πr(E
′, µ | E) has the normalization∫ ∞

0
dE′

∫ 1

−1
dµπr(E

′, µ | E) = 1,

it follows from Eq. (2.7) that∑
h

Inum
r,g,h,0 =

∫
Eg
dE σr(E)Mr(E)wr(E)φ̃0(E). (2.9)

2.2 Conservation of energy

When conservation of energy is desired, the integral Eq. (2.7) is modified by insertion of
E′ as a weight factor

Ien
r,g,h,` =

∫
Eg
dE σr(E)Mr(E)wr(E)φ̃`(E)

∫
E ′h
dE′E′

∫
µ
dµP`(µ)πr(E

′, µ | E). (2.10)

With the notation that E′h denotes the midpoint of energy group E ′h, the elements of the
transfer matrix for energy conservation are the sums over all reactions,

Ĵg,h,` =

∑
r Ien

r,g,h,`

E′h
∫
Eg dE φ̃`(E)

. (2.11)

The computation of Ĵg,h,` in Eq. (2.11) is done by fudge using the integrals Ien
r,g,h,` calcu-

lated by merced.
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2.3 Conservation of both particles and energy

The fudge code also has an option to combine the integrals Inum
r,g,h,` in Eq. (2.7) and Ien

r,g,h,`

in Eq. (2.10) so as to construct a transfer matrix which conserves both energy and particle
number. Energy conservation may be violated in the lowest and highest outgoing energy
groups, however. The construction is based on the following ideas.

There are two ways to compute the average energy of particles in the outgoing energy
group E ′h. One such average is the midpoint E′h of this group. Preferably, this value should
be the same as the average energy derived from the the sums over the reactions r of the
integrals Eqs. (2.10) and (2.7),

〈E′〉g,h =

∑
r Ien

r,g,h,0∑
r Inum

r,g,h,0

. (2.12)

This is accomplished, as much as possible, by properly defining entries of the transfer
matrix corresponding to adjacent outgoing energy groups.

For each incident energy group Eg one iterates through the outgoing energy groups E ′h.
Note that the description of this process in [4] and [5] assumes that the energy group
boundaries decrease with increasing index; the energy group boundaries are counted in
increasing order here and in fudge.

If 〈E′〉g,h < E′h and E ′h is not the lowest energy group, make a fraction of the sum∑
r Ien

r,g,h,`

E′h
∫
Eg dE φ̃`(E)

contribute to the transfer matrix element Jg,h,`, and make the remainder contribute
to Jg,h−1,`. Specifically, it is desired to find jg,h and jg,h−1 which conserve particle number

jg,h + jg,h−1 =

∑
r Inum

r,g,h,0∫
Eg dE φ̃0(E)

as well as average energy

E′h jg,h + E′h−1 jg,h−1 =
∑
r

Ien
r,g,h,0.

Therefore, set

fg,h =
〈E′〉g,h − E′h−1

E′h − E′h−1

.

For each Legendre coefficient ` take as contribution to Jg,h,` the quantity

jg,h =
fg,h

∑
r Inum

r,g,h,`∫
Eg dE φ̃`(E)

,
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and the contribution to Jg,h−1,` is

jg,h−1 =
(1− fg,h)

∑
r Inum

r,g,h,`∫
Eg dE φ̃`(E)

.

If 〈E′〉g,h < E′h and E ′h is the lowest energy group, the contribution to Jg,h,` is simply∑
r Inum

r,g,h,`∫
Eg dE φ̃`(E)

.

This maintains conservation of particle number.
If 〈E′〉g,h > E′h and E ′h is not the highest energy group, these data are used to calculate

contributions to the components Jg,h,` and Jg,h+1,` of the transfer matrix. Specifically,
set

fg,h =
E′h+1 − 〈E

′〉g,h
E′h+1 − E′h

.

For each Legendre coefficient ` take as contribution to Jg,h,` the quantity

jg,h =
fg,h

∑
r Inum

r,g,h,`∫
Eg dE φ̃`(E)

,

and the contribution to Jg,h+1,` is

jg,h+1 =
(1− fg,h)

∑
r Inum

r,g,h,`∫
Eg dE φ̃`(E)

.

If 〈E′〉g,h > E′h and E ′h is the highest energy group, the contribution to Jg,h,` is∑
r Inum

r,g,h,`∫
Eg dE φ̃`(E)

.

The sum of all of these contributions produces the Legendre coefficients Jg,h,` of a
transfer matrix which conserves particle number as well as usually conserving energy.

2.4 Control of the conservation option

The merced code computes the integrals Eq. (2.7) for the number-preserving transfer ma-
trix or the integrals Eq. (2.10) for the energy-preserving transfer matrix or both, depending
on the value of the Conserve input parameter. See Section 12.4.3. The default mode is
to compute both integrals. The actual construction of the transfer matrix is performed
by fudge.
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2.5 Numerical quadrature

The integrals Eqs. (2.7) and (2.10) require some sort of numerical quadrature, and the
multiple integrals are computed as a sequence of single integrals. The quadrature method
is a modification of an adaptive method proposed by Gander and Gautschi [6]. The main
difference is that the Simpson rule used in [6] is replaced by a second-order Gaussian
quadrature. The reason for this change is that in the calculations here, one of the limits
of integration may be a computed quantity, such as a threshold energy. In such cases,
computer arithmetic may give rise to attempts to evaluate πr(E

′, µ | E) where it makes
no sense to do so.

Remark. In the rest of this document the subscript r is omitted from each of the
terms in the kernel Eq. (2.2) and from the integrals Inum

r,g,h,` and Ien
r,g,h,`, because from now

on the discussion will be about the treatment of the data, reaction by reaction.
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3 Interpolation of the data

The data in GND representing the probability density π(E′, µ | E) = πr(E
′, µ | E) in

the integrals (2.7) and (2.10) are given in various forms. In the case of tabulated data,
intermediate values must be obtained via some sort of interpolation. Interpolation with
respect to one independent variable is described first, followed by a discussion of the 2-
dimensional case. In GND full 3-dimensional interpolation of π(E′, µ | E) data is reduced
to a sequence of 2-dimensional interpolations.

3.1 Interpolation methods for a single variable

For the sake of having a specific application, the discussion here is given in terms of tables
of data {Ei, f(Ei)}, with values Ei of the energy of the outgoing particle as independent
variable. These ideas are applicable to one dimension for any tabular data. The types
of interpolation method used in GND for such tables are: histogram, linear-linear, log-
linear, linear-log, and log-log. The algorithms for interpolation of F (E) on an interval
E0 < E < E1 with given f(E0) and f(E1) are as follows. In these definitions it is assumed
that the argument of a logarithm is positive.

3.1.1 Histograms

For histogram interpolation set

f(E) = f(E0) for E0 ≤ E < E1.

3.1.2 Linear-linear

For linear-linear interpolation set

α =
E − E0

E1 − E0
(3.1)

and take
f(E) = (1− α)f(E0) + αf(E1) for E0 ≤ E ≤ E1.

3.1.3 Log-linear

For log-linear interpolation take α as in Eq. (3.1), and set

log f(E) = (1− α) log f(E0) + α log f(E1) for E0 ≤ E ≤ E1.

This relation may also be written as

f(E) = f(E0)1−αf(E1)α. (3.2)
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3.1.4 Linear-log

For linear-log interpolation set

α′ =
log(E/E0)

log(E1/E0)
(3.3)

and take
f(E) = (1− α′)f(E0) + α′f(E1) for E0 ≤ E ≤ E1.

3.1.5 Log-log

For log-log interpolation take α′ as in Eq. (3.3), and set

log f(E) = (1− α′) log f(E0) + α′ log f(E1) for E0 ≤ E ≤ E1.

This is equivalent to
f(E) = f(E0)1−α′

f(E1)α
′
. (3.4)

Remark. With log-linear interpolation written in the form of Eq. (3.2) and log-log
interpolation written as Eq. (3.4), it is permitted that f(E0) = 0 or f(E1) = 0. These
cases all lead to the result that f(E) = 0 for E0 < E < E1, however.

3.2 Interpolation methods for probability densities

In order to explain the methods for interpolation of probability densities, it suffices to
consider a table of values π(E′ | E)

{E′j,k, π(E′j,k | Ek)} for j = 0, 1, . . . , Jk (3.5)

given at values of the incident energy Ek, for k = 0, 1, . . . , K. In Eq. (3.5) it is required
that the outgoing energies be ordered

E′0,k < E′1,k ≤ E′2,k ≤ · · · ≤ E′Jk−1,k < E′Jk,k. (3.6)

The condition Eq. (3.6) permits the data of Eq. (3.5) to have equal consecutive inter-
mediate outgoing energies E′j−1,k = E′j,k, so that the probability density π(E′ | Ek) may
have a jump discontinuity there. Jump discontinuities are not allowed at the end points
E′ = E′0,k and E′ = E′Jk,k. In Eq. (3.5) the possibility of three or more consecutive equal
outgoing energies may be ruled out, because all but the first and last would be redundant.
The convention adopted here is that the value of π(E′ | Ek) at a discontinuity is the second
data value

π(E′ | Ek) = π(E′j,k | Ek) if E′ = E′j−1,k = E′j,k.

For fixed incident energy Ek, the rules for interpolation of π(E′ | Ek) in outgoing
energy E′ are as given in Section 3.1. The following types of interpolation with respect to
E are discussed in subsequent subsections:

1. direct interpolation.
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2. unit-base interpolation,

3. interpolation using cumulative points.

The method referred to here as “interpolation by cumulative points” is closely re-
lated to “interpolation by corresponding energies” as described in the ENDF/B-VII man-
ual [7]. For a more-detailed discussion of 2-dimensional interpolation methods, see the
reference [8].

For a discussion of interpolation of data Eq. (3.5), it suffices to consider interpolation
between incident energies E0 and E1. Thus, it is desired to interpolate to incident energy E
with E0 < E < E1 the data

{E′j,0, π(E′j,0 | E0)} for j = 0, 1, . . . , J0,

{E′j,1, π(E′j,1 | E1)} for j = 0, 1, . . . , J1.
(3.7)

The ideas presented apply equally well to interpolation of data in Eq. (3.5) between any
consecutive pair of incident energies Ek−1 < Ek.

The methods of 2-dimensional interpolation are described in turn.

3.2.1 Direct interpolation

It is common to do direct interpolation for interpolating tables of angular probability
density π(µ | E) with respect to incident energy E, because the range of direction cosines
is usually −1 ≤ µ ≤ 1. For example, in order to determine the value of π(µ | E) for
E0 < E < E1 from data Eq. (3.7), one first interpolates in µ at fixed incident energies to
obtain π(µ | E0) and π(µ | E1). One then obtains the value of π(µ | E) by interpolating
between π(µ | E0) and π(µ | E1).

The trouble with the application of direct interpolation to tables of energy distributions
is that the range of outgoing energy E′ usually depends on the incident energy E. Thus,
for the data in Eq. (3.7), the ranges of outgoing energies are given by

E′0,min = E′0,0 and E′0,max = E′J0,0 for E = E0,

E′1,min = E′0,1 and E′1,max = E′J1,1 for E = E1.
(3.8)

Remark. In the definition of the range of outgoing energies Eq. (3.8), it is natural to
expect that the data in Eq. (3.7) are such that for each incident energy Ek with k = 0, 1,
. . . , K, the probability density π(E′ | Ek) is not equal to zero on the entire lowest outgoing
energy range E′0,k < E′ < E′1,k or highest outgoing energy range E′Jk−1,k < E′ < E′Jk,k.
That is, Eq. (3.8) ought to give the actual range of outgoing energies. Some nuclear
data libraries, e. g., ENDF/B-VII.1 [9], have data of the form Eq. (3.5) which imply that
π(E′ | Ek) = 0 on the lowest or highest outgoing energy ranges. The sample input data
given in Section 5.3.1 illustrates the problem.

It is convenient to describe the process of direct interpolation using notation of set
theory, with the sets

A0 = {E′ : E′0,min ≤ E′ ≤ E′0,max},
A1 = {E′ : E′1,min ≤ E′ ≤ E′1,max}.

(3.9)
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The union of these two sets is denoted by

AX = A0 ∪ A1, (3.10)

and the intersection is denoted by

AT = A0 ∩ A1, (3.11)

There are two obvious interpretations of direct interpolation of the data in Eq. (3.7)
when the outgoing energy ranges differ, A0 6= A1. One may do direct interpolation with ex-
trapolation or direct interpolation with truncation. Linear-linear versions of these methods
are described here.

For direct interpolation with extrapolation the probability densities π(E′ | E0) and
π(E′ | E1) constructed from the tables in Eq. (3.7) are extrapolated to

πX(E′ | E0) =

{
π(E′ | E0) for E′ in A0,

0 for E′ in AX \ A0,
(3.12)

and

πX(E′ | E1) =

{
π(E′ | E1) for E′ in A1,

0 for E′ in AX \ A1.
(3.13)

For direct interpolation to incident energy E with E0 < E < E1, the proportionality factor
q is defined as

q =
E − E0

E1 − E0
. (3.14)

In linear-linear direct interpolation with extrapolation, the interpolant is taken to be

πX(E′ | E) = (1− q)πX(E′ | E0) + q πX(E′ | E1) (3.15)

for E′ in the set AX .
The method of direct interpolation with truncation differs from that using extrapola-

tion, in that this method uses the truncated probability densities

πT (E′ | E0) = C0π(E′ | E0),

πT (E′ | E1) = C1π(E′ | E1)
(3.16)

for outgoing energy E′ in the set AT . Here, C0 and C1 are normalization constants such
that ∫

AT

dE′ πT (E′ | E0) = 1 and

∫
AT

dE′ πT (E′ | E1) = 1.

For linear-linear direct interpolation with truncation of the data in Eq. (3.7) to incident
energy E with E0 < E < E1, the factor q is chosen as in Eq. (3.14), and the interpolant is

πT (E′ | E) = (1− q)πT (E′ | E0) + q πT (E′ | E1)

for E′ in the set AT .
Remarks. The ENDF/B-VII.1 data [9] contains many instances in which linear-linear

direct interpolation is specified, but the ENDF/B-VII manual [7] says nothing about how to
deal with differences in range of outgoing energies. Both versions can be expected to pro-
duce violation of energy conservation. The merced code currently uses direct interpolation
with extrapolation.
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3.2.2 Unit-base interpolation

Only the linear-linear version of unit-base interpolation is discussed here. The first step
in unit-base interpolation is the construction of the range of energies of the outgoing
particle. The minimum and maximum outgoing energies for the data in Eq. (3.7) are
given by Eq. (3.8). For incident energy E with E0 < E < E1, the factor q is taken as in
Eq. (3.14), and the minimum and maximum outgoing energies are given by

E′min = (1− q)E′0,min + qE′1,min,

E′max = (1− q)E′0,max + qE′1,max.
(3.17)

The interpolated probability density π(E′ | E) must satisfy the normalization condition∫ E′
max

E′
min

dE′ π(E′ | E) = 1. (3.18)

One way to ensure this is to first map the outgoing energy ranges Eq. (3.8) to unit base
0 ≤ Ê′ ≤ 1 and to scale the probability densities Eq. (3.7) accordingly. Thus, for the data
in Eq. (3.7) at incident energy E0, set

Ê′ =
E′ − E′0,min

E′0,max − E′0,min

(3.19)

and scale the probability density

π̂(Ê′ | E0) = (E′0,max − E′0,min)π(E′ | E0). (3.20)

For incident energy E1, the outgoing energy is scaled as

Ê′ =
E′ − E′1,min

E′1,max − E′1,min

, (3.21)

and the probability density is scaled to define the unit-base probability density

π̂(Ê′ | E1) = (E′1,max − E′1,min)π(E′ | E1) (3.22)

for 0 ≤ Ê′ ≤ 1.
If linear-linear interpolation with respect to incident energy is desired, the proportion-

ality factor q defined in Eq. (3.14) is used to linearly interpolate between π̂(Ê′ | E0) and
π̂(Ê′ | E1) by setting

π̂(Ê′ | E) = (1− q) π̂(Ê′ | E0) + q π̂(Ê′ | E1) (3.23)

for 0 ≤ Ê′ ≤ 1.
Finally, in order to define the interpolated probability density π(E′ | E), invert the

mappings Eq. (3.19) and Eq. (3.20). Specifically, with E′min and E′max as in Eq. (3.17), set

E′ = E′min + (E′max − E′min)Ê′ (3.24)
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and take

π(E′ | E) =
π̂(Ê′ | E)

E′max − E′min

. (3.25)

Unit-base interpolation is ordinarily not used with tables of angular probability den-
sities π(µ | E), because the range of direction cosines is usually −1 ≤ µ ≤ 1. One may
want to use it for a table with forward emission given in the laboratory frame, however.

3.2.3 Interpolation by cumulative points

The method of interpolation by cumulative points that is used in the code merced is
proposed in [8], and it is a modification of interpolation by corresponding energies as
described in the ENDF/B-VII manual [7]. Interpolation by corresponding energies requires
the selection of N equiprobable energy bins, so the result depends on the value of N . It is
shown in [8] that for data Eq. (3.5) which are histogram with respect to outgoing energy
E′, interpolation by cumulative points is equivalent to interpolation by corresponding
energies with N =∞. The merced code therefore uses interpolation by cumulative points
whenever the data specify interpolation by corresponding energies.

One objection to unit-base interpolation is that the mapping (3.20) depends only on
the range of outgoing energies. One can often get a better approximation to the physics if
the interpolation method incorporates knowledge of the local behavior of each π(E′ | Ek)
in Eq. (3.5). One method of doing so is based on the cumulative probability function

Π(E′ | Ek) =

∫ E′

E′
k,min

dxπ(x | Ek) (3.26)

for k = 0, 1, . . . , K.
Constraint. Interpolation by cumulative points requires that Π(E′ | Ek) be strictly

increasing with respect to E′ for k = 0, 1, . . . , K. That is, the condition that

Π(E′2 | Ek) > Π(E′1 | Ek) (3.27)

is imposed for every E′1 and E′2 in the outgoing energy range

E′0,k ≤ E′1 < E′2 ≤ E′Jk,k.

Because the data π(E′ | Ek) consist of probability densities, it follows that π(E′ |
Ek) ≥ 0. If the interpolation with respect to outgoing energy E′ is log-linear or log-log,
the monotonicity condition (3.27) implies that π(E′j,k | Ek) > 0 for all data points E′j,k
in Eq. (3.5), and for histograms only the highest outgoing energies E′k,max may have zero
probability density. For linear-linear and linear-log interpolation, it is permitted that
π(E′j,k | Ek) = 0 at local values of E′j,k but not for two consecutive outgoing energies
E′j−1,k and E′j,k.

As with unit-base interpolation, it is sufficient to describe interpolation by cumulative
points between the incident energies E0 and E1. For incident energy E0 compute the
cumulative probabilities at the data points in Eq. (3.7)

yj,0 = Π(E′j,0 | E0) for j = 0, 1, . . . , J0. (3.28)
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Analogously, for E = E1 determine the cumulative probabilities at the data points in
Eq. (3.7)

yj,1 = Π(E′j,1 | E1) for j = 0, 1, . . . , J1. (3.29)

Form the union of the two sets

{Y`} = {yj,0} ∪ {yj,1}.

The Y` values are then ordered with removal of duplicates, so that

Y0 = 0 < Y1 < · · · < YL−1 < YL = 1. (3.30)

Interpolation by cumulative points consists of a sequence of unit-base interpolations
on subintervals. These subintervals are obtained as follows. For incident energy E0 and
each cumulative probability Y` in Eq. (3.30), the outgoing energies Ẽ′`,0 are computed such
that

Π(Ẽ′`,0 | E0) = Y` for ` = 0, 1, . . . , L.

Note that the construction ensures that each of the original data points E′j,0 in Eq. (3.7)

is one of the Ẽ′`,0 values. The interval B0(`) is defined as

B0(`) = {E′ : Ẽ′`−1,0 ≤ E′ < Ẽ′`,0} for ` = 1, 2, . . . , L− 1,

B0(L) = {E′ : Ẽ′L−1,0 ≤ E′ ≤ Ẽ′L,0}
(3.31)

The intervals B1(`) for the data Eq. (3.7) at incident energy E1 and ` = 1, 2, . . . , L are
defined in a similar manner.

Interpolation by cumulative points is accomplished by doing a sequence of unit-base
interpolations between π(E′ | E0) on the interval B0(`) and π(E′ | E1) on B1(`) for ` = 1,
2, . . . , L.

A more detailed discussion of interpolation of probability data by the method of cu-
mulative points may be found in the note [8].

Because interpolation by cumulative points depends on the detailed behavior of the
probability densities, the method may also be useful for interpolation of angular probability
densities π(µ | E).

3.3 Unscaled interpolation of Kalbach-Mann data

The above discussion pertains to the interpolation of tables of probability densities, for
which maintenance of the norm condition Eq. (3.18) is essential. The parameter r(E′cm, E)
in Eq. (10.2) for the Kalbach-Mann model of double-differential data is given as tables
depending on the energy E of the incident particle and the energy E′cm of the outgoing
particle in the center-of-mass frame, and it has the different constraint,

0 ≤ r ≤ 1. (3.32)

Again, it suffices to describe interpolation between Kalbach-Mann r data between
tables at incident energies E0 and E1 with E0 < E1. As in Eq. (3.9), consider the sets A0
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of outgoing energies at E = E0 and A1 at E = E1. For unscaled direct interpolation with
extrapolation, take AX = A0 ∪ A1 as in Eq. (3.10), so that the extrapolated r parameter
is

rX(E′, E0) =

{
r(E′, E0) for E′ in A0,

0 for E′ in AX \ A0,

and

rX(E′, E1) =

{
r(E′, E1) for E′ in A1,

0 for E′ in AX \ A1.

Then for E0 < E < E1, for q as in Eq. (3.14) and for E′ in the set AX , the linear-linear
form of unscaled direct interpolation with extrapolation becomes as in Eq. (3.15),

rX(E′, E) = (1− q) rX(E′, E0) + q rX(E′, E1). (3.33)

The extrapolation version of direct interpolation of the Kallbach-Mann r parameter as in
Eq. (3.33) is implemented in the merced code.

For unscaled direct interpolation of the Kalbach-Mann r parameter with truncation,
the outgoing energy E′ is restricted to the common domain AT = A0 ∩ A1, and there is
no change of scale analogous to that used for probability densities in Eq. (3.16). Thus,
the truncated Kalbach-Mann r parameters for incident energies E0 and E1 are

rT (E′, E0) =

{
r(E′, E0) for E′ in AT ,

0 for E′ in A0 \ AT ,

and

rX(E′, E1) =

{
r(E′, E1) for E′ in AT ,

0 for E′ in A1 \ AT .

The linear-linear version of unscaled direct interpolation with truncation is

rT (E′, E) = (1− q) rT (E′, E0) + q rT (E′, E1) (3.34)

with E′ restricted to AT . The merced code does not currently implement unscaled direct
interpolation with truncation of the Kalbach-Mann r parameter given in Eq. (3.34).

There is also an unscaled version of unit-base interpolation with Eqs. (3.20) and (3.22)
replaced by

r̂(Ê′, E0) = r(E′, E0),

r̂(Ê′, E1) = r(E′, E1),

for 0 ≤ Ê′ ≤ 1 with Ê′ as in Eq. (3.19) for E = E0 and as in Eq. (3.21) for E = E1.
For linear-linear unscaled unit-base interpolation to incident energy E with E0 < E < E1,
interpolate the minimal and maximal outgoing energies as in Eq. (3.17), interpolate r̂
using

r̂(E′, E) = (1− q) r̂(E′, E0) + q r̂(E′, E1),
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and invert the unit-base map using Eq. (3.24) and

r(E′, E) = r̂(Ê′, E)

for E′min ≤ E′ ≤ E′max.
When the energy probability density πE(E′ | E) in Eq. (10.1) is interpolated using the

method of cumulative points, the interpolated values of r(E′, E) in Eq. (10.2) is obtained
using the method of unscaled cumulative points defined as follows. The method uses
the outgoing energy ranges B0(`) given in Eq. (3.31) for πE(E′ | E) at E = E0 and the
corresponding B1(`) at E = E1, and it does unscaled unit-base interpolation of r(E′, E)
between B0(`) and B1(`) in sequence for ` = 1, 2, . . . , L.
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4 Discrete two-body reactions

This section describes how the contribution to the transfer matrix is calculated for data
consisting of probability densities for the cosine of the angle of deflection in discrete 2-
body reactions. In this case, the probability densities are always given in the center-of-mass
frame. Because the transfer matrices are defined in terms of laboratory coordinates, the
computations involve a boost.

For all except very light-weight targets, the mapping from center-of-mass to laboratory
coordinates is usually done using Newtonian mechanics. The discussion given here is
therefore Newtonian. A relativistic treatment is presented in Appendix A. The choice
of Newtonian or relativistic mechanics is determined by the value of the kinetics input
parameter to merced as explained in Section 12.3.5. Of course, relativistic mechanics
must be used if either the incident particle or the outgoing particle is a photon.

For discrete 2-body reactions, the center-of-mass energy of the emitted particle is
determined by the energy E of the incident particle. Consequently, the energy-angle
probability density πcm(E′cm, µcm | E) in the center-of-mass frame is given by

πcm(E′cm, µcm | E) = g(µcm | E) δ(E′cm −Ψ(E)) (4.1)

for the function Ψ given below in Eq. (4.4). From here on, the energy E and direction
cosine µ of the outgoing particle will be marked with the subscript “lab” or “cm” to
indicate that the variable is in the laboratory or center-of-mass frame.

Because of Eq. (4.1), the data for discrete 2-body reactions consist of angular probabil-
ity densities g(µcm | E) given in the center-of-mass frame, either as a 2-dimensional table
for given incident energy E and direction cosine µcm or as Legendre coefficients c`(E) for

g(µcm | E) =
∑
`

(
`+

1

2

)
c`(E)P`(µcm). (4.2)

This section begins with an overview of Newtonian mechanics for discrete 2-body
problems. In particular, the form of the function Ψ in Eq. (4.1) is derived, as is the boost
from the center-of-mass to the laboratory frame. The section closes with an examination
of the use of angular probability data g(µcm | E) in the computation of the integrals
Eqs. (2.7) and (2.10) used in the calculation of the transfer matrix.

4.1 Newtonian mechanics of discrete 2-body reactions

Only a summary of the results is given here; for more information, see the reference [10].
A relativistic treatment is developed in Appendix A. It is assumed that the target is at
rest and that the incident particle has energy E in laboratory coordinates.
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The following notations are used for the masses of the particles involved:
myi, the mass of the incident particle,
mtarg, the mass of the target,
myo, the mass of the emitted particle,
mres, the mass of the residual.

For the conversion between center-of-mass and laboratory coordinates, define the mass
ratios

γ =
myimyo

(myi +mtarg)2
,

β =
mres

myo +mres
,

and

α =
βmtarg

myi +mtarg
.

Velocity vectors are printed in bold face V with magnitude (speed) in math italics

V = |V|.

For a target at rest and an incident particle with energy E in laboratory coordinates,
the center of mass moves in the direction of motion of the incident particle with velocity
Vtrans having magnitude squared

V 2
trans = V2

trans =
2myiE

(myi +mtarg)2
. (4.3)

The reaction may have a nonzero energy value Q, arising for example from the ex-
citation level of the target and/or residual nucleus in inelastic scattering. A nonzero Q
value may also arise from the mass difference in a knock-on reaction. It follows from con-
servation of energy and momentum that in center-of-mass coordinates the energy of the
emitted particle is given by

E′cm = Ψ(E) = αE + βQ. (4.4)

This defines the function Ψ appearing in Eq. (4.1). The speed of the outgoing particle in
the center-of-mass frame is

V ′cm = |V′cm| =

√
2E′cm

myo
. (4.5)

It follows from Eq. (4.4) that for an endothermic reaction (Q < 0), the threshold is at

E =
−βQ
α

.
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Vtrans

V′lab
V′cm

cos−1 µlab
cos−1 µcm

Figure 4.1: Newtonian mapping to laboratory coordinates

4.1.1 The boost to the laboratory frame

As illustrated in Figure 4.1, the boost from center-of-mass to laboratory coordinates is
obtained by adding the velocities

V′lab = Vtrans + V′cm. (4.6)

Consequently, the energy of the outgoing particle in the laboratory frame is

E′lab =
myoV

′
lab

2

2
=
myo

2
(V 2

trans + V ′cm
2

+ 2Vtrans ·V′cm).

In terms of the notation Eq. (4.4) and

E′trans =
myoV

2
trans

2
= γE, (4.7)

this equation takes the form

E′lab = E′trans + E′cm + 2µcm

√
E′transE

′
cm. (4.8)

Here, µcm is the direction cosine defined by the relation

Vtrans ·V′cm = µcmVtransV
′

cm.

It is also necessary to determine the direction cosine µlab in the laboratory frame for

Vtrans ·V′lab = µlabVtransV
′

lab.

This is most easily derived from the trigonometry in Figure 4.1

µlabV
′

lab = Vtrans + µcmV
′

cm.

In terms of the energies defined in Eqs. (4.4), (4.7), and (4.8), this relation takes the form

µlab =

√
E′trans + µcm

√
E′cm√

E′lab

if E′lab > 0. (4.9)
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It is clear from Eq. (4.6) that

E′lab =
myoV

′
lab

2

2
= 0,

if and only if
V′cm = −Vtrans.

In this case, the value of µlab is undefined.

4.2 Computation of the transfer matrix from data for dis-
crete 2-body reactions

Consider the use of data g(µcm | E) in Eq. (4.1) in the computation of integrals for
the transfer matrix Eqs. (2.7) and (2.10), either as tables or as Legendre coefficients in
Eq. (4.2). In these integrals the multiplicity is always M(E) = 1 for discrete 2-body
reactions. The discussion given here concentrates on the evaluation of the integral in
Eq. (2.7). The integral in Eq. (2.10) differs only in that its integrand contains an extra
factor E′lab, the energy of the outgoing particle in the laboratory frame.

Because the probability density data g(µcm | E) in Eq. (4.1) is given in center-of-
mass coordinates, it is desirable to transform the integrals Eqs. (2.7) to the center-of-mass
frame. The center-of-mass form of the integral Eq. (2.7) is

Inum
g,h,` =

∫
Eg
dE σ(E)w(E)φ̃`(E)

∫
µcm

dµcm g(µcm | E)

∫
E′

cm

dE′cm P`(µlab) δ(E′cm −Ψ(E))

(4.10)
with Ψ(E) as given by Eq. (4.4). The range of integration over µcm and E′cm in Eq. (4.10)
is such that for fixed incident energy E in Eg, the energy E′lab of the outgoing particle
given by Eq. (4.8) lies in E ′h.

Integration of Eq. (4.10) with respect to E′cm yields the result that

Inum
g,h,` =

∫
Eg
dE σ(E)w(E)φ̃`(E)

∫
µcm

dµcm P`(µlab)g(µcm | E), (4.11)

where it is understood that the direction cosine µlab in the laboratory frame is calculated
from Eq. (4.9) and that the range of integration over µcm is such that E is in E ′h.

The merced code steps through the data g(µcm | E) to compute contributions to
the entries of the transfer matrix in Eq. (4.11). The case of tabular data with direct
interpolation (Section 3.2.1) is illustrated in the laboratory frame in Figure 4.2. This
figure shows an integration region identified by an incident energy bin Eg and an outgoing
energy bin E ′h. The data g(µcm | E) are given at incident energies Ek−1 and Ek, such
that the interval Ek−1 < E < Ek overlaps the energy bin Eg. Furthermore, it is assumed
that data entries g(µcm | E) for µcm = µcm,j−1 and µcm = µcm are given at E = Ek−1

or at E = Ek and that the table contains no entries g(µcm | Ek−1) or g(µcm | Ek) for
µcm,j−1 < µcm < µcm. Any missing data values g(µcm,j−1 | Ek−1) or g(µcm,j | Ek−1) or
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Ek−1 Ek E

E′
µcm = µcm,j−1

µcm = µcm,j

E ′h

Eg

Figure 4.2: Integration region in the incident energy bin Eg and outgoing bin E ′h for
probability data given at incident energies Ek−1 and Ek and direction cosines µcm,j−1

and µcm,j shown in the laboratory frame

Ek−1 Ek

E

−1

µcm,j−1

µcm,j

µcm = 1 E ′h
Eg

Figure 4.3: Integration region of Fig. 4.2 shown in center-of-mass coordinates

g(µcm,j−1 | Ek) or g(µcm,j | Ek) are computed by interpolation with respect to µcm. The
integration region in the laboratory frame for the contribution of such a set of data to
the integral Inum

g,h,` in Eq. (4.10) is the shaded area of Figure 4.2. This region is mapped to
center-of-mass coordinates in Figure 4.3.

When the tabular data are interpolated by the method of cumulative points of Sec-
tion 3.2.3, the geometry is complicated by the local unit-base transformations, but the
basic ideas are the same. Finally, for probability density data g(µcm | E) given as Legen-
dre coefficients in Eq. (4.2), the only significant difference is that the range of direction
cosines becomes −1 ≤ µcm ≤ 1 with the limitation that the energy E of the outgoing
particle lies in the energy bin E ′h.
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4.3 Format of data in the input file

For tabulated probability density data g(µcm | E), the data identifier as in Section 12.3.1,
is

Process: two body transfer matrix

and for the Legendre coefficients it is
Process: Legendre two body transfer matrix

4.3.1 Data for both forms of probability density

Because the boost from the center-of-mass frame to the laboratory frame depends on
the rest masses of the particles, these must be included in the input file as described in
Section 12.9. The format for doing so is

Projectile’s mass: myi

Target’s mass: mtarg

Product’s mass: myo

Reaction’s Q value: Q
The values of these quantities must be in the same units as the energy bin boundaries.

The code computes the rest mass of the residual from the Q value and the masses of
the other particles. If the input file also contains the line

Residual’s mass: mres

the code compares this value with the mass it computed, printing a warning message if
they are significantly different.

The code may use either Newtonian or relativistic mechanics in its computations as
specified in Section 12.3.5.

The specifications that the energy E of the incident particle is given in the laboratory
frame and the direction cosine µcm in the center-of-mass frame are, Section 12.3.4,

Projectile Frame: lab

Product Frame: CenterOfMass

4.3.2 Angular probability density tables

The identification line for tabulated angular probability densities is
Angular data: n = K

where K is the number of incident energies E. This is followed by the interpolation rules
for probability densities from Section 12.2.3

Incident energy interpolation: probability interpolation flag
Outgoing cosine interpolation: list interpolation flag

There are then K blocks, one for each incident energy Ek,
Ein: Ek: n = Jk

with Jk pairs of values µcm,j and g(µcm | Ek). Thus, with incident energy in MeV a table
of angular probability densities g(µcm | E) may look like

Angular data: n = 22
Incident energy interpolation: lin-lin direct
Outgoing cosine interpolation: lin-lin
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Ein: 1.500000000000e-01 : n = 2

-1.000000000000e+00 5.000000000000e-01

1.000000000000e+00 5.000000000000e-01

Ein: 2.000000000000e-01 : n = 2

-1.000000000000e+00 4.550000000000e-01

1.000000000000e+00 5.450000000000e-01

· · ·
Ein: 2.000000000000e+01 : n = 29

-1.000000000000e+00 3.873180000000e-02

-9.500000000000e-01 2.943580000000e-02

-9.000000000000e-01 2.582090000000e-02

· · ·
9.000000000000e-01 2.530490000000e+00

9.500000000000e-01 3.873180000000e+00

1.000000000000e+00 8.262750000000e+00

4.3.3 Legendre coefficients of angular probability density

Legendre coefficient data of the form Eq. (4.2) for discrete 2-body reactions are given as
Legendre coefficients: n = K

where K is the number of incident energies E. This is followed by the interpolation rule
for simple lists from Section 12.2.3

Interpolation: list interpolation flag
The file closes with K sets of data

Ein: Ek: n = Lk
with Lk Legendre coefficients c`(Ek) for ` = 0, 1, . . . , Lk − 1 in Eq. (4.2). With incident
energy in units of MeV, an example of this portion of the input file is

Legendre coefficients: n = 17

Interpolation: lin-lin
Ein: 1.843100e+00: n = 3

1.000000e+00

0.000000e+00

0.000000e+00

· · ·
Ein: 2.000000e+01: n = 12

1.000000e+00

4.640500e-01

2.320700e-01

8.593700e-02

5.338700e-02

2.465600e-02

-1.500600e-03

-1.756300e-02

-1.108000e-02
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1.931100e-02

1.150900e-02

5.643500e-03
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5 Isotropic energy probability densities in the

laboratory frame

The GND library supports several formats for energy probability densities which are
isotropic in the laboratory frame. These data are typically used for equilibrium reactions
and for fission neutrons. Because the outgoing distribution is isotropic, the probability
density π(E′lab, µlab | E) in Eq. (2.2) takes the form

π(E′lab, µlab | E) = π0(E′lab | E). (5.1)

Consequently, for the number-conserving matrices only the ` = 0 Legendre order,

Inum
g,h,0 =

∫
Eg
dE σ(E)M(E)w(E)φ̃0(E)

∫
E ′h
dE′lab π0(E′lab | E) (5.2)

needs to be computed, and Eq. (2.10) for the energy-preserving transfer matrix becomes

Ien
g,h,0 =

∫
Eg
dE σ(E)M(E)w(E)φ̃0(E)

∫
E ′h
dE′lab π0(E′lab | E)E′lab. (5.3)

The data π0(E′lab | E) may be given in GND either as a table of values or as parameters
in a function formula. Because several of the function formulas for isotropic energy prob-
ability densities are given in terms of incomplete gamma functions, these are discussed
first. This is followed by a presentation of the functional formulas for isotropic probability
densities. Then, the treatment of tables of π0(E′lab | E) for isotropic emission in the labo-
ratory frame is discussed. The section closes with the special treatment of the evaporation
of delayed fission neutrons.

5.1 Computational aspects of incomplete gamma functions

Many of the function formulas for π0(E′lab | E) make use of the lower incomplete gamma
function

γ(κ, x) =

∫ x

0
dt tκ−1e−t (5.4)

with κ > 0. The upper incomplete gamma function is

Γ(κ, x) =

∫ ∞
x

dt tκ−1e−t, (5.5)

and they are related by

γ(κ, x) + Γ(κ, x) = Γ(κ) =

∫ ∞
0

dt tκ−1e−t.
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In order to reduce the difficulties of computer round-off, the formula∫ b

a
dt tκ−1e−t = γ(κ, b)− γ(κ, a)

is used when 0 ≤ a < b ≤ 1, and∫ b

a
dt tκ−1e−t = Γ(κ, a)− Γ(κ, b)

is used when 1 ≤ a < b. Either form may be used when a < 1 < b.
Note that even though it is possible to write down exact formulas for γ(κ, x) when κ

is a positive integer, it is better not to use them in the computations. For example, it is
true that

γ(2, x) = 1− (1 + x)e−x.

For values of x near zero, this formula involves subtracting from 1 a number very close to
1 to get a result close to x2/2. This is may lead to bad round-off errors in the computer
arithmetic, and it is far better to use the software for γ(2, x).

5.2 Functional formulas for isotropic probability densities

The functional formulas used in GND for energy probability densities π0(E′lab | E) are the
evaporation model, the Maxwell model, the Watt model, and the Madland-Nix model.
These models are discussed in turn. For all of these models the energy of the outgoing
particle is in the laboratory frame.

5.2.1 Evaporation model

For the evaporation model the formula is

π0(E′lab | E) = CE′lab exp

{
−
E′lab

Θ(E)

}
(5.6)

with 0 ≤ E′lab ≤ E − U . The value of C in Eq. (5.6) is chosen so that∫ E−U

0
dE′lab π0(E′lab | E) = 1.

That is,

C =
1

Θ2γ(2, (E − U)/Θ)
.

The data consist of the energy of the reaction U and pairs of values {E,Θ(E)}. The
1-dimensional interpolation methods of Section 3.1 are used to determine the value of Θ
for intermediate values of the energy E of the incident particle.
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According to the comment on incomplete gamma functions above, for the calculation
of Inum

g,h,0 on an outgoing energy bin, E0 ≤ E′lab ≤ E1 the expression∫ E1

E0

dE′lab π0(E′lab | E) = CΘ2[γ(2, E1/Θ)− γ(2, E0/Θ)]

is used when E0 ≤ Θ, and∫ E1

E0

dE′lab π0(E′lab | E) = CΘ2[Γ(2, E0/Θ)− Γ(2, E1/Θ)]

is used when E0 > Θ. Analogously, for the calculation of Ien
g,h,0∫ E1

E0

dE′labE
′
labπ0(E′lab | E) = CΘ3[γ(3, E1/Θ)− γ(3, E0/Θ)]

is used when E0 ≤ Θ, and∫ E1

E0

dE′labE
′
labπ0(E′lab | E) = CΘ3[Γ(3, E0/Θ)− Γ(3, E1/Θ)]

is used otherwise.

Input file data for the evaporation model

The process identifier in Section 12.3.1 is
Process: evaporation spectrum

These data are always in the laboratory frame,
Product Frame: lab

One item of model-dependent data in Section 12.9 is the value of U used in defining
the range of outgoing energies E in Eq. (5.6), and it is given by

U: U
The other input data are the values of Θ(E) in Eq. (5.6) depending on the incident
energy E. All of these energies, U , E, and Θ(E), must be in the same units as the energy
bins in Sections 12.3.2 and 12.3.3. The format for these data is

Theta: n = n
Interpolation: interpolation flag

with n pairs of entries {E,Θ(E)}. The interpolation flag is one of those for simple lists as
in Section 12.2.3. For example, in units of MeV one may have

U: 11.6890

Theta: n = 2

Interpolation: lin-lin

12.0 1.04135

20.0 1.04135
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5.2.2 Maxwell model

The formula for the Maxwell is

π0(E′lab | E) = C
√
E′lab exp

{
−
E′lab

Θ(E)

}
(5.7)

for 0 ≤ E′lab ≤ E − U . This model is often used for fission neutrons. The value of C in
Eq. (5.7) is given by

C =
1

Θ3/2γ(3/2, (E − U)/Θ)
.

Because of round-off problems with small values of x, it is unwise to use the mathematically
equivalent formula

γ(3/2, x) =

√
π

2
erf
{√

x
}
−
√
x e−x.

The data consist of the energy of the reaction U and pairs of values {E,Θ(E)}. The
parameter Θ is interpolated by the methods of Section 3.1 to obtain intermediate values.

Depending on the value of E0/Θ, the calculation of Inum
g,h,0 on an outgoing energy bin

E0 ≤ E′lab ≤ E1 uses the expression∫ E1

E0

dE′lab π0(E′lab | E) = CΘ3/2[γ(3/2, E1/Θ)− γ(3/2, E0/Θ)]

or ∫ E1

E0

dE′lab π0(E′lab | E) = CΘ3/2[Γ(3/2, E0/Θ)− Γ(3/2, E1/Θ)].

Analogously, the calculation of Ien
g,h,0 uses either∫ E1

E0

dE′labE
′
labπ0(E′lab | E) = CΘ5/2[γ(5/2, E1/Θ)− γ(5/2, E0/Θ)]

or ∫ E1

E0

dE′labE
′
labπ0(E′lab | E) = CΘ5/2[Γ(5/2, E0/Θ)− Γ(5/2, E1/Θ)].

Input file data for the Maxwell model

The process identifier in Section 12.3.1 is
Process: Maxwell spectrum

Again, this data is in the laboratory frame,
Product Frame: lab

One item of model-dependent data in Section 12.9 is the value of U used in defining
the range of outgoing energies E in Eq. (5.7), and it is given by

U: U
The other input data are the values of Θ(E) in Eq. (5.7) depending on the incident
energy E. These energies, U , E, and Θ(E), must all be in the same units as the energy
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bins in Sections 12.3.2 and 12.3.3. The format for such data is
Theta: n = n
Interpolation: interpolation flag

with n pairs of entries {E,Θ(E)}. The interpolation flag is one of those for simple lists as
in Section 12.2.3. For example, in units of MeV one may have

U: -20

Theta: n = 2

Interpolation: lin-lin

1.0e-11 1.28

20.0 1.28

5.2.3 Watt model

Another model sometimes used for fission neutrons in GND is the Watt formula

π0(E′lab | E) = C sinh
√
bE′lab exp

{
−
E′lab

a

}
(5.8)

for 0 ≤ E′lab ≤ E − U . The value of C in Eq. (5.8) is given by

1

C
=
az
√
π

2
exp

{
z2
}

(erf {y − z} − erf {y + z})− a exp
{
−y2

}
sinh

√
b(E − U)

with y =
√

(E − U)/a and z =
√
ab/4. The data consist of the energy of the reaction U

and pairs of values {E, a(E)} and {E, b(E)}. For intermediate incident energies E, the
parameters b and a are interpolated by the methods of Section 3.1.

Input file data for the Watt model

The process identifier in Section 12.3.1 is
Process: Watt spectrum

This data is in the laboratory frame,
Product Frame: lab

One item of model-dependent data in Section 12.9 is the value of U used in defining
the range of outgoing energies E in Eq. (5.8), and it is given by

U: U
The other input data are the values of a(E) and b(E) in Eq. (5.8). The energies, U , E,
and a(E), must be in the same units as the energy bins in Sections 12.3.2 and 12.3.3, and
the units for b(E) are the reciprocal of these units. The format for these data is

a: n = n
Interpolation: interpolation flag

with n pairs of entries {E, a(E)} and
b: n = n
Interpolation: interpolation flag

with n pairs of entries {E, b(E)}. The interpolation flags for a and b are those for simple
lists as in Section 12.2.3. For example, with energies in MeV one may have
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U: -10

a: n = 11

Interpolation: lin-lin

1.000000e-11 9.770000e-01

1.500000e+00 9.770000e-01

· · ·
3.000000e+01 1.060000e+00

b: n = 11

Interpolation: lin-lin

1.000000e-11 2.546000e+00

1.500000e+00 2.546000e+00

· · ·
3.000000e+01 2.620000e+00

5.2.4 Madland-Nix model

The Madland-Nix model [11] for prompt fission neutrons uses the formula

π0(E′lab | E) =
C

2
[g(E′lab, EFL) + g(E′lab, EFH)] (5.9)

for
0 ≤ E′lab ≤ maxEout, (5.10)

where maxEout is one of the input parameters. Note that the range of outgoing energies
Eq. (5.10) is independent of the incident energy. In fact, the ENDF/B-VII manual [7] gives
no way for the data to specify the maximum outgoing energy for the Madland-Nix model.

In Eq. (5.9) EFL is the average kinetic energy of the light fission fragments, and EFH
is the average kinetic energy of the heavy fission fragments. The function g(E′lab, EF ) in
Eq. (5.9) is given in terms of the parameters Tm and

u1 =
(
√
E′lab −

√
EF )2

Tm
, u2 =

(
√
E′lab +

√
EF )2

Tm
(5.11)

by the formula

g(E′lab, EF ) =
1

3
√
EFTm

[
u

3/2
2 E1(u2)− u3/2

1 E1(u1)− Γ(3/2, u2) + Γ(3/2, u1)
]
, (5.12)

where E1 denotes the exponential integral

E1(x) =

∫ ∞
x

dt
1

t
e−t.

It is clear from the definitions that

E1(x) = Γ(0, x),
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but software to compute Γ(κ, x) generally requires that κ be positive. The data for the
Madland-Nix model contains the average energies EFL and EFH as well as pairs of values
{E, Tm(E)}. The interpolation rule for Tm is also given.

If the range of outgoing energies is taken to be 0 ≤ E′lab <∞ in Eq. (5.9), then C = 1.
For other ranges of E′lab and for computation of Inum

g,h,0, it follows from Eq. (5.12) that it is
necessary to compute integrals

Gi(a, b) =

∫ b

a
dE′lab u

3/2
i E1(ui) (5.13)

and

Hi(a, b) =

∫ b

a
dE′lab Γ(3/2, ui) (5.14)

with i = 1, 2.
The values of the integrals Eqs. (5.13) and (5.14) are conveniently expressed in terms

of the parameters
α =

√
Tm, β =

√
EF , (5.15)

A =
(
√
a+ β)2

α2
, B =

(
√
b+ β)2

α2
, (5.16)

and

A′ =
(β −

√
a)2

α2
, B′ =

(
√
b− β)2

α2
. (5.17)

One might think it sufficient to calculate

Gi(0, b) and Hi(0, b)

in Eqs. (5.13) and (5.14) and to use

Gi(a, b) = Gi(0, b)− Gi(0, a),

Hi(a, b) = Hi(0, b)−Hi(0, a)

for i = 1, 2. In fact, this approach is suitable only for i = 2. The reason for the difficulty
is seen from Eqs. (5.11) and (5.15), in that

u
3/2
1 =

{
(β −

√
E′lab)3/α3 for 0 ≤ E′lab ≤ β2,

(
√
E′lab − β)3/α3 for E′lab > β2.

(5.18)

Consequently, the integrals used to compute Gi(a, b) and Hi(a, b) in Eqs. (5.13) and
(5.14) are evaluated as

G1(a, β2) =
αβ

2
γ
(
2, A′

)
− 2α2

5
γ

(
5

2
, A′
)

+

[
2α
√
A′

5
− β

2

]
αA′

2
E1(A′) for 0 ≤ a < β2,

(5.19)
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0 β2 b E′lab

B′

t

t = (
√
E′lab − β)2/α2

Figure 5.1: Domain of integration for G1(β2, b) with b > β2 in the Madland-Nix model

G1(β2, b) =
αβ

2
γ
(
2, B′

)
+

2α2

5
γ

(
5

2
, B′
)

+

[
β

2
+

2α
√
B′

5

]
αB′

2
E1(B′) for b > β2,

(5.20)

G2(0, b) =
2α2

5
γ

(
5

2
, B

)
− αβ

2
γ (2, B)− β5

10α3
e−B +[

2α2

5
B5/2 − αβ

2
B2 +

β5

10α3

]
E1(B)− C1 for b ≥ 0,

(5.21)

H1(a, β2) = 2αβ γ
(
2, A′

)
− α2 γ

(
5

2
, A′
)

+ (β2 − a) Γ

(
3

2
, A′
)

for 0 ≤ a < β2, (5.22)

H1(β2, b) = 2αβ γ
(
2, B′

)
+ α2 γ

(
5

2
, B′
)

+ (b− β2) Γ

(
3

2
, B′
)

for b ≥ β2, (5.23)

and

H2(0, b) = α2 γ

(
5

2
, B

)
−2αβ γ (2, B)+β2 γ

(
3

2
, B

)
+bΓ

(
3

2
, B

)
−C2 for b > 0. (5.24)

In the relations for G2(0, b) and H2(0, b) above, C1 and C2 are constants of integration.
In order to illustrate how the above integration formulas may be derived, consider

the case of Eq. (5.20) for G1(β2, b) defined in Eq. (5.13) with u1 as in Eq. (5.18) and
with b > β2. Substitution of the definition of the exponential integral E1 gives the double
integral

G1(β2, b) =

∫ b

β2

dE′lab u
3/2
1

∫ ∞
u1

dt
1

t
e−t.

The region of integration for this integral is the union of the two shaded domains in
Figure 5.1. The integral over the darker shaded region of Figure 5.1 is

J11 =

∫ b

β2

dE′lab u
3/2
1

∫ B′

u1

dt
e−t

t
.

Reversal of the order of integration transforms this integral to

J11 =

∫ B′

0
dt

1

t
e−t
∫ (α

√
t+β)2

β2

dE′lab u
3/2
1 .
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Under the substitution
E′lab = (α

√
u1 + β)2,

the inner integral takes the form∫ (α
√
t+β)2

β2

dE′lab u
3/2
1 =

∫ t

0
du1 u

3/2
1

(
α2 +

αβ
√
u1

)
=

2α2

5
t5/2 +

αβ

2
t2.

Thus, it follows that the integral over the dark shaded region in Figure 5.1 is

J11 =
2α2

5
γ(5/2, B′) +

αβ

2
γ(2, B′).

This relation gives the first two terms on the right-hand side of Eq. (5.20).
The other terms on the right-hand side of Eq. (5.20) result from evaluation of the

integral over the light shaded region in Figure 5.1,

J12 =

∫ b

β2

dE′lab u
3/2
1

∫ ∞
B′

dt
e−t

t
=

∫ ∞
B′

dt
1

t
e−t
∫ b

β2

dE′lab u
3/2
1 .

Input file data for the Madland-Nix model

The process identifier in Section 12.3.1 is
Process: Madland-Nix spectrum

This data is in the laboratory frame,
Product Frame: lab

The model-dependent data in Section 12.9 contains values of EFL, the average kinetic
energy of the light fission fragment and EFH , the average kinetic energy of the heavy
fission fragment. These parameters are given by

EFL: EFL
EFH: EFH

The user must also specify a maximum outgoing energy maxEout for use in Eq. (5.10).
The other input data are the values of Tm as a function of incident energy in Eq. (5.9).

The format for these data is
TM: n = n
Interpolation: interpolation flag

with n pairs of entries {E, Tm(E)}. The interpolation flag is one of those for simple lists
as in Section 12.2.3. The energies, EFL, EFH , E, and Tm(E), must be in the same units
as the energy bins in Sections 12.3.2 and 12.3.3. For example, in MeV units one may have

EFL: 1.029979

EFH: 0.5467297

maxEout: 60

TM: n = 38

Interpolation: lin-lin

1.0000000e-11 1.0920640e+00

5.0000010e-01 1.1014830e+00

· · ·
2.0000000e+01 1.1292690e+00
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5.3 Energy probability density tables

Another form of isotropic probability density data π0(E′lab | E) Eq. (5.1) in GND is in the
form of tables. The computation of transfer matrices for such data given in the laboratory
frame is discussed here. For data in the center-of-mass frame, this is a special case of
Legendre expansions discussed in Section 8 with Legendre order zero. For given incident
energies Ei, the data consist of pairs {E′k,j , π0(E′k,j | Ek)} as in Eq. (3.5). For such tabular
data, computation of the integrals Inum

g,h,0 in Eq. (5.2) and Ien
g,h,0 in Eq. (5.3) depends on the

type of interpolation used between different incident energies. The effects of the unit-base
map Eq. (3.19) are discussed here. The considerations are the same, whether the unit-base
map is used alone or as a component of interpolation by cumulative points.

After the unit-base transformation Eq. (3.19) the integrals Eqs. (5.2) and (5.3) take
the form

Inum
g,h,0 =

∫
Eg
dE σ(E)M(E)w(E)φ̃0(E)

∫
Ê ′h
dÊ′lab π̂0(Ê′lab | E) (5.25)

and

Ien
g,h,0 =

∫
Eg
dE σ(E)M(E)w(E)φ̃0(E)

∫
Ê ′h
dÊ′lab π̂0(Ê′lab | E)E′lab. (5.26)

In these intergrals Ê ′h denotes result of mapping the outgoing energy bin E ′h with the

transformation Eq. (3.19). Furthermore, E′lab in Eq. (5.26) is to be obtained from Ê′lab

using the inverse unit-base mapping Eq. (3.25).
Figure 5.2 illustrates the effect of the unit-base map Eq. (3.19). For incident energies

E = Ek−1 and E = Ek, 1-dimensional interpolation is used to produce data at a common
set of unit-base outgoing energies {Ê′j}. In the left-hand portion of Figure 5.2, suppose
that probability densities π0(E′lab | E) are given at incident energies E = Ek−1 and E = Ek
and at unit-base outgoing energies Ê′j−1 and Ê′j . Then for this set of data, the range of
integration over E in Eqs. (5.25) or (5.26) requires both that Ek−1 < E < Ek and that E
be in the bin Eg. The outgoing energy E′lab is required to be in the bin E ′h and to satisfy

the constraint Ê′j−1 < Ê′lab < Ê′j .
The right-hand portion of Figure 5.2 shows a rectangle with vertices at E = Ek−1

and E = Ek and at Ê′lab = Ê′j−1 and Ê′lab = Ê′j , and data values π̂`(Ê
′
lab | E) are

given at these corners after any required interpolation in outgoing energy. The values of
π̂`(Ê

′
lab | E) interior to this rectangle are determined by interpolation. The contribution

of this potion of the data to the transfer matrix is obtained by integrating Eqs. (5.25) or
(5.26) over the shaded region in Figure 5.2.

5.3.1 Input of isotropic energy probability tables

The process identifier in Section 12.3.1 is
Process: isotropic energy probability table

This option permits either the center-of-mass or the laboratory frame. For data in the
laboratory frame, the command in Section 12.3.4 is

Product Frame: lab
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E

E′

Ek−1 Ek

E ′h

Eg

E

Ê′

1

0

Ê′j−1

Ê′j

Ek−1 Ek

Ê ′h

Eg

Ê′ = Ê′j

Ê′ = Ê′j−1

Figure 5.2: Domains of integration for tabulated probability densities, laboratory frame
on the left and unit base on the right

The data as in Section 12.9 for tables of isotropic energy probability densities is entered
in the format

EEpPData: n = K
Incident energy interpolation: probability interpolation flag
Outgoing energy interpolation: list interpolation flag

The interpolation flag for incident energy is one those used for probability density tables
in Section 12.2.3, and that for outgoing energy is one for simple lists. This information is
followed by K sections of the form

Ein: E: n = J
with J pairs of values of E′lab and πE(E′lab | E).

An example with energies in eV of the model-dependent section of the input file for
isotropic energy probability density tables is

EEpPData: n = 4

Incident energy interpolation: lin-lin unitbase

Outgoing energy interpolation: flat

Ein: 1.722580000000e+07 : n = 34

0.000000000000e+00 0.000000000000e+00

1.000000000000e-08 0.000000000000e+00

1.778280000000e-08 2.766140000000e-07

3.162280000000e-08 4.918960000000e-07

· · ·
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5.623410000000e-01 8.396540000000e-01

1.000000000000e+00 0.000000000000e+00

· · ·
Ein: 2.000000000000e+07 : n = 38

0.000000000000e+00 0.000000000000e+00

7.500000000000e-03 0.000000000000e+00

1.333710000000e-02 4.877750000000e-14

2.371710000000e-02 8.674000000000e-14

· · ·
2.250000000000e+06 4.413810000000e-08

2.750000000000e+06 0.000000000000e+00

Note that for these data it is not clear what should be used as the minimum outgoing
energy. In particular for incident energy E0 = 1.72258 × 107 eV, it is not clear whether
it is more reasonable to set E′0,min = 0 or E′0,min = 1.77828 × 10−8 eV in the unit-base
interpolation. The merced code uses E′0,min = 0, to be consistent with Eq. (3.8).

5.4 General evaporation of delayed fission neutrons

For some fissionable targets, the energy spectra data for delayed fission neutrons is repre-
sented in GND in the form

π0(E′lab | E) = g

(
E′lab

Θ(E)

)
. (5.27)

For this model, values of Θ are given as a function of E, and values of g as a function of
x = E′lab/Θ(E). In fact, all of the general evaporation data in GND have Θ constant, and
the merced code requires that Θ be constant. The isotropic probability density π0(E′lab |
E) in Eq. (5.27) is then independent of E. In this case, the integrals Inum

g,h,0 in Eq. (5.2) and
Ien
g,h,0 in Eq. (5.3) needed for the transfer matrix become simply products of 1-dimensional

integrals

Inum
g,h,0 =

∫
Eg
dE σ(E)M(E)w(E)φ̃0(E)

∫
E ′h
dE′lab g(E′lab/Θ)

and

Ien
g,h,0 =

∫
Eg
dE σ(E)M(E)w(E)φ̃0(E)

∫
E ′h
dE′lab g(E′lab/Θ)E′lab.

5.4.1 Input of data for the general evaporation model

For the general evaporation model, the process identifier in Section 12.3.1 is
Process: general evaporation

This data is in the laboratory frame,
Product Frame: lab

The model-dependent data in Section 12.9 consist of pairs {E,Θ(E)} and of pairs
{x, g(x)} with x = E′lab/Θ. The format for these data is

Theta: n = n
Interpolation: interpolation flag
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with n pairs of entries {E,Θ(E)} and
g: n = n
Interpolation: interpolation flag

with n pairs of entries {x, g(x)}. In both cases, the interpolation flag is one of those for
simple lists as in Section 12.2.3. The Θ parameter is dimensionless, and the units for E
and x must be the same as those for the energy bins. For example, in MeV one may have

Theta: n = 2

Interpolation: lin-lin

1.0e-11 1.0

20.0 1.0

g: n = 185

Interpolation: lin-lin

0.0000000e+00 3.1433980e-01

1.0000000e-02 2.8124280e+00

2.0000000e-02 3.1373560e+00

· · ·
1.8400000e+00 0.0000000e+00
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6 Uncorrelated energy-angle probability

densities

The simplest form of joint energy-angle probability density data in GND is as tables of
uncorrelated dependence on outgoing energy E′ and direction cosine µ,

π(E′, µ | E) = πµ(µ | E)πE(E′ | E). (6.1)

The energy E′ and direction cosine µ may be in either the laboratory or center-of-mass
frame.

For this model, the energy probability density is always given in the form of tables of
pairs {E′i,j , πE(E′i,j | Ei)}.

For uncorrelated energy-angle probability densities in the center-of-mass frame

π(E′cm, µcm | E) = πµ(µcm | E)πE(E′cm | E),

the merced code currently handles only the case of

πµ(µcm | E) =
1

2
for −1 ≤ µ ≤ 1

and for all incident energies E. Furthermore, the values of πµ(µcm | E) must be given as
pairs {µi,j , πµ(µi,j | Ei)}. Such data are treated as Legendre expansions Eq. (8.1) of order
zero and are processed as described in Section 8.

For data in the laboratory frame

π(E′lab, µlab | E) = πµ(µlab | E)πE(E′lab | E), (6.2)

the values of πµ(µlab | E) may be given either as pairs {µi,j , πµ(µi,j | Ei)} or as Legendre
coefficients c`(E) in

πµ(µlab | E) =
∑
`

(
`+

1

2

)
c`(E)P`(µlab). (6.3)

For angular probability densities of the form of Eq. (6.3), the merced code converts the data
to Legendre expansions of energy-angle probability densities Eq. (7.1) using the relation

π`(E
′ | E) = c`(E)πE(E′ | E).

These data are processed as in Section 7.
The discussion here proceeds with case of uncorrelated energy-angle probability densi-

ties Eqs. (6.2) given in the laboratory coordinate system as tables of pairs {E′i,j , πE(E′i,j |
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Ei)} and {µi,j , πµ(µi,j | Ei)}. The incident energies Ei need not be the same for the two
data sets, but the ranges of incident energy must agree.

For uncorrelated energy-angle probability densities Eq. (6.2) the number-preserving
integral Eq. (2.7) becomes

Inum
gh,` =

∫
Eg
dE σ(E)M(E)w(E)φ̃`(E)∫

E ′h
dE′lab πE(E′lab | E)

∫
µlab

dµlab P`(µlab)πµ(µlab | E), (6.4)

and the energy-preserving integral Eq. (2.10) takes the form

Ien
gh,` =

∫
Eg
dE σ(E)M(E)w(E)φ̃`(E)∫

E ′h
dE′lab πE(E′lab | E)E′lab

∫
µlab

dµlab P`(µlab)πµ(µlab | E). (6.5)

It is clear from Eqs. (6.4) and (6.5) that one should first evaluate the integrals

U`(E) =

∫
µlab

dµlab P`(µlab)πµ(µlab | E) (6.6)

for the Legendre orders ` required. When interpolation of πµ(µlab | E) in µlab is piecewise
linear or histogram, the integrand in Eq. (6.6) is a piecewise polynomial and the integrals
are evaluated exactly using Gaussian quadrature. Currently, the code handles Legendre
order ` ≤ 18 in this way. Integrals with higher Legendre order are evaluated using adaptive
quadrature.

For the integrals

Vn(E) =

∫
E ′h
dE′lab πE(E′lab | E)

and

VE(E) =

∫
E ′h
dE′lab πE(E′lab | E)E′lab

the same geometric considerations apply as for the integrals Eqs. (5.2) and (5.3) of tabular
isotropic data π0(E′lab | E) as discussed in Section 5.3. That is, if unit-base interpolation
Eq. (3.20) is being used, then the integral Vn(E) takes the form

Vn(E) =

∫
Ê ′h
dÊ′lab πE(Ê′lab | E),

and the range of integration is determined by the geometry of the shaded region in Fig-
ure 5.2.
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6.1 Input of data for uncorrelated energy-angle probability
densities

The process identifier in Section 12.3.1 is
Process: Uncorrelated energy-angle data transfer matrix

These data are in either the laboratory or center-of-mass frame, Section 12.3.4,
Product Frame: lab

or
Product Frame: CenterOfMass

In the model-dependent data in Section 12.9 angular probability density πµ(µ | E) may
be given as a table or as Legendre coefficients c`(E) in Eq. (6.3). The energy probability
density πE(E′ | E) in Eq. (6.1) is given as a table. All energies must be in the same units
as those used for the energy groups.

6.1.1 Input of angular probability densities

For angular probability densities given as a table, the form is
Angular data: n = K
Incident energy interpolation: probability interpolation flag
Outgoing cosine interpolation: list interpolation flag

The interpolation flag for incident energy is one of those used for probability density tables
in Section 12.2.3, while that for the cosine is for simple lists. This information is followed
by K sections of the form

Ein: E: n = J
with J pairs of values of µ and πµ(µ | E).

An example of such a table of angular probability densities in the laboratory frame
with energies in MeV is

Angular data: n = 10

Incident energy interpolation: lin-lin direct

Outgoing cosine interpolation: lin-lin

Ein: 2.82600000e+00 : n = 2

-1 0.5

1 0.5

· · ·
Ein: 2.00000000e+01: n = 10

-1.00000000e+00 2.86849000e-01

-9.00000000e-01 2.98228000e-01

-6.00000000e-01 3.48724000e-01

-3.00000000e-01 4.08451000e-01

-1.00000000e-01 4.54198000e-01

1.00000000e-01 5.05334000e-01

3.00000000e-01 5.62452000e-01

7.00000000e-01 6.93910000e-01

9.00000000e-01 7.47781000e-01
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1.00000000e+00 7.65990000e-01

In the center-of-mass frame, the data must imply that πµ(µcm | E) = 1/2 as in
Angular data: n = 2

Incident energy interpolation: lin-lin direct

Outgoing cosine interpolation: lin-lin

Ein: 2.82600000e+00 : n = 2

-1 0.5

1 0.5

Ein: 20 : n = 2

-1 0.5

1 0.5

For angular probability densities given as Legendre coefficients c`(E) in Eq. (6.3), the
format is

Legendre coefficients: n = K
where K is the number of incident energies E. This is followed by the interpolation rule
for simple lists from Section 12.2.3

Interpolation: list interpolation flag
This is followed by K sets of data

Ein: Ek: n = Lk
with Lk Legendre coefficients c`(Ek) for ` = 0, 1, . . . , Lk − 1 in Eq. (6.3). These data
must be in the laboratory frame.

An example of such data is
Legendre coefficients: n = 2

Interpolation: lin-lin

Ein: 19 : n = 2

1

0

Ein: 20 : n = 2

1

0.2

6.1.2 Input of energy probability densities

The energy probability density table is of the form
EEpPData: n = K
Incident energy interpolation: probability interpolation flag
Outgoing energy interpolation: list interpolation flag

The interpolation flags are those used for probability density tables in Section 12.2.3. This
information is followed by K sections of the form

Ein: E: n = J
with J pairs of values of E′ and πE(E′ | E).

EEpPData: n = 10

Incident energy interpolation: lin-lin unitbase
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Outgoing energy interpolation: lin-lin

Ein: 2.826000e+00: n = 3

1.000000e-03 0.000000e+00

2.000000e-03 1.000000e+03

3.000000e-03 0.000000e+00

· · ·
Ein: 2.000000e+01: n = 33

0.000000e+00 0.000000e+00

1.000000e-01 1.678010e-02

2.000000e-01 2.383160e-02

· · ·
1.530000e+01 1.150130e-02

1.560000e+01 9.260950e-03
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7 Legendre expansions of energy-angle

probability densities in the laboratory frame

Another representation of joint energy-angle probability densities π(E′, µ | E) in GND is
as a table of the Legendre coefficients π`(E

′ | E) in the expansion

π(E′, µ | E) =
∑
`

(
`+

1

2

)
π`(E

′ | E)P`(µ). (7.1)

Here, E denotes the energy of the incident particle in the laboratory frame. For the
outgoing particle, the energy E′ and direction cosine µ may be given in either center-of-
mass or laboratory coordinates. The treatment of laboratory-frame data is discussed in
this section, center-of-mass data in the next. Data given in the laboratory frame are much
easier to deal with because no boost is involved.

This type of data is ordered according to

{E, {E′, {π`(E′ | E)}}}. (7.2)

All of the data for the lowest incident energy E is given first, ordered according to out-
going energy E′. For given values of E and E′, the data consist of Legendre coefficients
π`(E

′, | E). Note that for this data format, the number of Legendre coefficients may vary,
depending on the energies E and E′.

The merced code also handles data for Legendre expansions of energy-angle probability
densities in the ENDL format [4],

{`, {E, {E′, π`(E′, | E)}}}. (7.3)

That is, the ` = 0 data are given first, ordered according to incident energy E. The data
then consist of pairs {E′, π`(E′, | E)} for given ` and E.

7.1 Computation of the transfer matrices for data in the
laboratory frame

The calculation of the transfer matrices for laboratory-frame data proceeds as follows. In
terms of π`(E

′
lab | E), the integral Eq. (2.7) for the number-preserving transfer matrix

takes the form

Inum
g,h,` =

∫
Eg
dE σ(E)M(E)w(E)φ̃`(E)

∫
E ′h
dE′lab π`(E

′
lab | E), (7.4)
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and Eq. (2.10) for the energy-preserving transfer matrix becomes

Ien
g,h,` =

∫
Eg
dE σ(E)M(E)w(E)φ̃`(E)

∫
E ′h
dE′lab π`(E

′
lab | E)E′lab. (7.5)

Computation of the integrals Eqs. (7.4) and (7.5) depends on the type of interpolation
used with respect to the energy E of the incident particle, and the procedures are exactly
the same as for integration in Eqs. (5.2) and (5.3) of the isotropic energy probability
densities π0(E′lab | E). Thus, if unit-base interpolation is to be used for π`(E

′
lab | E), then

the map Eq. (3.20) converts the integrals Eqs. (7.4) and (7.5) to the form

Inum
g,h,` =

∫
Eg
dE σ(E)M(E)w(E)φ̃`(E)

∫
Ê ′h
dÊ′lab π̂`(Ê

′
lab | E) (7.6)

and

Ien
g,h,` =

∫
Eg
dE σ(E)M(E)w(E)φ̃`(E)

∫
Ê ′h
dÊ′lab π̂`(Ê

′
lab | E)E′lab. (7.7)

In these intergrals Ê ′h denotes result of mapping the outgoing energy bin E ′h with the

transformation Eq. (3.20). Furthermore, E′lab in Eq. (7.7) is to be obtained from Ê′lab

using the inverse unit-base mapping Eq. (3.25).
The geometrical considerations involved in integrating Eqs. (7.6) and (7.7) over the

incident energy bin Eg and the mapped outgoing energy bin Ê ′h are illustrated in Figure 5.2.

7.2 Form of the input file for Legendre coefficient data in
the laboratory frame

These data may be input in either of two forms, the format in Eq. (7.2) from ENDF/B-
VII with all Legendre coefficients given together at each incident energy E and outgoing
energy E′ or that in Eq. (7.3) with one Legendre order at a time. For both formats, all
energies must be in the same units as the energy groups.

7.2.1 Input of all Legendre coefficients together

For energy-angle tables in the standard format of Eq. (7.2), the Section 12.3.1 line in the
input file to identify the data is

Process: Legendre energy-angle data

and the model-dependent data in Section 12.9 consists of the Legendre coefficients π`(E
′ |

E) in Eq. (7.2) at incident energies E and outgoing energies E′.
The format for the Legendre coefficient data in Section 12.9 given at K values of E is

Product Frame: lab

Legendre data by incident energy: n = K
Incident energy interpolation: probability interpolation flag
Outgoing energy interpolation: list interpolation flag

where the interpolation flag for incident energy is one for probability density tables as in
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Section 12.2.3, and that for outgoing energy is for a simple list. These lines are followed
by K sections of the form

Ein: E: n = Jk
for Jk outgoing energies E. For each value of E there is data

Eout: E′: n = L
with Legendre coefficients π`(E

′ | E) for ` = 0, 1, . . . , L− 1.
An example of these data with energies in MeV is

Legendre data by incident energy: n = 26

Incident energy interpolation: lin-lin cumulativepoints

Outgoing energy interpolation: flat

Ein: 1.140200e+01: n = 2

Eout: 0.000000e+00: n = 5

1.000000e+11

0.000000e+00

0.000000e+00

0.000000e+00

0.000000e+00

Eout: 1.000000e-11: n = 5

0.000000e+00

0.000000e+00

0.000000e+00

0.000000e+00

0.000000e+00

· · ·
Ein: 2.000000e+01: n = 27

Eout: 0.000000e+00: n = 5

4.179200e-02

0.000000e+00

4.179200e-06

0.000000e+00

3.395500e-07

etc.

7.2.2 Input of one Legendre coefficient at a time

For data given one Legendre coefficient at a time as in Eq. (7.3), the line in Section 12.3.1
of the input file identifying the data is

Process: Legendre EEpP data transfer matrix

The first lines in the data for Section 12.9 are
Product Frame: lab

LEEpPData: n = L
where L is the number of Legendre coefficients, one greater than the order of the Legendre
expansion. The interpolation flags as in Section 12.2.3 are

Incident energy interpolation: probability interpolation flag
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Outgoing energy interpolation: list interpolation flag
The interpolation flag for incident energy is one for probability density tables as in Sec-
tion 12.2.3, and that for outgoing energy is for a simple list.

The data are then given in L sections, each of the form
order: l = `: n = K

where K is the number of incident energies. For each incident energy E′ there is a block
of data

Ein: E: n = Jk
for Jk pairs of values of outgoing energy E′ and Legendre coefficient π`(E

′ | E). For
energies measured in MeV, these data may look like

LEEpPData: n = 4

Incident energy interpolation: lin-lin unitbase

Outgoing energy interpolation: lin-lin

order: l = 0: n = 10

Ein: 3.350000000000e+00 : n = 3

3.716500000000e-01 0.000000000000e+00

3.716800000000e-01 2.857140000000e+04

3.717200000000e-01 0.000000000000e+00

Ein: 4.460200000000e+00 : n = 2

1.238900000000e-01 1.008970000000e+00

1.115000000000e+00 1.008970000000e+00

· · ·
Ein: 2.000000000000e+01 : n = 2

1.699600000000e-02 1.232820000000e-01

8.128500000000e+00 1.232820000000e-01

order: l = 1: n = 10

Ein: 3.350000000000e+00 : n = 3

3.716500000000e-01 0.000000000000e+00

3.716800000000e-01 2.690500000000e+04

3.717200000000e-01 0.000000000000e+00

· · ·
order:l = 3: n = 10

Ein: 3.350000000000e+00 : n = 3

3.716500000000e-01 0.000000000000e+00

3.716800000000e-01 2.690500000000e+04

3.717200000000e-01 0.000000000000e+00

· · ·
Ein: 2.000000000000e+01 : n = 28

1.699600000000e-02 1.172400000000e-01

3.283800000000e-02 -8.646000000000e-03

4.868100000000e-02 -3.589400000000e-02

6.452400000000e-02 -4.528500000000e-02

8.036700000000e-02 -4.921500000000e-02

1.120500000000e-01 -5.186400000000e-02
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· · ·
7.082900000000e+00 7.783200000000e-02

8.128500000000e+00 1.172400000000e-01
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8 Legendre expansions of energy-angle

probability densities in the center-of-mass frame

Energy-angle probability density data in GND may also be given as Legendre coefficients
for the expansion Eq. (7.1) with outgoing energy E and direction cosine µ in the center-
of-mass frame. In this case, the data consists of tables of coefficients π`(E

′
cm | E) for the

sum

π(E′cm, µcm | E) =
∑
`

(
`+

1

2

)
π`(E

′
cm | E)P`(µcm) (8.1)

for a set of outgoing energies E′cm at incident energies E. The number of terms in the sum
in Eq. (8.1) is determined by the data.

The analysis given in this section is also applicable to the case of isotropic energy
probability densities given in the center-of-mass frame. The data then consist only of
values of the π0(E′cm | E) term in Eq. (8.1).

For incident energies E between the tabulated values, the coefficients π`(E
′
cm | E) are

obtained by one of the interpolation methods discussed in Section 3.2.
For the probability density π(E′cm, µcm | E) in Eq. (8.1), the integral Eq. (2.7) for

computing the number-preserving transfer matrix becomes

Inum
gh,` =

∫
Eg
dE σ(E)M(E)w(E)φ̃`(E)

∫
Dh,cm

dE′cm dµcm P`(µlab)π(E′cm, µcm | E), (8.2)

whereDh,cm is the set of outgoing energies E′cm and direction cosines µcm which are mapped
into E ′h under the boost to the laboratory frame for incident particles with energy E.

Figure 8.1 illustrates the portion of the region Dh,cm for one incident energy generated
by a range of outgoing energies corresponding to the data

E′cm,j−1 ≤ E′cm ≤ E′cm,j . (8.3)

In this figure the outgoing energy bin E ′h in the laboratory frame is a half annulus centered
at the origin with radii corresponding to the upper and lower boundaries of the energy
bin. The vector Vtrans is the velocity of the center of mass with magnitude Vtrans as in
Eq. (4.3). The range of outgoing center-of-mass energies in Eq. (8.3) produces the second
half annulus in Figure 8-1, and its contribution to the set Dh,cm is the intersection of these
two half annuli and is shaded dark gray. This dark gray set displays the outgoing energies
E′cm in the center-of-mass frame which satisfy Eq. (8.3) and the direction cosines µcm such
that the energy E of the outgoing particle in the laboratory frame is in the bin E ′h. In this
figure, the upper limit of E ′h is indicated by the arc E′lab = E′bin.
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E ′h

O

θlab
θcm

Vtrans

V′cmV′lab

E′cm = E′cm,j−1

E′cm = E′cm,j

E′lab = E′bin

µcm = cos θcm

µlab = cos θlab

Figure 8.1: Integration region over E′cm and µcm for the outgoing energy bin E ′h at a fixed
incident energy for data given at energies E′cm,j−1 ≤ E′cm ≤ E′cm,j in the center-of-mass
frame

8.1 Geometrical considerations

The first question in the analysis of the integral in Eq. (8.2) is the determination of the
set Dh,cm. This requires knowing whether or not the arc for a bin boundary E′lab = E′bin

intersects an arc E′cm = E′cm,j derived from a data point. For a boost to the laboratory
frame using Newtonian mechanics as in Eq. (4.8), this identification is achieved by the
function

G0(E′bin, E
′
cm, E) = 2E′bin(E′trans + E′cm)− (E′trans − E′cm)2 − E′bin

2
. (8.4)

Note that in G0 the dependence on the energy E of the incident particle typically enters
in two ways. For one thing, E′trans depends on E as in Eq. (4.7). On the other hand, if the
interpolation with respect to incident energy is unit-base or by cumulative points, then
the inversion of the unit-base map Eq. (3.24) takes the form

E′cm = E′cm,min + (E′cm,max − E′cm,min)Ê′cm. (8.5)

In linear-linear unit-base interpolation, Ê′cm is fixed in the interval 0 ≤ Ê′cm ≤ 1, while
E′cm,min and E′cm,max depend on E according to Eq. (3.17) with q given by Eq. (3.14).

The utility of the function G0 in Eq. (8.5) depends on the following result.

8.1.1 Assertion

In Figure 8.1 under a Newtonian boost at fixed incident energy E, an arc E′lab = E′bin
representing an edge of an energy bin in the laboratory frame intersects an arc E′cm = const
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generated by data in the center-of-mass frame if and only if

G0(E′bin, E
′
cm, E) ≥ 0. (8.6)

This assertion is proved in Appendix B.
One application of Assertion 8.1.1 is that of finding the incident energies E in Eg in

the integral Eq. (8.2) such that the set Dh,cm is non-empty. This may be done by locating
the zeros of G0(E′bin, E

′
cm, E) as a function of E with the edges of the bin E ′h as values of

E′bin and with E′cm as in Eq. (8.5) for

Ê′cm = Ê′cm,j−1 and Ê′cm = Ê′cm,j ,

according to the data.

8.2 Input of Legendre coefficients of energy-angle probabil-
ity densities in the center-of-mass frame

The format for input of the coefficients π`(E
′
cm | E) in Eq. (8.1) is that of Section 7.2.1

with some obvious modifications. For one thing, the data are in the center-of-mass frame
Product Frame: CenterOfMass

The other difference is that information on particle masses is required by the boost to
the laboratory frame

Projectile’s mass: myi

Target’s mass: mtarg

Product’s mass: myo

Reaction’s Q value: Q
The values of these quantities must be in the same units as the energy bin boundaries.

The code computes the mass of the residual from the Q value and the masses of the
other particles. If the input file also contains the line

Residual’s mass: mres

the code compares this value with the mass it computed, printing a warning message if
they are significantly different.

Currently, the boost for this type of data is only implemented using Newtonian me-
chanics.

8.3 Input of isotropic energy probability densities in the
center-of-mass frame

The format for isotropic energy probability density data given in the center-of-mass frame
is the same as that for laboratory-frame data in Section 5.3.1, except that the line

Product Frame: lab

is replaced by
Product Frame: CenterOfMass
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9 Joint energy-angle probability density tables

It is also possible to give energy-angle probability densities as tables in GND. These prob-
ability tables must be in the laboratory coordinate system. The ENDL [4] and ENDF/B-
VII [7] forms of these tables differ slightly, and merced supports both formats. The
ENDF/B-VII format is described first.

One format for tables of values of π(E′lab, µlab | E) is as arrays

{E, {µlab, {E′lab, π(E′lab, µlab | E)}}}. (9.1)

The data for the lowest incident energy E are given first, and data for a given incident
energy are ordered by increasing direction cosine µlab. For fixed E and µlab, the data
consist of pairs {E′lab, π(E′lab, µlab | E)} for values of the energy E′lab of the outgoing
particle. The normalization of the data π(E′lab, µlab | E) is such that for each incident
energy E the total probability is∫ ∞

0
dE′lab

∫ 1

−1
dµlab π(E′lab, µlab | E) = 1.

The ENDL energy-angle probability density data tables are given in the form of the
product

π(E′lab, µlab | E) = πµ(µlab | E)πE(E′lab | E,µlab), (9.2)

in which πE(E′lab | E,µlab) is normalized so that∫ ∞
0

dE′lab πE(E′lab | E,µlab) = 1

for each of the tabulated values of E and µlab.
In the merced code energy-angle probability density tables in the format of Eq. (9.1)

are converted to the format of Eq. (9.2) via the formulas

πµ(µlab | E) =

∫ ∞
0

dE′lab π(E′lab, µlab | E)

and

πE(E′lab | E,µlab) =
π(E′lab, µlab | E)

πµ(µlab | E)
.

The rest of the discussion of energy-angle probability density tables is therefore in terms
of the form of the data in Eq. (9.2). Tbus, the discussion is in terms of the angular
probability density πµ(µlab | E) and the outgoing energy conditional probability density
πE(E′lab | E,µlab).
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With the correlated energy-angle probability density (9.2) the number-preserving in-
tegral (2.7) is

Inum
gh,` =

∫
Eg
dE σ(E)M(E)w(E)φ̃`(E)

∫
E ′h
dE′lab∫

µlab

dµlab P`(µlab)πµ(µlab | E)πE(E′lab | E,µlab), (9.3)

and the energy-preserving integral (2.10) becomes

Ien
gh,` =

∫
Eg
dE σ(E)M(E)w(E)φ̃`(E)

∫
E ′h
dE′labE

′
lab∫

µlab

dµlab P`(µlab)πµ(µlab | E)πE(E′lab | E,µlab). (9.4)

The method used by merced to evaluate the integrals (9.3) and (9.4) is to first compute
the Legendre coefficients

π`(E
′
lab | E) =

∫ 1

−1
dµlab P`(µlab)πµ(µlab | E)πE(E′lab | E,µlab). (9.5)

The coding for the integration of (7.4) and (7.5) is then applied to obtain the transfer
matrix.

9.1 Input of π(E ′lab, µlab | E) the form of a table, Eq. (9.1)

For tables of the energy-angle probability density π(E′lab, µlab | E) in the format Eq. (9.1),
the identification line in Section 12.9 is

Process: ENDF Double differential EMuEpP data

These data are always in the laboratory frame,
Product Frame: lab

The first lines in the data for Section 12.9 give the number K of incident energies along
with the interpolation rules

EMuEpPData: n = K
Incident energy interpolation: probability interpolation flag
Outgoing cosine interpolation: probability interpolation flag
Outgoing energy interpolation: list interpolation flag

The flags for interpolation with respect to incident energy E and direction cosine µlab are
those for probability density tables in Section 12.2.3, and that for outgoing energy E′ is
one for simple lists.

For each incident energy E there is a data section of the form
Ein: E: n = N

indicating that data are given for N values of µlab. The block of data corresponding to a
value of µlab is of the form
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mu: µlab: n = J
followed by J pairs of values of outgoing energy E′lab and probability density π(E′lab, µlab |
E) .

An example of such data with energy in MeV is
EMuEpPData: n = 18

Incident energy interpolation: lin-lin unitbase

Outgoing cosine interpolation: lin-lin unibase

Outgoing energy interpolation: lin-lin

Ein: 1.748830e+00: n = 21

mu: -1.000000e+00: n = 15

1.092990e-03 0.000000e+00

1.093000e-03 7.406740e-01

3.278900e-03 1.166140e+00

7.650800e-03 1.466540e+00

1.202300e-02 1.585880e+00

2.076600e-02 1.610940e+00

2.951000e-02 1.546240e+00

5.574100e-02 1.071950e+00

7.104300e-02 7.097100e-01

8.197300e-02 4.021720e-01

9.071600e-02 1.795810e-01

9.508800e-02 9.526480e-02

9.946000e-02 2.867760e-02

1.016500e-01 4.692750e-03

1.016510e-01 0.000000e+00

· · ·
Ein: 2.000000e+01: n = 21

mu: -1.000000e+00: n = 76

4.606790e-02 0.000000e+00

4.606800e-02 3.837140e-02

9.213400e-02 4.393050e-02

1.842700e-01 4.977660e-02

2.764100e-01 4.806820e-02

3.685400e-01 4.385540e-02

6.449500e-01 2.695920e-02

7.370900e-01 2.255450e-02

etc.

9.2 Input of π(E ′lab, µlab | E) as a product, Eq. (9.2)

For tables of the energy-angle probability density π(E′lab, µlab | E) given as the product in
Eq. (9.2), the identification line in Section 12.9 is

Process: Double differential EMuEpP data transfer matrix
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These data are always in the laboratory frame,
Product Frame: lab

The model-dependent portion of the input file in Section 12.9 contains a section for
the angular probability density πµ(µlab | E) and another for the conditional probability
density πE(E′lab | E,µlab).

The section for angular probability density starts with the lines
Angular data: n = K
Incident energy interpolation: probability interpolation flag
Outgoing cosine interpolation: list interpolation flag

where K is the number of incident energies E. The flag for interpolation with respect to
incident energy is one of those for probability density tables in Section 12.2.3, and that for
the direction cosine µlab is one of those for simple lists. There follows K blocks of data,
one for each incident energy

Ein: E: n = N
indicating that data are given for N pairs of values of µlab and πµ(µlab | E).

The section for conditional probability density of outgoing energy πE(E′lab | E,µlab)
gives the number K of incident energies along with the interpolation rules

EMuEpPData: n = K
Incident energy interpolation: probability interpolation flag
Outgoing cosine interpolation: probability interpolation flag
Outgoing energy interpolation: list interpolation flag

The flags for interpolation with respect to incident energy E and direction cosine µlab are
those for probability density tables in Section 12.2.3, and that for outgoing energy E is
one of those for simple lists.

For each incident energy E there is a data section of the form
Ein: E: n = N

indicating that data are given for N values of µlab. The block of data corresponding to a
value of µlab is of the form

mu: µlab: n = J
followed by J pairs of values of outgoing energy E and probability density πE(E′lab |
E,µlab).

An example of this type of data with energy in MeV is given by
Angular data: n = 13

Incident energy interpolation: lin-lin unitbase

Outgoing cosine interpolation: lin-lin

Ein: 7.78148000e+00: n = 5

9.99788143e-01 5.88016882e+01

9.99841107e-01 1.03998708e+03

9.99894071e-01 1.70086214e+03

9.99947036e-01 2.60922780e+03

1.00000000e+00 2.70023193e+04

· · ·
Ein: 2.00000000e+02: n = 5

-1.00000000e+00 3.26136085e-01
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-5.00000000e-01 3.82892835e-01

0.00000000e+00 4.64096868e-01

5.00000000e-01 5.89499334e-01

1.00000000e+00 8.00885838e-01

EMuEpPData: n = 13

Incident energy interpolation: lin-lin unitbase

Outgoing cosine interpolation: lin-lin unitbase

Outgoing energy interpolation: lin-lin

Ein: 7.78148000e+00: n = 5

mu: 9.99788143e-01: n = 4

2.35390141e-03 1.62759930e+05

2.35697064e-03 1.62877493e+05

2.35697074e-03 1.62877496e+05

2.36004196e-03 1.62892892e+05

mu: 9.99841107e-01: n = 16

2.30884914e-03 9.56657064e+03

2.32094195e-03 9.99310479e+03

etc.
Ein: 2.00000000e+02: n = 5

mu: -1.00000000e+00: n = 501

1.00000000e-18 5.38736174e-10

1.00563208e-17 1.70842412e-09

1.91126417e-17 2.35524717e-09

2.81689625e-17 2.85931206e-09

3.72252834e-17 3.28696542e-09

· · ·
mu: 1.00000000e+00: n = 993

1.00000000e-18 2.19383712e-10

7.55831305e-18 6.03138181e-10

· · ·
1.32751551e+01 1.88436981e-03

1.38015128e+01 1.90038969e-03
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10 Formulas for double-differential energy-angle

data

This section explains the coding used to treat two representations by formula for double-
differential energy-angle data in the GND library, the Kalbach-Mann formula and the
phase-space model. The Kalbach-Mann model is described first, because it is used so
often in GND.

10.1 The Kalbach-Mann model for double-differential data

In the Kalbach-Mann representation [12] the double differential probability density is of
the form

π(E′cm, µcm | E) = πE(E′cm | E)πµ(µcm | E′cm, E), (10.1)

where E is the energy of the incident particle in laboratory coordinates and E′cm and
µcm are the energy and cosine of the outgoing particle in center-of-mass coordinates. The
values of the probability density πE(E′cm | E) for outgoing energy E′cm are given as a table
with normalization ∫ ∞

0
dE′cm πE(E′cm | E) = 1.

In Eq. (10.1) the function πµ(µcm | E′cm, E) is an exponential in µcm depending on param-
eters a and r [12],

πµ(µcm | E′cm, E) =
1

C
[cosh(aµcm) + r sinh(aµcm)]. (10.2)

The value of r in Eq. (10.2) depends on the incident and outgoing energies E and E′cm and
is given in a data table. The formula Eq. (10.2) represents a pre-equilibrium model, with
r = 0 representing complete equilibrium and r = 1 no equilibrium at all. It is therefore
always true that

0 ≤ r ≤ 1.

The value of C in Eq. (10.2) is chosen to ensure the normalization∫ 1

−1
dµcm πµ(µcm | E′cm, E) = 1.

That is, take

C =
2 sinh a

a
.
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10.1.1 The Kalbach-Mann a parameter

The values of the parameter a in Eq. (10.2) may be given as a table depending on the
incident energy E and on E′cm, the center-of-mass kinetic energy of the outgoing particle.
It is more common, however, to use the formula for a as a function of E as found in the
references [12] and [7]. The details are repeated here for the sake of completeness.

Some special notation is used in this subsection. The reaction is of the form

A+ a→ C → B + b, (10.3)

where

A : the target with mass mtarg, assumed to be at rest in the laboratory frame,

a : the incident particle with mass myi,

C : the compound nucleus,

B : the residual nucleus with mass mres,

b : the emitted particle with mass myo.

Several energies are needed, all measured in MeV,

Ea,lab : energy of the incident particle in the laboratory frame,

Ea,cm : energy of the incident particle in the center-of-mass frame,

EA,cm : energy of the target in the center-of-mass frame,

EaA,cm : Ea,cm + EA,cm = mtargEa,lab/(mtarg +myi),

Eb,cm : energy of the outgoing particle in the center-of-mass frame,

EbB,cm : (mres +myo)Eb,cm/myo.

Note that the quantity EbB,cm is the total kinetic energy of B and b if the breakup of C
is a discrete 2-body reaction with the excitation level of B unspecified.

For a reaction with several outgoing particles, b in Eq. (10.3) is the particle corre-
sponding to the current data, and B is the residual following the emission of b from the
compound nucleus C. Thus, for the

78Kr(n, np)77Br

reaction, one uses
B = 78Kr

in the computation of a(E,Eb,cm) with Kalbach-Mann data for the outgoing neutron, while

B = 78Br

with outgoing proton data. Analogously, use

B = 78Kr
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in the computation of a(E,Eb,cm) with Kalbach-Mann neutron data for the

78Kr(n, 2n)77Kr

reaction.
For massive incident particles, the value of a(E,Eb,cm) is given by the expression

a(E,Eb,cm) = C1X1 + C2X
3
1 + C3MambX

4
3 (10.4)

with terms explained below.
The coefficients in Eq. (10.4) are

C1 = 0.04 MeV−1, C2 = 1.8× 10−6 MeV−3, C3 = 6.7× 10−7 MeV−4.

The values of X1 and X3 in Eq. (10.4) depend on the energies Sa and Sb of the capture
and breakup reactions in Eq. (10.3). For the target define

ZA : number of protons in the target nucleus,

NA : number of neutrons in the target nucleus,

AA : ZA +NA.

Corresponding ZC , NC , and AC are defined for the compound nucleus C and ZB, NB,
and AB for the residual nucleus B. For the capture reaction, Sa is taken as

Sa = 15.68(AC −AA)− 28.07

(
(NC − ZC)2

AC
− (NA − ZA)2

AA

)
−

18.56(A
2/3
C −A2/3

A ) + 33.22

(
(NC − ZC)2

A
4/3
C

− (NA − ZA)2

A
4/3
A

)
−

0.717

(
Z2
C

A
1/3
C

−
Z2
A

A
1/3
A

)
+ 1.211

(
Z2
C

AC
−
Z2
A

AA

)
− Ia. (10.5)

Here, Ia is the breakup energy for the incident particle as given in Table 10.1. The energy
Sb corresponding to the second reaction in Eq. (10.3) is obtained from Eq. (10.5) with ZA,
NA, AA, and Ia replaced, respectively by ZB, NB, AB, and Ib.

The quantities X1 and X3 in Eq. (10.4) are obtained by setting

Ea = EaA,cm + Sa, Eb = EbB,cm + Sb,

Et1 = 130 MeV, Et3 = 41 MeV,

R1 = min(Ea, Et1), R3 = min(Ea, Et3),

X1 = R1Eb/Ea, X3 = R3Eb/Ea.

Finally the values Ma for the incident particle and mb for the outgoing particle in the
last term of Eq. (10.4) are given in Table 10.2. Note that Ma is not defined for incident
tritons or for incident helium-3 nuclei, so that the Kalbach-Mann model is not applicable
when the incident energy of such particles is so large that Ea > Et3.
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Table 10.1: Breakup energies for incident and outgoing particles in MeV

particle Ia or Ib

n 0
p 0
d 2.22
t 8.48

3He 7.72
α 28.3

Table 10.2: Values of Ma and mb in Eq. (10.4)

particle Ma mb

n 1 1/2
p 1 1
d 1 1
t — 1

3He — 1
α 0 2

10.1.2 Photo-nuclear reactions

When Kalbach-Mann data are given for photo-nuclear reactions, the parameter a(E,Eb,cm)
in Eq. (10.4) and the angular probability density πµ(µcm | E′cm, E) in Eq. (10.2) are
modified as in the paper [13].

One begins by computing an(E,Eb,cm) in Eq. (10.4) using a neutron as incident par-
ticle. Then, for the incident photon one takes

a(E,Eb,cm) = an(E,Eb,cm)

√
E

2mn
min

(
4,max

(
1,

9.3√
Eb,cm

))
. (10.6)

Here, mn is the mass of the neutron in MeV.
For incident photons the angular probability density takes the form

πµ(µcm | E′cm, E) =
1

2

[
(1− r) +

(
ar

sinh(a)

)
exp {aµcm}

]
.

10.1.3 Interpolation of Kalbach-Mann data

In the GND library, the Kalbach-Mann data are given as a table of the probability density
πE(E′cm | E) of outgoing energy E′cm for an incident particle with energy E, along with
a table of values of the parameter r in Eq. (10.2) as a function of E and E′cm. It is also
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permitted to include a table of values a(E,Eb,cm) to be used in place of the expression in
Eq. (10.4).

Because πE(E′cm | E) is a probability density, it is to be interpolated with respect
to E by one of the methods of Section 3.2. The interpolated values of r, however, must
maintain the physical constraints that 0 ≤ r ≤ 1, so the Kalbach-Mann r parameter is
interpolated by the unscaled methods of Section 3.3. If the values of a are also given as a
table, they are also interpolated as in Section 3.3.

For unit-base interpolation the method is as follows. The energy probability density
πE(E′cm | E) is first mapped to unit base as defined in equations Eqs. (3.19) and (3.20),
so that

π̂E(Ê′cm | E) = (E′cm,max − E′cm,min)πE(E′cm | E) (10.7)

for 0 ≤ Ê′cm ≤ 1. The scale factor in Eq. (10.7) is chosen so as to normalize the function
π̂E(Ê′cm | E), ∫ 1

0
dÊ′cm πE(Ê′cm | E) = 1.

The values of π̂E(Ê′cm | E) are interpolated linearly with respect to E.
For the values of the parameter r, the energy of the outgoing particle to is mapped

0 ≤ Ê′cm ≤ 1 using Eq. (8.5) in the form of

Ê′cm =
E′cm − E′cm,min

E′cm,max − E′cm,min

.

Because of the restriction that 0 ≤ r ≤ 1, the parameter r is mapped according to

r̃(Ê′cm, E) = r(E′cm, E). (10.8)

With these transformations, the number-preserving integral Eq. (2.7) takes the form

Inum
gh,` =

∫
Eg
dE σ(E)M(E)w(E)φ̃`(E)

∫
Ê′

cm

dÊ′cm π̂E(Ê′cm | E)∫
µcm

dµcm P`(µlab)πµ(µcm | E′cm, E), (10.9)

and the energy-preserving integral Eq. (2.10) becomes

Ien
gh,` =

∫
Eg
dE σ(E)M(E)w(E)φ̃`(E)

∫
Ê′

cm

dÊ′cm π̂E(Ê′cm | E)∫
µcm

dµcm P`(µlab)πµ(µcm | E′cm, E)E′lab. (10.10)

The subscripts on µ serve to emphasize the facts that the argument µlab of the Legendre
polynomial P`(µlab) in Eqs. (10.9) and (10.10) is the direction cosine of the outgoing par-
ticle in laboratory coordinates, while the integration variable µcm is the direction cosine in
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center-of-mass coordinates. Specifically, E′lab depends on E and µcm according to equation
Eq. (4.8), and µlab is given by Eq. (4.9).

Because the energy probability density πE(E′cm | E) data are given in the center-of-
mass frame, the identification of the region of integration over Ê′cm and µcm in Eqs. (10.9)
and (10.10) involves the geometric considerations presented for tabular center-of-mass data
in Section 8.1. For a given incident energy E in bin Eg, the regions of integration over

Ê′cm and µcm in Eqs. (10.9) and (10.10) depend on how the domains for data interpolation
Ê′cm,j−1 ≤ Ê′cm ≤ Ê′cm,j intersect the E ′h outgoing laboratory energy bin. The situation for
a fixed incident energy E is illustrated in Figure 8.1. The half annulus

E′cm,j−1 ≤ E′cm ≤ E′cm,j

is derived from the Kalbach-Mann data. The region of integration over µcm and E′cm for
fixed incident energy E is the intersection of these two half annuli, and it is shaded dark
gray in Figure 8.1.

10.1.4 The input file for the Kalbach-Mann model

The data identifier in Section 12.3.1 for the Kalbach-Mann model is
Process: Kalbach spectrum

and the data are always in the center-of-mass frame
Product Frame: CenterOfMass

Currently, only a Newtonian boost to the laboratory frame is implemented.
The masses of the particles a, A, C, b, and B in the reaction Eq. (10.3) are input in

Section 12.9 of the input file
Projectile’s mass: myi

Target’s mass: mtarg

Compound’s mass: mC

Product’s mass: myo

Residual’s mass: mres

The units used for these masses are arbitrary, but they must be the same for all particles.
The number of protons ZA and the atomic number AA of the target are needed for the

computation of Sa in Eq. (10.5). This information is entered into the input file as

ZAA = 1000ZA +AA,

from which AA, ZA, and the number of neutrons NA = AA − ZA are easily computed.
Corresponding numbers ZAa for the projectile and ZAb for the emitted particle are also
given. The numbers ZAC for the compound nucleus and ZAB for the residual may be
calculated using

ZAC = ZAA + ZAa,

ZAB = ZAC − ZAb.

This section of the input file is therefore
Projectile’s ZA: ZAa
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Target’s ZA: ZAA
Product’s ZA: ZAb

The remainder of the input file consists of tables of πE(E′cm | E) and the parameter r
in Eq. (10.2) as functions of E and E′cm. There may also be a table of values of a to be
used in place of the expression Eq. (10.4).

The format for the probability density πE(E′cm | E) is
Kalbach probabilities: n = K
Incident energy interpolation: probability interpolation flag
Outgoing energy interpolation: list interpolation flag

followed by K blocks of the form
Ein: E: n = J

with J pairs of values of E′cm and πE(E′cm | E). The flag for interpolation with respect to
incident energy E is one of those for probability densities in Section 12.2.3, while that for
the outgoing energy is one for simple lists.

The table for the r parameter is of the form
Kalbach r parameter: n = K
Incident energy interpolation: unscaled interpolation flag
Outgoing energy interpolation: list interpolation flag

followed by K blocks of the form
Ein: E: n = J

with J pairs of values of E′cm and r(E′cm, E). The flag for interpolation with respect to
incident energy E is one of those for unscaled Kalbach-Mann data in Section 12.2.3, while
that for the outgoing energy is one for simple lists.

The format for the Kalbach-Mann a parameter is the same as that for r, with “r”
replaced by “a”. The tables for πE(E′cm | E), r, and a must be given at the same incident
energies, and at each incident energy E, the ranges of outgoing energies E′ must also
agree.

An example of the content of Section 12.9 of the input file for Kalbach-Mann data is
as follows. All energies are in MeV.

Product Frame: centerOfMass

# masses

Projectile’s mass: 1.008665

Target’s mass: 56.935394

Compound’s mass: 57.933276

Product’s mass: 1.008665

Residual’s mass: 56.935394

# ZA numbers

Projectile’s ZA: 1

Target’s ZA: 26057

Product’s ZA: 1

# Kalbach-Mann probability data

Kalbach probabilities: n = 12

Incident energy interpolation: lin-lin unitbase

Outgoing energy interpolation: flat
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Ein: 7.781480e+00: n = 2

0.000000e+00 1.000000e+06

1.000000e-06 0.000000e+00

Ein: 7.800000e+00: n = 7

0.000000e+00 7.375605e+00

1.473426e-03 1.472617e+01

3.437994e-03 3.676034e+01

7.367130e-03 5.717426e+01

1.473426e-02 8.186549e+00

3.437994e-02 5.948511e+00

7.367130e-02 1.000000e-30

· · ·
Ein: 2.000000e+01: n = 53

0.000000e+00 2.063824e-03

1.473426e-03 3.887721e-03

3.437994e-03 9.245874e-03

7.367130e-03 1.805939e-02

1.473426e-02 3.554576e-02

3.437994e-02 8.408804e-02

7.367130e-02 1.261293e-01

· · ·
1.154184e+01 1.604784e-03

1.203298e+01 1.000000e-30

# Kalbach-Mann r data

Kalbach r parameter: n = 12

Incident energy interpolation: lin-lin unscaledunitbase

Outgoing energy interpolation: flat

Ein: 7.781480e+00: n = 2

0.000000e+00 0.000000e+00

1.000000e-06 0.000000e+00

Ein: 7.800000e+00: n = 7

0.000000e+00 4.272290e-02

1.473426e-03 2.992310e-02

3.437994e-03 1.833870e-02

7.367130e-03 1.427320e-02

1.473426e-02 1.829320e-02

3.437994e-02 1.611740e-02

7.367130e-02 1.590910e-02

· · ·
Ein: 2.000000e+01: n = 53

0.000000e+00 7.037570e-02

1.473426e-03 4.957320e-02

3.437994e-03 3.056740e-02

7.367130e-03 2.555550e-02
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1.473426e-02 1.908500e-02

· · ·
1.154184e+01 9.548000e-01

1.203298e+01 9.656400e-01

10.2 The n-body phase space model

The n-body phase space model gives the probability density for the energy of an outgoing
particle in center-of-mass coordinates. The formula is derived from the volume in phase
space occupied by the particles, subject to the constraints of conservation of energy and
momentum. The model uses Newtonian mechanics.

In the ENDF/B-VII manual [7] there are two scenarios for this model: (1) inelastic
collision followed by break-up of the excited residual, and (2) break-up induced by the
collision. In the first case, the n-body phase space model treats only the particles emitted
in the break-up of the excited residual, not the one from the initial collision. The total
kinetic energy E∗ of the outgoing particles treated by the model therefore depends on the
scenario.

In the case of break-up following an inelastic collision, the analysis is in the frame in
which the residual from the inelastic collision is stationary. The total kinetic energy of the
outgoing particles involved is then

E∗ = Qres,

where Qres is the energy of the break-up of the excited residual. In this case, the reference
frame for the model is that in which the residual nucleus is stationary after the initial
inelastic collision. The merced code currently does not implement this scenario, because
this is a 2-step reaction.

For the break-up of a compound nucleus following the collision of a projectile with
a stationary target in the laboratory frame, the total kinetic energy E∗ of the outgoing
particles in the center-of-mass frame is the sum of two components, the Q of the reaction
plus the energy of the initial collision in the center-of-mass frame. For an incident particle
of mass mi and energy E in the laboratory frame hitting a stationary target of mass mtarg,
this collision energy in the center-of-mass frame is

mtargE

myi +mtarg
.

Consequently, in this scenario the total center-of-mass kinetic energy for all outgoing
particles is

E∗ = Q+
mtargE

myi +mtarg
. (10.11)

The details of the n-body phase space model are as follows. Consider a particular
outgoing particle, and suppose that its mass is myo. Then conservation of energy and
momentum implies that the maximum kinetic energy of this particle in the center-of-mass
frame is given by

Emax =
(Mt −myo)E∗

Mt
, (10.12)
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where Mt is the total mass of the outgoing particles covered by the n-body phase space
model.

Suppose that n is the number of particles resulting from the break-up reaction. For an
outgoing particle with mass myo, let Emax be as in Eq. (10.12). Then in the n-body phase
space model, the energy probability density that this outgoing particle will have energy
E′cm with 0 ≤ E′cm ≤ Emax is given by

πcm(E′cm | E) = Cn
√
E′cm (Emax − E′cm)(3n−8)/2. (10.13)

Note that this probability density is isotropic in the center-of-mass frame. Furthermore,
the relation Eq. (10.13) was derived using Newtonian mechanics.

The normalization constant Cn in Eq. (10.13) is best represented in terms of the beta
function

B(α, β) =

∫ 1

0
dt tα−1(1− t)β−1 =

Γ(α)Γ(β)

Γ(α+ β)
. (10.14)

With this notation, it is seen that

1

Cn
= B

(
3

2
,
3n− 6

2

)
Emax

(3n−5)/2. (10.15)

10.2.1 Geometry of the n-body phase space model

The construction of Figure 8.1 made use of the fact that the tabular data required the
consideration of ranges of energy E′cm of the outgoing particle between the tabulated
values,

E′cm,j−1 ≤ E′cm ≤ E′cm,j . (10.16)

Here, the limiting values E′cm,j−1 and E′cm,j depend on the energy E of the incident particle
according to the principles of unit-base interpolation in Eq. (8.5).

For the n-body phase space model, however, the range of center-of-mass energies of
the outgoing particle is

0 ≤ E′cm ≤ Emax, (10.17)

where Emax is as in Eq. (10.12). That is, for the n-body phase space the annular ring
Eq. (10.16) in Figure 8.1 is replaced by the interior of the semicircle Eq. (10.17).

10.2.2 Input file for the n-body phase space model

The data identifier in Section 12.3.1 for the n-body phase space model is
Process: phase space spectrum

and the data are always in the center-of-mass frame
Product Frame: CenterOfMass

Currently, only a Newtonian boost to the laboratory frame is implemented.
In the model-dependent Section 12.9 of the input file, the computation of E∗ in

Eq. (10.11) requires the reaction’s Q value, as well as the masses myi of the projectile
and mtarg of the target. The units used for the masses are arbitrary, but the same units
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must be used for all particles. The Q value must be in the same units as the energy bins.
This information is input using the commands

Q value: Q
Projectile’s mass: myi

Target’s mass: mtarg

For the calculation of Emax in Eq. (10.12), the mass myo is needed, along with the
total mass Mt of the outgoing particles covered by the n-body phase space model. This
information is input using

Product’s mass: myo

Total mass: Mt

The units used for these masses must be the same as is used for the other particles.
Finally, the probability density in Eq. (10.13) requires the number of particles n in the

model, and this is given by
Number of particles: n

A sample Section 12.9 of the input file for the n-body phase space model is
Product Frame: CenterOfMass

Q value: -2.225002

Projectile’s mass: 1.008665

Target’s mass: 2.014102

Product’s mass: 1.008665

Total mass: 3.0246030

Number of particles: 3
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11 Data for incident gammas

The merced code calculates cross sections and the integrals in Eqs. (2.7) and (2.10) for
computation of the transfer matrix for coherent scattering and Compton scattering. Pho-
toemission, pair production, and triplet production are handled by fudge.

11.1 Coherent scattering

This reaction is the result of interaction of the incident photon with all of the electrons
in the target atom and sometimes called whole-atom scattering. There is essentially no
change in energy between the outgoing and incident photons. In GND instead of the energy
E of the incident photon, the data are given in terms of x, where x is

x =
1

λ
sin

(
θ

2

)
=

1

λ

√
1− µlab

2
. (11.1)

In Eq. (11.1) λ is the wave length of the incident photon given in Å. Thus, in terms of the
incident energy E, the value of x is

x =
E

ch

√
1− µlab

2
. (11.2)

In merced the values of x are scaled by ch, to convert to units of energy.
The angular differential cross section σC(µlab | E) takes the form

σC(µlab | E) =
3σT

8
(1 + µ2

lab)
{

[FF (x) + FR(x)]2 + FI(x)2
}
. (11.3)

where the parameter σT is the classical Thompson scattering cross section. In Eq. (11.3)
FF (x) is the coherent form factor, and it is a function of x in Eq. (11.1) The real anomalous
form factor FR(E), and the imaginary anomalous form factor FI(E) are given in terms of
the incident energy E. The units of σC(µlab | E) are barns per cosine. See the reference [7]
for more information.

The reaction cross section is computed using

σ(E) =

∫ 1

−1
dµlab σC(µlab | E). (11.4)

Because the energy is assumed to be unchanged, E′lab = E, and because the gamma mul-
tiplicity is 1, the formula Eq. (2.2) for the kernel K(E′lab, µlab | E) for coherent scattering
becomes

K(E′lab, µlab | E) = σC(µlab | E)w(E)δ(E′lab − E). (11.5)
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Figure 11.1: Domain of integration for whole-atom scattering

For photons it is customary to use the energy-preserving transfer matrices Eq. (2.11)
derived from the integrals Eq. (2.10), so details are given only for the evaluation of
Eq. (2.10). From Eq. (11.5) it is seen that

Ien
gh,` =

∫
Eg
dE w(E)φ̃`(E)

∫
E ′h
dE′lab

∫
µlab

dµlab P`(µlab)σC(µlab | E) δ(E′lab − E)E′lab.

(11.6)
Because both the incident particles and the outgoing particles are photons, the outgoing
energy groups E ′h are the same as the incident energy groups Eg. Therefore, an integration
over E′lab in Eq. (11.6) gives the result that

Ien
gh,` = 0 for h 6= g

and

Ien
gg,` =

∫
Eg
dE w(E)φ̃`(E)E

∫
µlab

dµlab P`(µlab)σC(µlab | E). (11.7)

The domain of integration for Eq. (11.7) is shown in Figure 11.1. The curves for
x = xj−1 and x = xj are obtained from Eq. (11.2), and for xj−1 ≤ x ≤ xj the region of
integration is bounded by these two curves and lies within the Eg energy bin. This region
is shaded gray in Figure 11.1.

11.1.1 A programming detail

Because of the
√

1− µlab singularity in Eq. (11.2), the default method for evaluating
integrals with respect to µlab in this section is adaptive quadrature based on first-order
Gaussian quadrature for ∫ b

a
dµlab F (µlab)

√
1− µlab. (11.8)

This method is used for integration over µlab in Eqs. (11.4) and (11.7).
The default method for integration over incident energy E in Eq. (11.7) is second-order

adaptive Gaussian quadrature.
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11.1.2 The input file for coherent scattering

For coherent scattering, the reaction identifier in Section 12.3.1 is
Process: coherent scattering

and the data are always in the laboratory frame
Product Frame: lab

The quadrature methods with respect to µlab and E in Eq. (11.7) may be set indepen-
dently using the commands of Section 12.5. The defaults are

mu quadrature method: square root
Ein quadrature method: adaptive

The quadrature method specified for µlab also applies to the computation of the cross
section in Eq. (11.4).

In GND the values of x in Eq. (11.1) are given in units of Å
−1

, and the merced code
converts x to energy using the factor ch. This conversion must be to the units used for

the energy bin boundaries in Sections 12.3.2 and 12.3.3. The conversion factor from Å
−1

to energy is set as described in Section 12.7.1.
The value of the Thompson scattering cross section σT in Eq. (11.3) specified as dis-

cussed in Section 12.7.2.
Section 12.9 of the input file contains the information required for calculation of the

differential cross section in Eq. (11.3). The values of the coherent form factor FF (x) are
input using

Form factor: n = n
Interpolation: list interpolation flag

followed by n pairs of values of x and FF (x). The interpolation flag is one for simple lists
as in Section 12.2.3.

The real anomalous form factor FR(E) and imaginary anomalous form factor FI(E)
are input analogously

anomalous real form factor: n = n
Interpolation: list interpolation flag

followed by n pairs of values of E and FR(E), and
anomalous imaginary form factor: n = n
Interpolation: list interpolation flag

followed by n pairs of values of E and FI(E).

An input file for coherent scattering with x values to be converted from Å
−1

to eV is
as follows.

Process: coherent scattering

Product Frame: lab

inverseWaveLengthToEnergyFactor: 12398.4190576

ThompsonScattering: 0.6652448

# Data section

Form factor: n = 1272

Interpolation: lin-lin

0.000000000000e+00 8.000000000000e+00

1.000000000000e-03 8.000000000000e+00
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5.000000000000e-03 7.997400000000e+00

6.250000000000e-03 7.995640000000e+00

7.187500000000e-03 7.994550000000e+00

· · ·
1.000000000000e+09 7.999700000000e-29

Anomalous real form factor: n = 253

Interpolation: lin-lin

1.000000000000e+00 -8.001506000000e+00

3.000000000000e+00 -8.012308000000e+00

8.367019000000e+00 -7.916407000000e+00

9.300337000000e+00 -7.564924000000e+00

9.624912000000e+00 -7.096145000000e+00

· · ·
1.000000000000e+07 -4.100212000000e-03

Anomalous imaginary form factor: n = 255

Interpolation: lin-lin

1.000000000000e+00 0.000000000000e+00

3.000000000000e+00 0.000000000000e+00

9.030040000000e+00 0.000000000000e+00

9.871915000000e+00 0.000000000000e+00

9.913590000000e+00 3.647675000000e-01

9.920512000000e+00 4.548976000000e-01

· · ·
1.000000000000e+07 3.311053000000e-07

11.2 Compton scattering

This reaction is also called incoherent scattering, and it is the scattering of a photon by
an individual bound electron. See the reference [7]. The data in GND give the values of
the scattering factor SF (x) for discrete values of the parameter x, defined in Eq. (11.1)
or, equivalently, in Eq. (11.2).

The angular differential cross section for Compton scattering, σI(µlab | E), depends on
the ratio, κ, of the energy, E, of the incident photon to the rest mass, me, of the electron,

κ =
E

me
. (11.9)

In terms of κ and x, the Compton differential cross section is

σI(µlab | E) =
3σTSF (x)

8[1 + κ(1− µlab)]2

[
1 + µ2

lab +
κ2(1− µlab)2

1 + κ(1− µlab)

]
. (11.10)

Here, σT is again the Thompson scattering coefficient, and the units of σI(µlab | E) are
barns per unit cosine. In Eq. (11.10) the scattering factor SF (x) accounts for the deviation
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from the Klein-Nishina formula due to the fact that the electrons are bound. Just as for
coherent scattering, the cross section for Compton scattering is given by

σ(E) =

∫ 1

−1
dµlab σI(µlab | E). (11.11)

The calculation in merced of the energy E′lab of the outgoing photon from Compton
scattering is actually inconsistent. On the one hand, the formula Eq. (11.10) for the differ-
ential cross section takes into account the fact that the scattering is from bound electrons.
For the computation of E′lab, however, the approximation is made that the electron is ini-
tially free and stationary. This is a discrete two-body reaction, and conservation of energy
and momentum yields the result that

E′lab =
E

1 + κ(1− µlab)
. (11.12)

Therefore, for Compton scattering the kernel K(E′lab, µlab | E) in Eq. (2.2) takes the form

K(E′lab, µlab | E) = w(E)σI(µlab | E) δ

(
E′lab −

E

1 + κ(1− µlab)

)
. (11.13)

Upon inserting the kernel Eq. (11.13) into Eq. (2.10), the computation of energy-
preserving transfer matrices for Compton scattering requires evaluation of the integrals

Ien
gh,` =

∫
Eg
dE w(E)

∫
E ′h
dE′lab

∫
µlab

dµlab P`(µlab)σI(µlab | E)φ̃`(E)

δ

(
E′lab −

E

1 + κ(1− µlab)

)
E′lab. (11.14)

After integrating over E′lab, it is found that

Ien
gh,` =

∫
Eg
dE Ew(E)φ̃`(E)

∫
µlab

dµlab
P`(µlab)σI(µlab | E)

1 + κ(1− µlab)
. (11.15)

As in coherent scattering, the default quadrature method for integration with respect to
µlab in Eqs. (11.11) and (11.15) is first-order Gaussian quadrature for the weighted integral
Eq. (11.8).

Because of the relation Eq. (11.12) between the energies of the incident and outgoing
photons, the range of integration in Eq. (11.15) has an extra degree of complexity in
comparison with Eq. (11.7). In particular, the presence of the δ-function in Eq. (11.14)
constrains E and µlab so that E′lab is in the E ′h energy bin. Figure 11.2 shows the geometry
in the case of down-scattering by one energy group, E ′h = E ′g−1. In Figure 11.2 the curves
delimiting the E ′h were obtained by rewriting the energy condition Eq. (11.12) in the form

E =
E′lab

1− (1− µlab)E′lab/me

and taking the top and bottom of the E ′h energy bin as values of E′lab. The range of
integration in Eq. (11.15) is the overlap of the three regions (1) that determined by the
interval xi ≤ x ≤ xi+1 of scattering factor data values, (2) the incident energy bin E in
Eg, and (3) the outgoing energy bin E′lab in E ′h.
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Figure 11.2: Domain of integration for Compton scattering

11.2.1 The input file for Compton scattering

The reaction identifier in Section 12.3.1 for Compton scattering is
Process: Compton scattering

and the data is always in the laboratory frame
Product Frame: lab

This default quadrature methods with respect to µlab and E in Eq. (11.15) are
mu quadrature method: square root
Ein quadrature method: adaptive

The quadrature method specified for µlab also applies to the computation of the cross
section in Eq. (11.11). It is possible to override these choices as explained in Section 12.5.

As in coherent scattering, the values of x used for Compton scattering in GND are in

units of Å
−1

, so these are converted to energy units as in Section 12.7.1. This conversion
must be to the units used for the energy bin boundaries in Sections 12.3.2 and 12.3.3.

Specification of the Thompson scattering cross section σT in Eq. (11.10) is as in Sec-
tion 12.7.2. The value me of the rest mass of the electron used in Eq. (11.9) is set as in
Section 12.7.3, and it must be given in the units used for the energy bin boundaries.

Section 12.9 of the input file contains the value of the scattering factor SF (x) for
various values of x. The format is

ScatteringFactorData: n = n
Interpolation: list interpolation flag

followed by n pairs of values of x and SF (x). The interpolation flag is one for simple lists
as in Section 12.2.3.

An input file for Compton scattering with units of x to be converted from Å
−1

to eV
is as follows.

Process: Compton scattering

Product Frame: lab

inverseWaveLengthToEnergyFactor: 12398.4190576

ThompsonScattering: 0.6652448

Electron mass: 511000
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ScatteringFactorData: n = 453

Interpolation: lin-lin

0.000000000000e+00 0.000000000000e+00

1.000000000000e-07 1.100000000000e-12

1.059602649007e-07 1.235033551160e-12

1.126760563380e-07 1.396548303908e-12

1.163636363636e-07 1.489454545455e-12

· · ·
1.000000000000e+09 8.000000000000e+00
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12 Usage of merced

The command to run merced is
merced [-inputOption] InputFile

The input options are described in Section 12.4 below. Most of them may be specified
either in the input file or on the command line, and command line options override those
given in the input file. For example, to get output with 9 significant figures, the command
line could be

getTransferMatrix -datafield precision 9 InputFile
Alternatively, one may insert the line

datafield precision: 9

into the input file. Note the presence of the colon in this line. The format for identification
of data in the input file is

data identifier: value
For most types of data, the units of energy are arbitrary, but they must be consistent.

In particular, rest masses of particles must be in the same units as the energy bins. As
mentioned in the individual sections on the data, some models require that energies be
given in MeV.

12.1 Output file

The default name of the output file is utfil. It may only be changed on the command
line, and the option to do so is

-output OutputFile

12.2 Form of the input file

The first line of the input file must be
xndfgenTransferMatrix: version 1.0

This line is followed by information common to all data models. The file closes with data
specific to the particular data model. Blank lines are ignored.

12.2.1 Comments

Comments may be included in the input file in either if two forms.
Comment: This comment is printed to the output file.
# On a line, anything after a pound sign is ignored.

For example, the input file usually contains a comment identifying the particles involved
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in the reaction, e.g.,
Comment: n1 + C12 --> n1 + C12 outgoing data for n1

12.2.2 Parallel computing

The merced code may be compiled to run in parallel if OpenMP is available on your
computer. In fact, the Makefile uses OpenMP as a default. To obtain serial code, compile
using the command

make VERSION=SERIAL

For the parallel code, the number of threads is set to n by the line
num threads: n

in the input file. The default is n = 0, which causes the computer to choose the number
of threads. If the specified n is larger than the number of available threads, then the code
runs on the threads available.

The parallel code may be forced to run in serial mode by the command line option
-num threads 1

or by inclusion of
num threads: 1

in the input file.

12.2.3 Interpolation flags

The identifiers for the standard interpolation methods given in Section 3.1 are
flat for histograms
lin-lin for linear-linear
lin-log for linear-log
log-lin for log-linear
log-log for log-log

The identifiers are incorporated in different ways into the interpolation flags for simple
lists such as reaction cross sections, for probability densities, and for the Kalbach-Mann
r and a parameters. The complete identifiers for the interpolation of the various types of
tabulated data are as follows.

Interpolation flags for simple lists

For simple lists of data such as {E,M} for particle multiplicity M at incident energy E,
the interpolation flags are

Interpolation: identifier
with one of the identifiers above. For example, the command

Interpolation: lin-lin

specifies linear-linear interpolation.
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Interpolation flags for probability densities

For probability density tables
{x, y, π(y | x)}, (12.1)

the interpolation method with respect to x as discussed in Section 3.2 is identified by
x interpolation: identifier interpolation-flag

where the identifier is one of those for simple lists and the interpolation flag here is one of
direct for direct interpolation with extrapolation
unitbase for unit-base interpolation
cumulativepoints for interpolation by cumulative points

Thus, a table of probability densities of outgoing energies π(E′ | E) may be marked
Incident energy interpolation: lin-lin cumulativepoints

to indicate that interpolation with respect to incident energy E is to be done using linear-
linear cumulative points as in Section 3.2.3.

The method for interpolation of the data in Eq. (12.1) with respect to y is specified by
y interpolation: identifier

with an identifier as in a simple list. For example, the command
Outgoing energy interpolation: flat

specifies histogram interpolation with respect to the energy of the outgoing particle.

Interpolation flags for unscaled interpolation of Kalbach-Mann data

The methods of interpolation of tables for the Kalbach-Mann parameters r(E′, E) and
a(E′, E) with respect to the energy E of the incident particle are discussed in Section 3.3.
The options for interpolation flags are

Incident energy interpolation: identifier unscaleddirect
Incident energy interpolation: identifier unscaledunitbase
Incident energy interpolation: identifier unscaledcumulativepoints

where the identifier is one of those for simple lists. For example, the command denoting
linear-linear unscaled unit-base interpolation with respect to incident energy is

Incident energy interpolation: lin-lin unscaledunitbase

The method for interpolation of tables of Kalbach-Mann r and a parameters with
respect to outgoing energy E is specified by

Outgoing energy interpolation: identifier
with an identifier as in a simple list. For example, the comand

Outgoing energy interpolation: flat

specifies histogram interpolation with respect to the energy of the outgoing particle.

12.3 Information used by all data models

The following information is required, but the order is arbitrary.
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12.3.1 The data model

Identification of the data model.
Process: Identifier of the type of data

These identifiers are specified in the previous sections.

12.3.2 Incident energy groups

The boundaries of the incident energy groups.
Projectile’s group boundaries: n = n

This is followed by the n values the incident energy bin boundaries. Thus, in units of eV
this section may take the form

Projectile’s group boundaries: n = 88

1.306800000000e-03 2.090800000000e-02 1.306800000000e-01

3.345300000000e-01 1.176100000000e+00 2.090800000000e+00

· · ·
2.000000000000e+07

12.3.3 Outgoing energy groups

The boundaries of the outgoing energy groups.
Product’s group boundaries: n = n

This is followed by the n values the outgoing energy bin boundaries. The units must be
the same as for the incident energy groups. A sample input given in eV is

Product’s group boundaries: n = 88

1.306800000000e-03 2.090800000000e-02 1.306800000000e-01

3.345300000000e-01 1.176100000000e+00 2.090800000000e+00

· · ·
2.000000000000e+07

12.3.4 Frames of reference

The energy E of the incident particle must be given in the laboratory frame, as indicated
by the command

Projectile Frame: lab

For the outgoing particle, the energy E′ and direction cosine µ may be given in the
laboratory frame with

Product Frame: lab

or the center-of-mass frame as
Product Frame: CenterOfMass

12.3.5 Relativistic kinetics

For discrete 2-body reactions, the code may use either Newtonian or relativistic mechanics
in its computations. The command to control this option is

kinetics: Newtonian
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or
kinetics: relativistic

The default is Newtonian except when the emitted particle is a gamma.

12.3.6 Approximate flux

The Legendre coefficients φ̃`(E) used as weights in the integrals Eqs. (2.7) and (2.10).
Fluxes: n = n
Interpolation: interpolation flag

Here, n is the number of incident energies E, and the interpolation flag is one of those
for simple lists, Section 12.2.3. Note that because of the scaling performed in Eqs. (2.8)
and (2.11), the units of φ̃`(E) are arbitrary, but barns are most common. The computed
transfer matrix is unchanged if φ̃`(E) is multiplied by a constant.

For each incident energy, the input file has a block specifying the Legendre coefficients
given as

Ein: E: n = n
and φ̃`(E) for n = 0, 1, . . . , n − 1. The incident energy E must be in the same units as
the energy groups. The number of Legendre coefficients given here need not be consistent
with the Legendre order L of the computed transfer matrix as specified in Section 12.4.1.
If n− 1 < L, then the merced code sets

φ̃`(E) = φ̃n−1(E) for ` = n, n+ 1, . . . , L.

A sample input with E in eV and with all Legendre coefficients the same is
Fluxes: n = 2

Interpolation: lin-lin

Ein: 0: n = 1

8.500000000000e+01

Ein: 2.100000000000e+07: n = 1

8.500000000000e+01

12.3.7 Reaction cross section

As explained in Section 11, the cross sections for coherent photon scattering and Compton
scattering are computed from the data. Reaction cross sections are required for all other
data models.

Cross section: n = n
Interpolation: interpolation flag

Here, n is the number of pairs {E, σ(E)}, and the interpolation flag is one of those for
simple lists, Section 12.2.3. This is followed by n pairs of incident energy E and reaction
cross section σ(E).

A sample of such data with energies in MeV is given by
Cross section: n = 22

Interpolation: lin-lin

7.78148000e+00 0.00000000e+00
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7.80000000e+00 4.40157000e-04

8.00000000e+00 1.13781000e-02

8.50000000e+00 6.96097100e-02

· · ·
2.00000000e+01 9.17094100e-01

12.3.8 Multiplicity

The multiplicity of the outgoing particle must be given if it is different from 1. The format
is

Multiplicity: n = n
Interpolation: interpolation flag

followed by n pairs {E,M(E)}. The interpolation flag is one of those for simple lists,
Section 12.2.3. The units of incident energy E must be the same as for the energy groups.
For example, with E in MeV, an (n, 2n) reaction would typically have

Multiplicity: n = 2

Interpolation: flat
0.0 2.0

20.0 2.0

12.3.9 Model weight

The model weight wr(E) is used in the formation of the reaction kernel Kr(E′, µ | E)
in Eq. (2.2) and is discussed in Section 2. Its value is usually 1 over the entire range of
incident energies in the cross section data. If this is not the case, then the model weight
is input as

Weight: n = n
Interpolation: flat

followed by n pairs {E,w(E)}. For example, the weight

w(E) =

{
0 for 0 ≤ E < 6,

1 for 6 ≤ E ≤ 20,

may be specified using the input
Weight: n = 3

Interpolation: flat

0.0 0.0

6.0 1.0

20.0 1.0

12.4 Optional flags, output information

The following options control the output of merced. All of them may also be input as
command line options.
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12.4.1 Legendre order of the output

The Legendre order of the matrices Eqs. (2.7) and (2.10) computed by merced is set by
the command

outputLegendreOrder: n = L
The default is L = 3.

12.4.2 Numerical precision of the output

The number of significant figures for the output data is set by
datafield precision: n = n

The default is n = 8.

12.4.3 Conservation flag

This flag determines whether the merced code computes integrals Eq. (2.7) for the number-
conserving transfer matrix, integrals Eq. (2.10) for the energy-conserving matrix, or both.
The options are

Conserve: number

for the integrals Eq. (2.7)
Conserve: energy

for the integrals Eq. (2.10)
Conserve: both

for the both integrals. The default is both for most types of data.

12.4.4 Consistency check

If the integrals Eq. (2.7) for the number-preserving transfer matrix are computed, it is
possible to check the consistency as in Eq. (2.9). With the option

check row sum: true

both sides of Eq. (2.9) are printed, along with their differences and relative differences.
This information is not printed if the option is false. The default is false.

To scale the integrals Eq. (2.7) so as to enforce the identity Eq. (2.9), use the option
scale rows: true

In this case, the integrals Eq. (2.10) are also scaled. The default is true, scale the integrals.

12.5 Optional inputs, quadrature methods

For the integrals Eqs. (2.7) and (2.10) and their equivalents in the center-of-mass frame,
the quadrature methods may be set by commands of the form

Variable quadrature method: Method
The ‘Variable’ in this line is any of the following.

Ein for integrals with respect to incident energy E,
Eout for integrals with respect to outgoing energy E′lab or E′cm,
mu for integrals with respect to direction cosine µlab of µcm.
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- Omission of this parameter gives the same quadrature method for all integrals.
The options for the ‘Method’ in the command to set the quadrature method are

adaptive for adaptive 2nd-order Gaussian quadrature,
square root for adaptive 1st-order Gaussian quadrature with weight

√
1− µ,

Gauss2 for non-adaptive 2nd-order Gaussian quadrature,
Gauss4 for non-adaptive 4th-order Gaussian quadrature,
Gauss6 for non-adaptive 6th-order Gaussian quadrature.

The default for most data models is
quadrature method: adaptive

to use adaptive 2nd-order Gaussian quadrature for all integrals. The exceptions are
mu quadrature method: square root

for the integrals over direction cosine µlab with data for coherent scattering and Compton
scattering. The non-adaptive options are primarily used in debugging.

12.6 Optional inputs, numerical tolerances

The user may reset the tolerances for convergence of the adaptive quadrature and for
determination of the equality of two floating-point numbers.

12.6.1 Convergence of adaptive quadrature

The adaptive quadrature routine produces an estimate I of the integral, along with an
estimate eI of the error. The process of successive subdivision stops when

|eI | < εa + εr|I|.

The absolute quadrature tolerance is set by the command
abs quad tol: εa

The default is εa = 1.0e-8. To set the relative quadrature tolerance, use
quad tol: εr

The default is εr = 1.0e-4.
There is also a limit on the total number of intervals used in adaptive quadrature

max divisions: n = n
If this limit is exceeded, the adaptive quadrature routine returns the current estimate and
prints a warning that this result may be inaccurate.

12.6.2 Near equality of floating-point numbers

In comparisons of floating-point numbers x1 and x2, the code treats them as essentially
equal if

|x1 − x2| ≤ δa + δr min(|x1|, |x2|).

Here, the absolute tolerance δa is set by
abs tol: δa

The default value is δa = 2.0e-14 and is appropriate when energies are measured in MeV.
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It should be scaled accordingly, when other energy units are used. The relative tolerance
δr is set using

E tol: δr
The default value is δr = 1.0e-9.

12.7 Physical constants

The coding for coherent photon scattering and Compton scattering discussed in Section 11
requires the values of several physical constants. These are input as follows.

12.7.1 Conversion from Å
−1

to energy

In order to convert the energy of photons from inverse wavelength to energy, multiply by
ch. This parameter is set by the command

inverseWaveLengthToEnergyFactor: ch .

12.7.2 Thompson scattering cross section

The Thompson scattering cross section σT in Eqs. (11.3) and (11.10) is set by
ThompsonScattering: σT

The default value is σT = 0.6652448 barns.

12.7.3 Electron rest mass

The rest mass me of the electron in Eq. (11.9) is set by the command
electron mass: me .

12.7.4 Neutron rest mass

The rest mass of the neutron mn is used in Eq. (10.6) by the Kalbach-Mann model of
photo-nuclear reactions. Its units are MeV, and its value is set by the command

m neutron: mn

Its default value is mn = 939.565653471MeV.

12.8 Errors and warning messages

These options control the printing of informational messages, warnings, and fatal errors.
To set which messages are printed, use the command

message level: n = n
The effect of this option is:

message level =


0 print all messages,

1 print only warnings and errors,

2 print only severe errors; these cause exits anyway.
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The default value is 0, print all messages.
It is also possible to turn off all messages with the command

skip logging: true

The default value is false.

12.9 Model-dependent information

The remainder of the input file consists of data required by the model.
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A Relativistic 2-body problems

In this appendix, relativistic 2-body mechanics is examined from the point of view of
computational physics. That is, the subtraction nearly equal numbers is avoided as much
as is possible. The analysis starts with a collision of an incident particle with a stationary
target. This determines the mapping between the laboratory frame and the center-of-mass
frame. The appendix closes with a discussion of emission after the reaction.

As is customary in discussions of relativity, the units are such that the speed of light
has the value c = 1.

A.1 Initial collision

For this appendix, E is the total energy of a system and p its total momentum. Thus,
for a particle with rest mass m0 and kinetic energy T , it follows that E = m0 + T . The
convention c = 1 implies that the data must be such that particle rest masses and kinetic
energies must be given in the same units. The analysis makes repeated use of the invariance
under Lorentz transformations of the quantity

S0 = E2 − p2. (A.1)

If the system is a single particle in a frame in which the particle is stationary, then
S0 = m2

0. Consequently, for a single particle in any frame Eq. (A.1) takes the form

m2
0 = (m0 + T )2 − p2, (A.2)

or
p2 = 2m0T + T 2. (A.3)

When it is desired to solve Eq. (A.3) for T corresponding to a known value of p2, it is
recommended to use the formula

T =
p2

m0 +
√
m2

0 + p2
. (A.4)

The relation Eq. (A.4) is computationally more reliable than the more obvious solution of
the quadratic equation Eq. (A.3)

T = −m0 +
√
m2

0 + p2.

Consider the application of Eq. (A.1) to the system consisting of a moving incident
particle and a target at rest in the laboratory frame. Suppose that the incident particle
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has rest mass mi and kinetic energy Ti,lab, and let mt be the rest mass of the target. Then
it follows from Eq. (A.3) that the initial laboratory-frame momentum is given by

p2
i,lab = 2miTi,lab + T 2

i,lab. (A.5)

Consequently, for the system of consisting of the two particles in the laboratory frame,
the energy-momentum invariant is

S = (mt +mi + Ti,lab)2 − (2miTi,lab + T 2
i,lab),

This expression simplifies to

S = (mi +mt)
2 + 2mtTi,lab. (A.6)

The value of S must be the same when this system of two particles is considered in
the center-of-mass frame. Denote the center-of-mass kinetic energy of the incident particle
by Ti,cm and its momentum by pi,cm. Similarly, let the target have center-of-mass kinetic
energy Tt,cm, and its momentum is −pi,cm. The energy-momentum invariant for the system
is therefore

S = (mi + Ti,cm +mt + Tt,cm)2, (A.7)

the square of the total energy of the system in the center-of-mass frame. By using Eq. (A.2)
on each of the particles, it is possible to rewrite this as

S =
(√

m2
i + p2

i,cm +
√
m2
t + p2

i,cm

)2

.

Upon solving this equation for p2
i,cm, it is found that

p2
i,cm =

[
S − (m2

i +m2
t )
]2 − 4m2

im
2
t

4S
. (A.8)

An expression for p2
i,cm in terms of the laboratory incident kinetic energy Ti,lab is obtained

by substituting in Eq. (A.8) the value of S given by Eq. (A.6),

p2
i,cm =

m2
t (2miTi,lab + T 2

i,lab)

(mt +mi)2 + 2mtTi,lab
. (A.9)

It follows from Eq. (A.3) that this equation may also be written as

p2
i,cm =

m2
t p

2
i,lab

(mt +mi)2 + 2mtTi,lab
.

A.2 Mapping between frames

Consider a coordinate system in which the momentum pi,lab of the incident particle is in
the direction of the first spatial axis. The boost from the laboratory to the center-of-mass
frame then takes the form

(Ecm, pcm)T = R(Elab, plab)T
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with the matrix

R =


coshχ − sinhχ 0 0
− sinhχ coshχ 0 0

0 0 1 0
0 0 0 1

 . (A.10)

Upon applying the rotation Eq. (A.10) to the target, it is found that
mt + Tt,cm

−|pi,cm|
0
0

 = R


mt

0
0
0

 .
It follows that

sinhχ =
|pi,cm|
mt

. (A.11)

By using Eq. (A.9), one may conclude that

sinhχ =

√
2miTi,lab + T 2

i,lab√
(mt +mi)2 + 2mtTi,lab

. (A.12)

Note that except for incident gammas, Ti,lab is much smaller than the rest mass mi, so
that χ is a small, positive number.

In the next section of this appendix, for 2-body problems the center-of-mass energy and
momentum of the emitted particle and residual are determined. In order to boost these
4-vectors to the laboratory frame, one may use the inverse of the matrix R in Eq. (A.10),
so that

(Elab, plab)T = R−1(Ecm, pcm)T (A.13)

with

R−1 =


coshχ sinhχ 0 0
sinhχ coshχ 0 0

0 0 1 0
0 0 0 1

 . (A.14)

A.2.1 Incident photons

When the incident particle is a photon, the boost from the center-of-mass frame to the
laboratory frame must be determined relativistically, because the mass of the incident
particle is zero but its momentum is nonzero.

In this case, Eq. (A.5) simplifies to

|pi,lab| = Ti,lab,

and Eq. (A.12) becomes

sinhχ =
Ti,lab√

m2
t + 2mtTi,lab

.
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It follows that

coshχ =
mt + Ti,lab√
m2
t + 2mtTi,lab

.

A.3 Outgoing particles

Denote by me the rest mass of the emitted particle and Te,cm its kinetic energy in the
center-of-mass frame. The convention in GND is that the energy Q of the reaction is
specified by the data, and the rest mass mR of the residual is calculated from

mR = mt + (mi −me)−Q. (A.15)

Let TR,cm be the kinetic energy of the residual in the center-of-mass frame. In terms of
these variables, the energy-momentum invariant for the system is the square of the total
energy

S = (me + Te,cm +mR + TR,cm)2,

with the same value of S as in Eq. (A.7). The argument leading to Eq. (A.8) shows that
the momentum pe,cm of the emitted particle in the center-of-mass frame has magnitude
given by

p2
e,cm =

[
S − (m2

R +m2
e)
]2 − 4m2

Rm
2
e

4S
. (A.16)

It is not a good idea to use Eq. (A.16) in a computation, because of its subtraction of
nearly equal numbers. It is therefore desirable to do some algebraic manipulation in order
to mitigate this problem as much as possible. As a first step, Eq. (A.16) is rewritten in
the form

4Sp2
e,cm =

[
S − (mR +me)

2
] [
S − (mR −me)

2
]
. (A.17)

In this expression, the subtraction of nearly equal numbers is confined to the first factor
on the right-hand side. For photon emission the two factors are identical. An analysis of
photon emission later, because it offers some simplifications.

By using the expression for S in Eq. (A.6), one obtains the relation

S − (mR +me)
2 = (mt +mi)

2 − (mR +me)
2 + 2mtTi,lab.

In terms of the energy Q of the discrete 2-body reaction and the parameter

MT = mt +mR +mi +me, (A.18)

it follows that
S − (mR +me)

2 = MTQ+ 2mtTi,lab.

Consequently, it is seen that Eq. (A.16) may be replaced by

p2
e,cm =

(MTQ+ 2mtTi,lab)(MTQ+ 2mtTi,lab + 4mRme)

4S
. (A.19)
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Remark. It is clear from Eq. (A.19) that for endothermic reactions (Q < 0), the
threshold occurs when the incident particle has kinetic energy

Ti,lab =
−MTQ

2mt
.

In Eq. (A.19) there is subtraction of nearly equal numbers when the kinetic energy
Ti,lab of the incident particle is just above the threshold in endothermic reactions. That
operation is unavoidable in the analysis of nuclear reactions.

Now that p2
e,cm has been obtained in Eq. (A.19), one may use Eq. (A.4) to determine

the kinetic energy of the emitted particle in the center-of-mass frame as

Te,cm =
p2
e,cm

me +
√
m2
e + p2

e,cm

. (A.20)

A.3.1 The boost to the laboratory frame

It is often desired to determine the kinetic energy Te,lab and momentum pe,lab of the emitted
particle in the laboratory frame for given direction cosine µcm in the center-of-mass frame.
It is possible to use the boost Eq. (A.13) to determine pe,lab as follows. Recall that the
form of Eq. (A.13) is determined by the requirement that the first axis of the coordinate
system was chosen parallel to pi,lab. Consequently, one has

pe1,cm = µcm|pe,cm|.

If the orientation of the coordinate system is such that

pe3,cm = 0 and pe2,cm ≥ 0,

then
pe2,cm = |pe,cm|

√
1− µ2

cm.

The momentum components of the boost Eq. (A.13) then take the form

pe1,lab = (me + Te,cm) sinhχ+ µcm|pe,cm| coshχ,

pe2,lab = |pe,cm|
√

1− µ2
cm,

pe3,lab = 0.

The magnitude of the momentum in the laboratory frame is

|pe,lab| =
√
p2
e1,lab + p2

e2,lab + p2
e3,lab.

If |pe,lab| = 0, the direction cosine µlab in the laboratory frame is undetermined. Otherwise,
it is given by

µlab =
pe1,lab

|pe,lab|
.

The kinetic energy Te,lab is calculated from |pe,lab| by using Eq. (A.4).

89



A.3.2 Photon emission

When the emitted particle is a photon, because me = 0, Eqs. (A.19) and (A.20) take the
simpler form

Ee,cm = Te,cm = |pe,cm| =
MTQ+ 2mtTi,lab

2
√
S

.

For given direction cosine µcm in the center-of-mass frame, the energy component of the
boost Eq. (A.13) gives the Doppler shift

Ee,lab = Ee,cm (coshχ+ µcm sinhχ) .

The first component of the momentum of the photon in the laboratory frame is

pe1,lab = Ee,cm (sinhχ+ µcm coshχ) ,

so the direction cosine is

µlab =
sinhχ+ µcm coshχ

coshχ+ µcm sinhχ
.
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B Proof of Assertion 8.1.1

It is proved in this appendix that for a Newtonian boost, for the function G0 defined in
Eq. (8.4), it is true that arcs E′lab = Ebin and E′cm = const in Figure 8.1 intersect if and
only if G0(Ebin, E

′
cm, E) ≥ 0.

The clearest way to prove this assertion is to argue four cases directly:

G0(E′bin, E
′
cm, E) ≥ 0 and E′trans + E′cm ≥ E′bin, (B.1)

G0(E′bin, E
′
cm, E) ≥ 0 and E′trans + E′cm < E′bin, (B.2)

G0(E′bin, E
′
cm, E) < 0 and E′trans + E′cm ≥ E′bin, (B.3)

G0(E′bin, E
′
cm, E) < 0 and E′trans + E′cm < E′bin. (B.4)

In these inequalities E′trans is as defined in Eq. (4.7).
A geometric condition for the intersection of the two arcs is presented first. It is then

shown that this geometric condition is equivalent to the non-negativity of G0.

B.1 An equivalent geometric condition

The geometric condition is that for given values of E′bin, E′cm and E, the arcs E′lab = E′bin

and E′cm = const in Figure 8.1 intersect if and only if(√
E′trans −

√
E′cm

)2

≤ E′bin ≤
(√

E′trans +
√
E′cm

)2

. (B.5)

For the purposes of this argument, it is convenient to use units of mass such that the
mass of the outgoing particle is myo = 2. Thus, its speed in the center-of-mass frame is
V′cm =

√
E′cm. The arcs in Figure 8.1 may be viewed either as curves of constant energy or

constant speed. For given energy E of the incident particle, the speed Vtrans =
√
E′trans of

the center of mass is determined. In terms of the speeds with V ′bin =
√
E′bin, the condition

Eq. (B.5) is equivalent to

V 2
trans + V ′cm

2 − 2VtransV
′

cm ≤ V ′bin
2 ≤ V 2

trans + V ′cm
2

+ 2VtransV
′

cm. (B.6)

For emission in the forward direction, the speed of the outgoing particle in the labo-
ratory frame is

V ′lab = Vtrans + V ′cm,

so that its energy in the laboratory frame is

V ′lab
2

= V 2
trans + V ′cm

2
+ 2VtransV

′
cm.
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In backward emission, the speed of the outgoing particle in the laboratory frame is

V ′lab =
∣∣Vtrans − V ′cm

∣∣ ,
and its energy in the laboratory frame is

V ′lab
2

= V 2
trans + V ′cm

2 − 2VtransV
′

cm.

It follows that if condition Eq. (B.6) is true, then there exists a center-of-mass direction
cosine µcm with −1 ≤ µcm ≤ 1 for which the emitted particle has the desired laboratory
energy

V ′bin
2

= V 2
trans + V ′cm

2
+ 2µcmVtransV

′
cm.

The two arcs E′lab = E′bin and E′cm = const intersect at this value of µcm. It is seen that if
the geometric condition Eq. (B.5) is satisfied, then the arcs E′lab = E′bin and E′cm = const
do intersect.

It is now shown that if Eq. (B.6) is false, then then arcs E′lab = E′bin and E′cm = const
do not intersect. One way for Eq. (B.6) to be false is that

V ′bin > Vtrans + V ′cm. (B.7)

In this case, forward emission has insufficient energy in the laboratory frame, and the arc
E′cm = const in Figure 8.1 is entirely enclosed within the arc E′lab = E′bin.

If
V ′bin <

∣∣Vtrans − V ′cm

∣∣ , (B.8)

there are two more ways for Eq. (B.6) to be false, depending on whether

V ′cm < Vtrans (B.9)

or
V ′cm > Vtrans. (B.10)

Under the conditions in Eq. (B.9), backward emission in the center-of-mass frame
boosts to forward emission in the laboratory frame. The condition Eq. (B.8) implies that

V ′bin < Vtrans − V ′cm,

so that the arc E′lab = E′bin is completely to the left of the arc E′cm = const in Figure 8.1.
(In fact, one pair of such arcs is shown in Figure 8.1.)

The final way for Eq. (B.6) to be false is that conditions Eqs. (B.8) and (B.10) be valid.
In this case, backward emission in the center-of-mass frame produces backward emission
in the laboratory frame with

V ′bin < V ′cm − Vtrans.

In this case, the arc E′lab = E′bin is completely contained within the arc E′cm = const
in Figure 8.1. This finishes the proof of the assertion that the arcs E′lab = E′bin and
E′cm = const in Figure 8.1 intersect if ans only if Eq. (B.5) is true.
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B.2 Proof of the assertion

Consider the case Eq. (B.1) above. That is, suppose that

G0(E′bin, E
′
cm, E) ≥ 0 (B.11)

and
E′trans + E′cm ≥ E′bin. (B.12)

It is now shown that these two inequalities lead to the geometric condition Eq. (B.5) for
intersection of the two arcs. The inequality Eq. (B.11) may be rewritten in the form

4E′cmE
′
trans − (E′trans + E′cm − E′bin)2 ≥ 0.

Because of the fact that E′trans +E′cm−E′bin ≥ 0, it is possible to take positive square roots
to obtain the relation

2
√
E′cmE

′
trans ≥ E′trans + E′cm − E′bin,

which may be rearranged as

E′bin ≥
(√

E′trans −
√
E′cm

)2

.

The first of the inequalities Eq. (B.5) is now verified.
The second inequality Eq. (B.5) follows trivially from the assumption Eq. (B.12),

E′bin ≤ E′trans + E′cm ≤ E′trans + E′cm + 2
√
E′cmE

′
trans.

The other three cases may be analyzed in a similar fashion.
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