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1 Summary

The merced code is one of the computer programs used in the conversion of reaction data
from the GND library [I] of evaluated nuclear data to input for deterministic particle
transport codes. This data conversion is managed by the fudge python script [2], while
the merced code performs the computation of transfer matrices used to approximate the
kernel in the integral operator of the Boltzmann equation.

This document is organized a follows. Section [2| explains how the transfer matrix is
used in the discretization of the Boltzmann equation. Section [3| examines the methods
used for interpolation of data in GND. The remainder of the document is devoted to
a discussion of the considerations involved in computing transfer matrices based on the
various data formats used in the GND library.

For discrete 2-body reactions, the processing of angular probability density data given
in the center-of-mass frame is discussed in Section ] The treatment here is Newtonian,
with a relativistic version presented in Appendix [A]

Section [f] discusses the treatment of the data in GND used for isotropic energy proba-
bility densities given in the laboratory frame.

Sections [6] through deal with double-differential, energy-angle probability density
data. Uncorrelated energy-angle probability density data is presented in Section [f] One
option for energy-angle probability density data is as coefficients of Legendre expansions.
This option is discussed in Section[7]for data given in the laboratory frame and in Section [§]
for center-of-mass data. The proof of a mathematical detail used in analysis of the boost
for such data is given in Appendix Energy-angle probability densities may also be
presented as tabulated data as discussed in Section [9] The final form of energy-angle
probability density data is in the form of parameters of mathematical formulas, and these
are taken up in Section

Section [11] deals with special data for incident gammas, specifically, coherent scattering
and Compton scattering.

Finally, the document closes in Section with instructions on how to run merced,
along with an explanation of the input parameters.



2 Transfer matrices

Deterministic particle transport codes solve a discrete version of the Boltzmann equation,
and the transfer matrix approximates the kernel of the integral operator in this equation.
If z denotes the position, ¢ the time, E’ the particle energy, €’ the direction of motion,
v the magnitude of the velocity (speed), and n(z,t, E’, ) the number density, then the
flux ¢ = vn satisfies the Boltzmann equation [3]

%8t¢(E’,Q’)+Q’-V¢(E’,Q’)+patq5(E/,Q’) = 4‘;/(19/ dEK(E',Q -Q| E)$(E, Q).
Q 0

(2.1)
The direction €' is relative to some given “north pole” €, and p is the density of the
material. The dependence on z and t is suppressed. The first two terms in Eq. give
the derivative with respect to distance of the flux in a coordinate system moving with the
particles. The parameter oy is the microscopic total cross section, so the term pop(E’, Q')
represents the rate of particle loss per particle path length.

The kernel K(E',Q - Q | E) in Eq. gives the rate of production of outgoing
particles with energy E’ and direction €' corresponding to incident particles at energy
E and direction Q. Here, the energies I and E’ and the directions Q and €’ are in the
laboratory coordinate system. From here on, the notation

u=xQ-Q

is used. It is significant that the dependence of I(E’, i | E') on pu is axisymmetric, because
the orientation of the target nucleus is unknown. The primes are placed where they are in
Eq. , because the emphasis in this document is on approximation of the right-hand
side of the equation. In that setting, it is natural that F denote the energy of the incident
particle and E’ the outgoing particle energy.

For a given target, the nuclear data in GND is given reaction by reaction, e.g., elastic
scattering, neutron capture, fission, etc. The transfer matrix approximating /C is built up

K=> K.

The reaction kernels K, themselves are not given in GND, but their component factors are
given instead, namely,

by summing over the reactions r

1. 0,(E): the cross section for the r-th reaction,
2. M,(FE): the multiplicity of the outgoing particle,

3. wy(E): the model weight for these data,



4. m.(E', | E): the double-differential probability density of the energy and direction
cosine for one outgoing particle.

In terms of this notation, X', is the product
Kr(E' p| E) = op(E)M(E)w,(E)m(E', | E). (2.2)

The multiplicity M,.(E) may be constant, e.g., 1 for elastic scattering and 2 for (n,2n)
reactions, but the number of fission neutrons depends on the incident energy E. The
default is M,.(E) = 1.

Model weight The model weight is usually w,(F) = 1, and that is the default. One
exception is that data for a single outgoing neutron in an (n,2n) reaction may have
M, (F) =2 and w,(E) = 0.5. The model weight is also used to handle the use of different
interpolation rules over different ranges of incident energy. Thus, if the interpolation for
Fy < FE < Ej is different from that for Fo < F < Ej3, the data may be split into two sets,
one with

1 forE1§E<E2,
0 fOI‘EQSESEg,

and the other with
0 for B4y < E < Ey,
w(E)y=4_ = ’
1 fOI‘ E2 S FE S Eg.

The GND nuclear data consist of tables of o,.(FE) and 7, (E’, i | E) and possibly M,.(FE)
and w,(E). The data for 7.(E’, u | F) take several forms, and the various data represen-
tations are dealt with individually.

The discretization of Eq. is based, first, on the specification of a set of energy
groups {&,;} for the incident particles and energy groups {&}} for the emitted particles.
The energy groups for neutrons are typically different from those for gammas, and yet
another set is usually used for charged particles. The flux ¢(F,Q) inside the integral
in Eq. is discretized according to the energy groups of the incident particle, while
¢(E', Q) on the left-hand side of Eq. is discretized according the the energy groups
of the outgoing particles. These energy groups are also called energy bins.

According to the normalization for Legendre expansions used in GND, the angular
discretization of 7, in Eq. is given by

(B | By =3 (H ;) mre(E' | E)Py(y)
V4

with Py(u) denoting the ¢-th Legendre polynomial and

1
me(E' | E) = / dp (B | E)Pu(). (2.3)



The flux ¢(F, Q) in Eq. (2.1) is expanded into spherical harmonics

¢(E7 Q) = Z C@,mgbf,m(E)Yvé,m(Q) (24)
{m

with normalization
c 1
tm = .
" [dQYem(Q))2
A discrete approximation to Eq. (2.1)) may be obtained by expanding ¢(F, ) in spher-
ical harmonics and integrating over the outgoing energy group &; . This gives an equation
for the vector of values

Qsé,m(E;L)‘

Note that ¢y, (E}) is a histogram with respect to the energy E’ of the outgoing particle,
constant on each energy group &;. Integration of the right-hand side of Eq. (2.1]) over &},
gives

o0 1
Tu= Y [ aBou®) [ aB [ duki (B B)RG. (25)

The integral Eq. contains only the spherical harmonics with m = 0, because the
kernel K, is axisymmetric.

The unknown flux ¢ appears in Eq. both on the left-hand side of the equation
and under the integral sign. It is therefore convenient to start the calculation using an
assumed approximate value of ¢g(F) in the integral Eq. , namely,

b10(E) = ¢y(E). (2.6)

Upon inserting Eq. into Eq. and taking the incident energy groups &, one at
a time, it is found that Eq. may be viewed as the product of a matrix with a column
vector. Here, the column vector has the components ¢, (E} ), and the components of the
matrix are given by
g he

j’ A= T =~
g:h.t o, dEo(B)

with

Lyne=Y [ aBaE) [ ar’ / A Ko (B 1| E)Polp).

The quantities Jy ¢ constitute the entries of the transfer matriz.

The above discussion gives one way of defining the transfer matrix, but the fudge
code has three different representations, depending on whether one wants to conserve the
number of particles, the energy, or both. Traditionally, conservation of particle number
has been used for neutron transport, conservation of energy for gammas, and conservation
of both energy and number for charged particles. These cases are taken up in turn.



2.1 Conservation of particle number

With the approximate flux coefficient 55 in Eq. |D and the representation Eq. lj of
the kernel KC;, the ¢-th Legendre coefficient of the contributions of energy groups &, and
&, to the integral in Eq. (2.1)) by reaction r is given by

7{17;{2’[:/ dEUr(E)Mr<E)wT<E)(Z€(E>/g

g9

aE' [ dp P (B B). (20)
m

/
h
For conservation of particle number the elements of the transfer matrix are the sums over

all reactions,
Z Inum
r=r,g,h,l

Je, dE ¢u(E)

The merced code computes the integrals 1,75 ¢ Teaction by reaction, and the operation
Eq. is performed by fudge.

Note that the number-preserving transfer matrices offer a simple check. Because the
probability density 7.(E’, u | E) has the normalization

Tght = (2.8)

00 1
| ae [ dumEnim) =1
0 -1
it follows from Eq. (2.7)) that

STk = [ B0 (B (E)0(B)(E). (29)

h &g

2.2 Conservation of energy

When conservation of energy is desired, the integral Eq. (2.7)) is modified by insertion of
E’ as a weight factor

o, = / 0F 0,(E)My (E)w,(E)3(E) /

, AE'E’ [ duPimy(E' | E). - (210)
& &, H

With the notation that Ei;L denotes the midpoint of energy group &;, the elements of the
transfer matrix for energy conservation are the sums over all reactions,

2 Lo e

Tont = = =
! Ej [o, dE ¢(E)

(2.11)

The computation of jgﬁ’g in Eq. 1} is done by fudge using the integrals Iﬁf;w calcu-
lated by merced.



2.3 Conservation of both particles and energy

The fudge code also has an option to combine the integrals If,;?ﬁ,z in Eq. and f‘; hot
in Eq. S0 as to construct a transfer matrix which conserves both energy and particle
number. Energy conservation may be violated in the lowest and highest outgoing energy
groups, however. The construction is based on the following ideas.

There are two ways to compute the average energy of particles in the outgoing energy
group &;. One such average is the midpoint Eil’L of this group. Preferably, this value should
be the same as the average energy derived from the the sums over the reactions r of the

integrals Egs. (2.10]) and (2.7)),

2 Ligno
2 Irgho
This is accomplished, as much as possible, by properly defining entries of the transfer
matrix corresponding to adjacent outgoing energy groups.

For each incident energy group &, one iterates through the outgoing energy groups &; .
Note that the description of this process in [4] and [5] assumes that the energy group
boundaries decrease with increasing index; the energy group boundaries are counted in
increasing order here and in fudge.

If (E')gn < Ej and & is not the lowest energy group, make a fraction of the sum

2 Lg e

E}, ¢, dE $u(E)

(E"gh = (2.12)

contribute to the transfer matrix element J, ¢, and make the remainder contribute
to Jg,n—1,- Specifically, it is desired to find j, , and j, ,—1 which conserve particle number

20 Lgho

jg,h + jg,h—l = ~
Je, dE do(E)

as well as average energy

o / . _ en
Ey jgn+ Ey_1Jgh—1 = E :Ir,g,h,O'

T

Therefore, set
P (Egn — B,
g’ - 7 =T °
B, — B,

For each Legendre coefficient £ take as contribution to Jj 5 ¢ the quantity

_ Jon 2 Trghe

Jg.h = fgg dEag(E) s



and the contribution to J; 51, is

P G /D MY ¥
Jh—1 = = .
! Je, dE $4(E)

If (E')gpn < Eijl and & is the lowest energy group, the contribution to Jy p ¢ is simply

num
Zr Ir,g,h,f

Je, AE 6u(E)

This maintains conservation of particle number.

If (E') g5 > E} and &} is not the highest energy group, these data are used to calculate
contributions to the components J, ¢ and J, p+1,¢ of the transfer matrix. Specifically,
set

_ ;z—i-l B <E/>g,h

/ T
Eh+1 - Eh

J. g,k
For each Legendre coefficient ¢ take as contribution to J, ¢ the quantity

P fon 220 Tigin e
g,n — ~ )
fgg dE ¢€(E)

and the contribution to Jj; p41,¢ is

(L= fon) 220 Tighn e
fgg dE QSE(E)

jg7h+1 =

If (E')gpn > Eiz and & is the highest energy group, the contribution to 7 4 is

num
Zr Ir,g,h,f

Je, B 6u(E)

The sum of all of these contributions produces the Legendre coefficients J, ¢ of a
transfer matrix which conserves particle number as well as usually conserving energy.

2.4 Control of the conservation option

The merced code computes the integrals Eq. for the number-preserving transfer ma-
trix or the integrals Eq. for the energy-preserving transfer matrix or both, depending
on the value of the Conserve input parameter. See Section [[2.4.3] The default mode is
to compute both integrals. The actual construction of the transfer matrix is performed
by fudge.



2.5 Numerical quadrature

The integrals Eqgs. and require some sort of numerical quadrature, and the
multiple integrals are computed as a sequence of single integrals. The quadrature method
is a modification of an adaptive method proposed by Gander and Gautschi [6]. The main
difference is that the Simpson rule used in [6] is replaced by a second-order Gaussian
quadrature. The reason for this change is that in the calculations here, one of the limits
of integration may be a computed quantity, such as a threshold energy. In such cases,
computer arithmetic may give rise to attempts to evaluate 7. (E’, u | E) where it makes
no sense to do so.

Remark. In the rest of this document the subscript r is omitted from each of the
terms in the kernel Eq. and from the integrals 1 e and 0 he because from now
on the discussion will be about the treatment of the data, reaction by reaction.



3 Interpolation of the data

The data in GND representing the probability density 7(E',pu | E) = 7.(E',p | E) in
the integrals and are given in various forms. In the case of tabulated data,
intermediate values must be obtained via some sort of interpolation. Interpolation with
respect to one independent variable is described first, followed by a discussion of the 2-
dimensional case. In GND full 3-dimensional interpolation of w(E’, u | E) data is reduced
to a sequence of 2-dimensional interpolations.

3.1 Interpolation methods for a single variable

For the sake of having a specific application, the discussion here is given in terms of tables
of data {E;, f(E;)}, with values E; of the energy of the outgoing particle as independent
variable. These ideas are applicable to one dimension for any tabular data. The types
of interpolation method used in GND for such tables are: histogram, linear-linear, log-
linear, linear-log, and log-log. The algorithms for interpolation of F(F) on an interval
Ey < E < Ey with given f(Ey) and f(E1) are as follows. In these definitions it is assumed
that the argument of a logarithm is positive.

3.1.1 Histograms

For histogram interpolation set

f(E) = f(E()) for By < E < Ej.

3.1.2 Linear-linear
For linear-linear interpolation set
_ E-E

e —— 1
o B E (3.1)

and take
f(E) = (1 — a)f(Eo) + Oéf(E1) for E() < E < El.
3.1.3 Log-linear
For log-linear interpolation take « as in Eq. (3.1)), and set
log f(E) = (1 — a)log f(Eo) + alog f(E1) for Ey < E < Ej.

This relation may also be written as

F(E) = f(Bo)' " f(E1)™. (3-2)



3.1.4 Linear-log

For linear-log interpolation set
) _ log(E/Ey)

— )/ 3.3
log(E1/ Eo) 33
and take
f(E) = (1 —d)f(Ey) + o f(Er) for By < E < Ey.
3.1.5 Log-log
For log-log interpolation take o/ as in Eq. (3.3]), and set
log f(E) = (1 —d/)log f(Ep) + a'log f(E1) for By < E < Ey.
This is equivalent to
F(E) = f(Bo)'™* f(E1)™. (3.4)

Remark. With log-linear interpolation written in the form of Eq. (3.2]) and log-log
interpolation written as Eq. (3.4), it is permitted that f(Ey) = 0 or f(E;) = 0. These
cases all lead to the result that f(E) =0 for Ey < E < Ej, however.

3.2 Interpolation methods for probability densities

In order to explain the methods for interpolation of probability densities, it suffices to
consider a table of values 7(E’ | E)

{E‘;’,k7ﬂ—<E},k ’ Ek)} for j = 07 17 ceey Jk (35)

given at values of the incident energy Ej, for k =0, 1, ..., K. In Eq. (3.5) it is required
that the outgoing energies be ordered

/ / / / /
Eop <Erp < Egp < < Ej g5 <Ej g (3.6)

The condition Eq. permits the data of Eq. to have equal consecutive inter-
mediate outgoing energies £}, ; = E,, so that the probability density (£’ | Ej) may
have a jump discontinuity there. Jump discontinuities are not allowed at the end points
E = E(l),k and B = Ef]kk In Eq. the possibility of three or more consecutive equal
outgoing energies may be ruled out, because all but the first and last would be redundant.
The convention adopted here is that the value of 7(E’ | Ei) at a discontinuity is the second
data value

7T(E/ | Ek) = W(E‘;,k | Ek) lf E, = E.;_lak = E;,k’

For fixed incident energy Ej, the rules for interpolation of w(E’ | Ej) in outgoing
energy E’ are as given in Section The following types of interpolation with respect to
FE are discussed in subsequent subsections:

1. direct interpolation.

10



2. unit-base interpolation,

3. interpolation using cumulative points.

The method referred to here as “interpolation by cumulative points” is closely re-
lated to “interpolation by corresponding energies” as described in the ENDF/B-VII man-
ual [7]. For a more-detailed discussion of 2-dimensional interpolation methods, see the
reference [g].

For a discussion of interpolation of data Eq. , it suffices to consider interpolation
between incident energies Fg and E7. Thus, it is desired to interpolate to incident energy F
with Fy < E < Ep the data

{E} o, m(Ejo | Eo)} forj=0,1,...,J,

3.7
(B n(E, | By} forj=0,1,.... Ji. (37)

The ideas presented apply equally well to interpolation of data in Eq. (3.5) between any
consecutive pair of incident energies Fj_1 < Ej.
The methods of 2-dimensional interpolation are described in turn.

3.2.1 Direct interpolation

It is common to do direct interpolation for interpolating tables of angular probability
density m(u | E') with respect to incident energy E, because the range of direction cosines
is usually —1 < p < 1. For example, in order to determine the value of 7(u | E) for
Ey < E < Ej from data Eq. , one first interpolates in p at fixed incident energies to
obtain 7(u | Ep) and w(p | E1). One then obtains the value of 7w(u | E) by interpolating
between 7(u | Ep) and w(p | Eq).

The trouble with the application of direct interpolation to tables of energy distributions
is that the range of outgoing energy E’ usually depends on the incident energy E. Thus,
for the data in Eq. , the ranges of outgoing energies are given by

/ / / /
Eo’min - EO,O and EO,max - EJ070 fOl“ E - EO,
! - E(,),l and Ei,max - E&l’l fOI‘ E - El

1,min

(3.8)

Remark. In the definition of the range of outgoing energies Eq. , it is natural to
expect that the data in Eq. are such that for each incident energy Fjy with k=0, 1,
..., K, the probability density w(E’ | Ey) is not equal to zero on the entire lowest outgoing
energy range Ej,; < E’' < Ej, or highest outgoing energy range £} |, < E' < E}} ;.
That is, Eq. ought to give the actual range of outgoing energies. Some nuclear
data libraries, e. g., ENDF/B-VII.1 [9], have data of the form Eq. which imply that
7(E' | Ex) = 0 on the lowest or highest outgoing energy ranges. The sample input data
given in Section illustrates the problem.

It is convenient to describe the process of direct interpolation using notation of set
theory, with the sets

Ap = {E, : E(l),min < E < Eé,max}7
Ay ={E: E] <FE <E

1,min

(3.9)

7rnax}'

11



The union of these two sets is denoted by

Ax = Ag U Ay, (3.10)
and the intersection is denoted by

Ar = Ao N Aj, (3.11)

There are two obvious interpretations of direct interpolation of the data in Eq.
when the outgoing energy ranges differ, Ay # A;. One may do direct interpolation with ex-
trapolation or direct interpolation with truncation. Linear-linear versions of these methods
are described here.

For direct interpolation with extrapolation the probability densities 7(E’ | Ey) and
7w(E" | E1) constructed from the tables in Eq. are extrapolated to

E'|E for E' i
nx (B | Bp) = {707 [ o) for Brin Ao, (3.12)
0 for E in Ax \ Ay,

and

mx(E' | Ey) =

{W(E' | By)  for E in Ay, (3.13)

for E' in Ax \ A;.

For direct interpolation to incident energy F with Ey < E < Ej, the proportionality factor

q is defined as
E - Ey

= 3.14
1= 5 B, (3.14)

In linear-linear direct interpolation with extrapolation, the interpolant is taken to be
ax(E'|E)=(1—-q)rx(E' | Ey) +qrx(E' | Ey) (3.15)

for £’ in the set Ax.
The method of direct interpolation with truncation differs from that using extrapola-
tion, in that this method uses the truncated probability densities

nr(E' | Ey) = Com(E' | Ep),
TFT(E/ ‘ El) = Clﬂ'(E/ ’ El)

for outgoing energy E’ in the set Ap. Here, Cy and Cy are normalization constants such
that

(3.16)

/ dE' 7mp(E'| Eg) =1 and / dE' np(E" | E1) = 1.
.AT AT

For linear-linear direct interpolation with truncation of the data in Eq. (3.7)) to incident
energy F with Ey < E < Ej, the factor ¢ is chosen as in Eq. (3.14]), and the interpolant is

nr(E' | B) = (1 - q)nr(E' | Eo) +qnr(E' | Ex)
for £’ in the set Ar.
Remarks. The ENDF/B-VII.1 data [9] contains many instances in which linear-linear
direct interpolation is specified, but the ENDF/B-VII manual [7] says nothing about how to
deal with differences in range of outgoing energies. Both versions can be expected to pro-

duce violation of energy conservation. The merced code currently uses direct interpolation
with extrapolation.
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3.2.2 Unit-base interpolation

Only the linear-linear version of unit-base interpolation is discussed here. The first step
in unit-base interpolation is the construction of the range of energies of the outgoing
particle. The minimum and maximum outgoing energies for the data in Eq. are
given by Eq. . For incident energy E with Fy < E < E1, the factor ¢ is taken as in
Eq. , and the minimum and maximum outgoing energies are given by

E;nin = (1 - q)Eé),min + qu,min?

(3.17)
El{nax = (1 - q)E(/Lmax + qu,max'

The interpolated probability density 7(FE’ | E) must satisfy the normalization condition
Erlnax
/ dE'm(E' | E) = 1. (3.18)

min

One way to ensure this is to first map the outgoing energy ranges Eq. (3.8)) to unit base
0 < E' <1 and to scale the probability densities Eq. 1) accordingly. Thus, for the data
in Eq. (3.7) at incident energy Ey, set

~ E' — E|

E = .m0 (3.19)
E(l),max - E(l),min
and scale the probability density
#(E' | Eo) = (B max — Eomin)™(E' | Eo). (3.20)

For incident energy E;, the outgoing energy is scaled as

. E —E| .
B = ——lmn (3.21)
El,max El,min

and the probability density is scaled to define the unit-base probability density

R(E' | EY) = (B} ax — Bl in) T(E' | E1) (3:22)
for 0 < E' < 1.

If linear-linear interpolation with respect to incident energy is desired, the - proportion-
ality factor ¢ defined in Eq. (3.14)) is used to linearly interpolate between #(E’ | Ey) and
7(E' | E1) by setting

#(E'| E)=(1—q)7(E'| Eo) +q7(E' | Ey) (3.23)

for 0 < E' < 1.
Finally, in order to define the interpolated probability density 7(E’ | E), invert the

mappings Eq. (3.19) and Eq. (3.20). Specifically, with E/ . and E/ .. as in Eq. (3.17), set
— E

E, = El in + (E, min)E, (324)

m max
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and take

#(E' | B)

Unit-base interpolation is ordinarily not used with tables of angular probability den-
sities w(u | ), because the range of direction cosines is usually —1 < g < 1. One may
want to use it for a table with forward emission given in the laboratory frame, however.

3.2.3 Interpolation by cumulative points

The method of interpolation by cumulative points that is used in the code merced is
proposed in [§], and it is a modification of interpolation by corresponding energies as
described in the ENDF/B-VII manual [7]. Interpolation by corresponding energies requires
the selection of N equiprobable energy bins, so the result depends on the value of N. It is
shown in [§ that for data Eq. which are histogram with respect to outgoing energy
E’, interpolation by cumulative points is equivalent to interpolation by corresponding
energies with IV = co. The merced code therefore uses interpolation by cumulative points
whenever the data specify interpolation by corresponding energies.

One objection to unit-base interpolation is that the mapping depends only on
the range of outgoing energies. One can often get a better approximation to the physics if
the interpolation method incorporates knowledge of the local behavior of each 7(E’ | Ey)
in Eq. . One method of doing so is based on the cumulative probability function

E/
I(E' | Ey) = / dzm(z | Ey) (3.26)
k,min
for k=0,1, ..., K.
Constraint. Interpolation by cumulative points requires that II(E’ | Ej) be strictly
increasing with respect to E’ for k =0, 1, ..., K. That is, the condition that

(B | By) > 1I(E] | By) (3.27)
is imposed for every Ej and EY in the outgoing energy range
Ey, < By < Ey <Ej ;.

Because the data 7(E’ | Ej) consist of probability densities, it follows that 7(E’ |
Ex) > 0. If the interpolation with respect to outgoing energy E’ is log-linear or log-log,
the monotonicity condition (3.27) implies that (E} . | Ej) > 0 for all data points E}
in Eq. || and for histograms only the highest outgoing energies E; . may have zero
probability density. For linear-linear and linear-log interpolation, it is permitted that
W(E;k | Ex) = 0 at local values of E;k but not for two consecutive outgoing energies
E§—1 , and E;k,

As with unit-base interpolation, it is sufficient to describe interpolation by cumulative
points between the incident energies Ey and E;. For incident energy Ey compute the

cumulative probabilities at the data points in Eq. (3.7))
Y50 = H(E§70 | Eo) for j = 0, 1, ey Jo. (328)
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Analogously, for E = F; determine the cumulative probabilities at the data points in
Eq. (3.7)
yj,l = H(E§71 ‘ El) for j = 0, 1, ey Jl. (329)

Form the union of the two sets
{Ye} = {yj0} U {yj}-
The Y, values are then ordered with removal of duplicates, so that
Yo=0<Y1 < - <Y1 <Y, =1 (3.30)

Interpolation by cumulative points consists of a sequence of unit-base interpolations
on subintervals. These subintervals are obtained as follows. For incident energy Fy and
each cumulative probability Y, in Eq. , the outgoing energies Eé,o are computed such
that

(E}, | Eo)=Y; fort=0,1,..., L.

Note that the::onstruction ensures that each of the original data points E;-’O in Eq. l}
is one of the Ej , values. The interval By(¢) is defined as

By(t)={E':E,_1y < E <Ej,} for{=1,2,...,L—1,

= L~ (3.31)
Bo(L) ={E":E;_1o < E' < EL,}

The intervals B;(¢) for the data Eq. at incident energy E; and £ =1, 2, ..., L are
defined in a similar manner.

Interpolation by cumulative points is accomplished by doing a sequence of unit-base
interpolations between 7(E’ | Ey) on the interval By(¢) and 7(E’ | E1) on By({) for £ =1,
2, ..., L.

A more detailed discussion of interpolation of probability data by the method of cu-
mulative points may be found in the note [§].

Because interpolation by cumulative points depends on the detailed behavior of the
probability densities, the method may also be useful for interpolation of angular probability
densities w(u | E).

3.3 Unscaled interpolation of Kalbach-Mann data

The above discussion pertains to the interpolation of tables of probability densities, for
which maintenance of the norm condition Eq. is essential. The parameter r(E/_, E)
in Eq. for the Kalbach-Mann model of double-differential data is given as tables
depending on the energy E of the incident particle and the energy E. . of the outgoing
particle in the center-of-mass frame, and it has the different constraint,

0<r<l1. (3.32)

Again, it suffices to describe interpolation between Kalbach-Mann r data between
tables at incident energies Ey and Ey with Fy < Ej. Asin Eq. (3.9), consider the sets Ag
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of outgoing energies at £ = Ey and Ay at £ = E;. For unscaled direct interpolation with
extrapolation, take Ay = 49 U .A; as in Eq. (3.10)), so that the extrapolated r parameter

1S

E' E for E' i
rx (B Ep) = r(E', Ep) or ' in Ay,
0 for E in Ax \ Ay,

and
r(E', Ey) for E' in A4,

0 for E' in Ax \ A;.

Then for Ey < E < FEq, for ¢ as in Eq. (3.14) and for E’ in the set Ay, the linear-linear
form of unscaled direct interpolation with extrapolation becomes as in Eq. (3.15)),

’I"X(E/, El) = {

Tx(E,, E) = (1 — q) Tx(E/, Eo) + qu(E’,El). (333)

The extrapolation version of direct interpolation of the Kallbach-Mann r parameter as in
Eq. is implemented in the merced code.

For unscaled direct interpolation of the Kalbach-Mann r parameter with truncation,
the outgoing energy E’ is restricted to the common domain Ar = Ay N Aj, and there is
no change of scale analogous to that used for probability densities in Eq. . Thus,
the truncated Kalbach-Mann r parameters for incident energies Fy and Fp are

r(E', Ep) for E' in Arp,

E' Ey) =
rr(E', Ep) {0 for E’ in Ay \ Ar,

and
r(E', Ey) for E' in Arp,

rx(E', E) =
x( 1 {0 for E' in Ay \ Ar.
The linear-linear version of unscaled direct interpolation with truncation is

rr(E, E) = (1 —q)rr(E', Ey) + grr(E', E1) (3.34)

with E’ restricted to Ar. The merced code does not currently implement unscaled direct
interpolation with truncation of the Kalbach-Mann r parameter given in Eq. .

There is also an unscaled version of unit-base interpolation with Eqgs. (3.20]) and (3.22))
replaced by

7(E', Ey) = r(E', Ey),
7(F', E1) =r(F Ey),

for 0 < E' < 1 with E' as in Eq. for E = Ejy and as in Eq. for E = FEj.
For linear-linear unscaled unit-base interpolation to incident energy E with Ey < E < Fj,
interpolate the minimal and maximal outgoing energies as in Eq. , interpolate 7
using

FE',E) = (1 — ) F(E, o) + aF(E, Ey),
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and invert the unit-base map using Eq. (3.24]) and
r(E',E) =7(E', E)

for B/ < E' <El,..

When the energy probability density 7g(E’ | E) in Eq. is interpolated using the
method of cumulative points, the interpolated values of r(FE’, F) in Eq. is obtained
using the method of unscaled cumulative points defined as follows. The method uses
the outgoing energy ranges By(¢) given in Eq. for Tp(FE' | E) at E = Ey and the
corresponding By (¢) at E = Ej, and it does unscaled unit-base interpolation of r(E’, E)
between By(¢) and B;(¢) in sequence for £ = 1,2, ..., L.
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4 Discrete two-body reactions

This section describes how the contribution to the transfer matrix is calculated for data
consisting of probability densities for the cosine of the angle of deflection in discrete 2-
body reactions. In this case, the probability densities are always given in the center-of-mass
frame. Because the transfer matrices are defined in terms of laboratory coordinates, the
computations involve a boost.

For all except very light-weight targets, the mapping from center-of-mass to laboratory
coordinates is usually done using Newtonian mechanics. The discussion given here is
therefore Newtonian. A relativistic treatment is presented in Appendix [A] The choice
of Newtonian or relativistic mechanics is determined by the value of the kinetics input
parameter to merced as explained in Section Of course, relativistic mechanics
must be used if either the incident particle or the outgoing particle is a photon.

For discrete 2-body reactions, the center-of-mass energy of the emitted particle is
determined by the energy E of the incident particle. Consequently, the energy-angle

probability density mem (El,, ttem | E) in the center-of-mass frame is given by

7"'cm(Eém’lulcm | E) = g(:ucm | E) 6(Ev/:m - \IJ(E)) (4'1)

for the function ¥ given below in Eq. . From here on, the energy E and direction
cosine p of the outgoing particle will be marked with the subscript “lab” or “cm” to
indicate that the variable is in the laboratory or center-of-mass frame.

Because of Eq. , the data for discrete 2-body reactions consist of angular probabil-
ity densities g(tem | ) given in the center-of-mass frame, either as a 2-dimensional table
for given incident energy F and direction cosine fiey, or as Legendre coefficients cy(E) for

dlpen | B) = 3 (43 ) co(B) Pac). (12)

¢

This section begins with an overview of Newtonian mechanics for discrete 2-body
problems. In particular, the form of the function ¥ in Eq. is derived, as is the boost
from the center-of-mass to the laboratory frame. The section closes with an examination
of the use of angular probability data g(pem | F) in the computation of the integrals
Eqgs. and used in the calculation of the transfer matrix.

4.1 Newtonian mechanics of discrete 2-body reactions

Only a summary of the results is given here; for more information, see the reference [10].
A relativistic treatment is developed in Appendix [A] It is assumed that the target is at
rest and that the incident particle has energy E in laboratory coordinates.
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The following notations are used for the masses of the particles involved:
myi, the mass of the incident particle,
Mtarg, the mass of the target,
Myo, the mass of the emitted particle,
Myres, the mass of the residual.
For the conversion between center-of-mass and laboratory coordinates, define the mass
ratios
MyiMyo

’7 =
(myi + Miarg)?

Myes

8=

)
Myo + Meres
and
__ Bmiarg
Myi + Mtarg

Velocity vectors are printed in bold face V with magnitude (speed) in math italics
V=|V]

For a target at rest and an incident particle with energy FE in laboratory coordinates,
the center of mass moves in the direction of motion of the incident particle with velocity
Virans having magnitude squared

2myi E
Vitans = Vieans = ——————.. 4.3
trans trans (myi + mtarg)2 ( )

The reaction may have a nonzero energy value (), arising for example from the ex-
citation level of the target and/or residual nucleus in inelastic scattering. A nonzero @
value may also arise from the mass difference in a knock-on reaction. It follows from con-
servation of energy and momentum that in center-of-mass coordinates the energy of the
emitted particle is given by

E| = U(E) = aFE + BQ. (4.4)

This defines the function ¥ appearing in Eq. (4.1)). The speed of the outgoing particle in
the center-of-mass frame is

2F!
Vin = Vel = = (4.5)
yo
It follows from Eq. (4.4) that for an endothermic reaction (@ < 0), the threshold is at
E = ﬂ
a
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-1
COS ~ Hlab

Vtrans

Figure 4.1: Newtonian mapping to laboratory coordinates

4.1.1 The boost to the laboratory frame

As illustrated in Figure the boost from center-of-mass to laboratory coordinates is
obtained by adding the velocities

iab = Virans + V/cm' (4.6)
Consequently, the energy of the outgoing particle in the laboratory frame is

mwV.. 2 m 9
El/ab = yo2 = 2yo (Vt?"ans + Vc/m + 2Vtrans : V/cm)

In terms of the notation Eq. (4.4) and

V2
E‘érans = Myo 2trans = ’YE7 (47)
this equation takes the form
El/ab = Eérans + E(/:m + Qlucm EéransE(/:m‘ (48)

Here, picr, is the direction cosine defined by the relation

Virans - Vem = fem Virans Ve
It is also necessary to determine the direction cosine i, in the laboratory frame for

Virans * Via, = HiabVirans Viap-

This is most easily derived from the trigonometry in Figure
tiabViap, = Virans + Hem Vem-

In terms of the energies defined in Egs. , , and , this relation takes the form

[ab = ~ Pigans + ’fcm‘/% if B, > 0. (4.9)
VBl
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It is clear from Eq. (4.6)) that

if and only if
Vi;m = _Vtrans-

In this case, the value of p,1, is undefined.

4.2 Computation of the transfer matrix from data for dis-
crete 2-body reactions

Consider the use of data g(puem | F) in Eq. in the computation of integrals for
the transfer matrix Egs. and , either as tables or as Legendre coefficients in
Eq. (4.2). In these integrals the multiplicity is always M(E) = 1 for discrete 2-body
reactions. The discussion given here concentrates on the evaluation of the integral in
Eq. . The integral in Eq. differs only in that its integrand contains an extra
factor EJ,;, the energy of the outgoing particle in the laboratory frame.

Because the probability density data g(pem | E) in Eq. is given in center-of-
mass coordinates, it is desirable to transform the integrals Egs. to the center-of-mass
frame. The center-of-mass form of the integral Eq. is

cm E{

cm

num _ /g dE o(Eyw(E)dy(E) / djtem 9(j1cm | E) / AE, Pypuan) 6(Elyy — U(E
' (

o~
~—

with W(FE) as given by Eq. . The range of integration over pcy, and E!  in Eq. (4.10)
is such that for fixed incident energy E in &;, the energy Ej, of the outgoing particle
given by Eq. lies in &j.

Integration of Eq. with respect to E/, yields the result that

!?:l]llr:% = /g dEO—(E)w(E)aﬁ(E)/ dﬂcm Pf(,ulab)g(,ucm ‘ E)a (411)

g cm

where it is understood that the direction cosine p,}, in the laboratory frame is calculated
from Eq. and that the range of integration over piem is such that E is in &;.

The merced code steps through the data g(pem | £) to compute contributions to
the entries of the transfer matrix in Eq. . The case of tabular data with direct
interpolation (Section is illustrated in the laboratory frame in Figure . This
figure shows an integration region identified by an incident energy bin £; and an outgoing
energy bin £,. The data g(uem | £) are given at incident energies Ej_; and Ej, such
that the interval E;_; < E < Ej, overlaps the energy bin &;. Furthermore, it is assumed
that data entries g(ptem | E) for fiem = fem,j—1 and fiem = flem are given at £ = Ej_;
or at E = Ej and that the table contains no entries g(piem | Ex—1) or g(ptem | Ex) for
Hem,j—1 < Hem < fem. Any missing data values g(pem,j—1 | Ex—1) or g(ftemj | Ex—1) or
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Hem = Hem,j

Hem = Mem,j—1
E/

Ep—1  Eg E

Figure 4.2: Integration region in the incident energy bin &, and outgoing bin &} for
probability data given at incident energies Ej_; and Ej and direction cosines fiem, j—1
and ftem,j shown in the laboratory frame

frem =1 gl &
Hem, 5 h|
Hem,j—1 j
| E
1 -
Ep_4 Ey,

Figure 4.3: Integration region of Fig. [£.2] shown in center-of-mass coordinates

9(pem j—1 | Ex) or g(ptem,j | Ex) are computed by interpolation with respect to piem. The
integration region in the laboratory frame for the contribution of such a set of data to
the integral ;};ﬁ in Eq. is the shaded area of Figure This region is mapped to
center-of-mass coordinates in Figure [4.3

When the tabular data are interpolated by the method of cumulative points of Sec-
tion the geometry is complicated by the local unit-base transformations, but the
basic ideas are the same. Finally, for probability density data g(pem | E) given as Legen-
dre coefficients in Eq. , the only significant difference is that the range of direction
cosines becomes —1 < e < 1 with the limitation that the energy E of the outgoing
particle lies in the energy bin &} .
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4.3 Format of data in the input file

For tabulated probability density data g(pem | E), the data identifier as in Section [12.3.1
is

Process: two body transfer matrix
and for the Legendre coefficients it is

Process: Legendre two body transfer matrix

4.3.1 Data for both forms of probability density

Because the boost from the center-of-mass frame to the laboratory frame depends on
the rest masses of the particles, these must be included in the input file as described in
Section The format for doing so is
Projectile’s mass: my;
Target’s mass: Myarg
Product’s mass: My,
Reaction’s Q value: @
The values of these quantities must be in the same units as the energy bin boundaries.
The code computes the rest mass of the residual from the ) value and the masses of
the other particles. If the input file also contains the line
Residual’s mass: Myes
the code compares this value with the mass it computed, printing a warning message if
they are significantly different.
The code may use either Newtonian or relativistic mechanics in its computations as
specified in Section
The specifications that the energy F of the incident particle is given in the laboratory
frame and the direction cosine piey, in the center-of-mass frame are, Section
Projectile Frame: 1lab
Product Frame: Center0OfMass

4.3.2 Angular probability density tables

The identification line for tabulated angular probability densities is
Angular data: n=K
where K is the number of incident energies E. This is followed by the interpolation rules
for probability densities from Section
Incident energy interpolation: probability interpolation flag
Outgoing cosine interpolation: list interpolation flag
There are then K blocks, one for each incident energy Ej,
Ein: Fp: n=J;
with Jj, pairs of values fiem j and g(ptem | Ex). Thus, with incident energy in MeV a table
of angular probability densities g(ucm | ) may look like
Angular data: n =22
Incident energy interpolation: lin-lin direct
Outgoing cosine interpolation: lin-lin
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Ein: 1.500000000000e-01 : n = 2
-1.000000000000e+00 5.000000000000e-01
1.000000000000e+00 5.000000000000e-01

Ein: 2.000000000000e-01 : n = 2
-1.000000000000e+00 4.550000000000e-01
1.000000000000e+00 5.450000000000e-01

Ein: 2.000000000000e+01 : n = 29
-1.000000000000e+00 3.873180000000e-02
-9.500000000000e-01 2.943580000000e-02
-9.000000000000e-01 2.582090000000e-02

9.000000000000e-01 2.530490000000e+00
9.500000000000e-01 3.873180000000e+00
1.000000000000e+00 8.262750000000e+00

4.3.3 Legendre coefficients of angular probability density

Legendre coefficient data of the form Eq. for discrete 2-body reactions are given as
Legendre coefficients: n=K
where K is the number of incident energies E. This is followed by the interpolation rule
for simple lists from Section
Interpolation: list interpolation flag
The file closes with K sets of data
Ein: FEp: n=1L;
with Ly Legendre coefficients ¢y(Ey) for =0, 1, ... , Ly — 1 in Eq. . With incident
energy in units of MeV, an example of this portion of the input file is
Legendre coefficients: n = 17
Interpolation: lin-lin
Ein: 1.843100e+00: n
1.000000e+00
0.000000e+00
0.000000e+00

]
w

Ein: 2.000000e+01: n
.000000e+00
.640500e-01
.320700e-01
.593700e-02
.338700e-02
.465600e-02
-1.500600e-03
-1.756300e-02
-1.108000e-02

12
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1.931100e-02
1.150900e-02
5.643500e-03
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5 Isotropic energy probability densities in the
laboratory frame

The GND library supports several formats for energy probability densities which are
isotropic in the laboratory frame. These data are typically used for equilibrium reactions
and for fission neutrons. Because the outgoing distribution is isotropic, the probability
density (B}, , tab | £) in Eq. takes the form

7r(Ewl/aubaulab ’ E) = WO(Ellab ‘ E) (51)

Consequently, for the number-conserving matrices only the £ = 0 Legendre order,
3= [ a8 EIMEREIRE) [ dEy B | B (5:2)
needs to be computed, and Eq. for the energy-preserving transfer matrix becomes
o = [ AECEMERERE) [ dFmoF | DFw 63

The data mo(E},, | £) may be given in GND either as a table of values or as parameters
in a function formula. Because several of the function formulas for isotropic energy prob-
ability densities are given in terms of incomplete gamma functions, these are discussed
first. This is followed by a presentation of the functional formulas for isotropic probability
densities. Then, the treatment of tables of m(E[,, | E) for isotropic emission in the labo-
ratory frame is discussed. The section closes with the special treatment of the evaporation
of delayed fission neutrons.

5.1 Computational aspects of incomplete gamma functions

Many of the function formulas for m(E[,, | E) make use of the lower incomplete gamma
function

xr
v(k,z) = / dtt"te™t (5.4)
0
with k > 0. The upper incomplete gamma function is
oo
[(k,z) = / dtt"te (5.5)
xr

and they are related by

vk, x) + T'(k,z) =T'(k) = /000 dtt" et
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In order to reduce the difficulties of computer round-off, the formula

b
/ dtt* e " = v(k,0) — (K, a)

is used when 0 < a < b <1, and

b
/ dtt" e =T'(k,a) — T'(k,b)
a

is used when 1 < a < b. Either form may be used when a < 1 < b.

Note that even though it is possible to write down exact formulas for v(k,z) when &
is a positive integer, it is better not to use them in the computations. For example, it is
true that

v(2,z)=1—(1+z)e ",

For values of x near zero, this formula involves subtracting from 1 a number very close to
1 to get a result close to 22/2. This is may lead to bad round-off errors in the computer
arithmetic, and it is far better to use the software for v(2, z).

5.2 Functional formulas for isotropic probability densities

The functional formulas used in GND for energy probability densities mo(Ej,, | E) are the
evaporation model, the Maxwell model, the Watt model, and the Madland-Nix model.
These models are discussed in turn. For all of these models the energy of the outgoing
particle is in the laboratory frame.

5.2.1 Evaporation model

For the evaporation model the formula is

El
(B, | B) = CBpmexp { - 51 (5:6)

with 0 < Ej,, < E —U. The value of C in Eq. (5.6) is chosen so that

E-U
/0 dEllab 71-O(lal/ab ’ E) =1L

That is,
1

~ OM(2,(E-U)/6)
The data consist of the energy of the reaction U and pairs of values {E,©(F)}. The

1-dimensional interpolation methods of Section are used to determine the value of ©
for intermediate values of the energy E of the incident particle.

C
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According to the comment on incomplete gamma functions above, for the calculation
of I;‘ﬁ) on an outgoing energy bin, Ey < EJ,, < E; the expression

Eq
/ dELy, mo(Elyy | B) = CO[1(2, E1/©) — (2, Eo/O)
Ey

is used when Ey < O, and

By
/ A, mo(Ely, | E) = CO*[1(2, Ey/©) — T(2, E1/O))
Eq

is used when FEgy > ©. Analogously, for the calculation of I;‘}L 0

Eq
/ AE, Elnymo(Elyy | B) = CO[(3, E1/0) — (3, Eo/O))
Ey

is used when Ey < O, and

Ey
/ ALy, Elyymo(Ely, | E) = CO[L(3, Eo/©) — T(3, E1/0)]
Eo

is used otherwise.

Input file data for the evaporation model

The process identifier in Section is
Process: evaporation spectrum
These data are always in the laboratory frame,
Product Frame: 1lab
One item of model-dependent data in Section [12.9]is the value of U used in defining
the range of outgoing energies F in Eq. , and it is given by
u: U
The other input data are the values of O(F) in Eq. depending on the incident
energy E. All of these energies, U, E, and ©(F), must be in the same units as the energy
bins in Sections [2.3.2] and [2.3.3] The format for these data is
Theta: n =n
Interpolation: interpolation flag
with n pairs of entries { £, ©(E)}. The interpolation flag is one of those for simple lists as
in Section [[2.2.3] For example, in units of MeV one may have
U: 11.6890
Theta: n = 2
Interpolation: 1lin-lin
12.0 1.04135
20.0 1.04135
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5.2.2 Maxwell model

The formula for the Maxwell is

El
7o(Bpy | ) = O/ By exp {— = } (5.7

for 0 < El’(erb < E — U. This model is often used for fission neutrons. The value of C in

Eq. (5.7) is given by
1

C= .
©3/24(3/2,(E - U)/©)
Because of round-off problems with small values of z, it is unwise to use the mathematically
equivalent formula

v(3/2,2) = \é%erf{\/nf} —Vxe ™.

The data consist of the energy of the reaction U and pairs of values {E,©(F)}. The
parameter © is interpolated by the methods of Section to obtain intermediate values.

Depending on the value of Ey/0, the calculation of I;‘;l% on an outgoing energy bin
Ey < E’l’ab < FE uses the expression

Ey
/E dEl/ab 7-‘-O(Eillaub | E) = 063/2[7(3/2a E1/®) - 7(3/27 EO/@)]

or
Ey
/ A, mo(Efy, | E) = CO¥?[(3/2, Ey/©) — T'(3/2, E1/0))].
Ey

Analogously, the calculation of Z7%, ; uses either

Ey
/ dEl,ab El/abﬂ-o(El/ab ‘ E) = 065/2[’7(5/2’ El/@) - 7(5/2a EO/Q)]
Eo

or

Ly
/ B}y, Blyymo( By, | E) = COP2[D(5/2, Eg/0©) — T'(5/2, E1/6)).
Ey

Input file data for the Maxwell model

The process identifier in Section [12.3.1] is
Process: Maxwell spectrum
Again, this data is in the laboratory frame,
Product Frame: 1lab
One item of model-dependent data in Section is the value of U used in defining
the range of outgoing energies F in Eq. , and it is given by
U: U
The other input data are the values of O(F) in Eq. depending on the incident
energy E. These energies, U, F, and O(F), must all be in the same units as the energy
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bins in Sections [2.3.2 and [2.3.3] The format for such data is
Theta: n =n
Interpolation: interpolation flag
with n pairs of entries { £, ©(E)}. The interpolation flag is one of those for simple lists as
in Section [12.2.3] For example, in units of MeV one may have
U: -20
Theta: n = 2
Interpolation: 1lin-lin
1.0e-11 1.28
20.0 1.28

5.2.3 Watt model

Another model sometimes used for fission neutrons in GND is the Watt formula

E/
70(Elyp, | E) = C'sinh y/bE], exp {—:b} (5.8)

for 0 < E{, < E —U. The value of C in Eq. (5.8)) is given by
lab

é = az;/?r exp {22} (erf{y — 2z} —erf{y + z}) —aexp {—yQ} sinh \/b(E —U)

with y = /(E —U)/a and z = y/ab/4. The data consist of the energy of the reaction U
and pairs of values {F,a(E)} and {E,b(E)}. For intermediate incident energies F, the
parameters b and a are interpolated by the methods of Section [3.1

Input file data for the Watt model

The process identifier in Section [12.3.1] is
Process: Watt spectrum
This data is in the laboratory frame,
Product Frame: 1lab
One item of model-dependent data in Section [12.9]is the value of U used in defining
the range of outgoing energies F in Eq. , and it is given by
u: U
The other input data are the values of a(E) and b(E) in Eq. (5.8). The energies, U, E,
and a(F), must be in the same units as the energy bins in Sections [12.3.2] and [12.3.3] and
the units for b(F) are the reciprocal of these units. The format for these data is
a: n=mn
Interpolation: interpolation flag
with n pairs of entries {E, a(E)} and
b: n=mn

Interpolation: interpolation flag
with n pairs of entries {E, b(E)}. The interpolation flags for a and b are those for simple
lists as in Section [12.2.3] For example, with energies in MeV one may have
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U: -10

a: n =11

Interpolation: 1lin-lin
1.000000e-11 9.770000e-01
1.500000e+00 9.770000e-01

3.000000e+01 1.060000e+00
b: n =11
Interpolation: 1lin-lin
1.000000e-11 2.546000e+00
1.500000e+00 2.546000e+00

3.000000e+01 2.620000e+00

5.2.4 Madland-Nix model

The Madland-Nix model [II] for prompt fission neutrons uses the formula

C
7-['O(E‘l/aub ‘ E) = 5 [g(El/ab7EFL) + g(El/ab7EFH)] (59)
for
0 < Ej,;, < maxEout, (5.10)

where maxEout is one of the input parameters. Note that the range of outgoing energies
Eq. is independent of the incident energy. In fact, the ENDF/B-VIl manual [7] gives
no way for the data to specify the maximum outgoing energy for the Madland-Nix model.

In Eq. Erp, is the average kinetic energy of the light fission fragments, and Ery
is the average kinetic energy of the heavy fission fragments. The function g(Ej,,, Er) in
Eq. is given in terms of the parameters T, and

_ (VEly, — VEr) _ (VEly, +VEF)?
Uy = s U = (5.11)
T T
by the formula
1 3/2 3/2
g(Ellab, EF) = &/ﬁ |:'LL2/ El ('LLQ) — ’LLl/ El <’U,1) — F(3/2, U/Q) + F(3/2, Ul) s (512)

where E; denotes the exponential integral

> 1
Ei(x) = / dt —e*.
- t
It is clear from the definitions that

Ei(x) =T(0,x),
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but software to compute I'(k,x) generally requires that x be positive. The data for the
Madland-Nix model contains the average energies Er;, and Erpy as well as pairs of values
{E,T,,(E)}. The interpolation rule for T, is also given.

If the range of outgoing energies is taken to be 0 < E/, < oo in Eq. (5.9)), then C' = 1.

For other ranges of E/ , and for computation of I;}}l%, it follows from Eq. ([5.12)) that it is

necessary to compute integrals

b
Gila,b) = / By o2 B () (5.13)

and )
Hi(a,b):/ dEp, T'(3/2,u;) (5.14)

with i =1, 2.
The values of the integrals Eqs. (5.13) and (5.14)) are conveniently expressed in terms

of the parameters
a=+\Tn, B=+Er, (5.15)
2 2
A= M B = M (5.16)

Q ’ o? ’
and

(5.17)

One might think it sufficient to calculate

Gi(0,b) and H;(0,b)

in Egs. (5.13) and (5.14)) and to use

Gi(a,b) = G;(0,b) — G;(0, a),
Hi(a,b) = H;(0,b) — Hi(0,a)

for ¢ = 1, 2. In fact, this approach is suitable only for ¢ = 2. The reason for the difficulty
is seen from Eqs. (5.11]) and ([5.15)), in that

3/2 (B—E[)?3/a®  for0< E[, <pB%
v = 7 * 3/.3 / 2 (5.18)
(\/EE_/B) a for B, > 3.

Consequently, the integrals used to compute G;(a,b) and H;(a,b) in Egs. (5.13) and
(5.14) are evaluated as

aAPEy(A) for0<a< B

Qa\/zié
2

2
Gula, %) = v (2.4) = 2 (§a) |2

2 5) 2’

(5.19)
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—t= (B, —B)*/?
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Figure 5.1: Domain of integration for G;(52,b) with b > 2 in the Madland-Nix model

2 /
Gi(6%,b) = %ﬁ'y (2,B) + 2%7 (;,3’) + [g + 20“5/§ aBE(B)) forb> 82
(5.20)
_2a2 5 af B 5
0.0 =57 (5:8) = G 1 CB) gz e+
(5.21)

—B +:| El(B)—Cl for b >0,

Hi(a,B%) = 2087 (2,4") — o’ <2 5

A’) +(8%2—a)l (3,A’) for 0 < a < 8%, (5.22)

Hi(B%b) =228~ (2,B') + a?y (2,3’) +(b-p)T <§,B’> for b> 52, (5.23)

and

Ho(0,b) = a?~ <Z,B> —2afv(2,B)+8%y <§,B> +bT (2,3) —Cy forb>0. (5.24)

In the relations for G2(0,b) and H2(0,b) above, C1 and Cy are constants of integration.
In order to illustrate how the above integration formulas may be derived, consider

the case of Eq. (5.20) for Gi(32,b) defined in Eq. (5.13) with u; as in Eq. (5.18)) and

with b > $2. Substitution of the definition of the exponential integral F; gives the double
integral

b 0
1
gl(ﬂQ,b)z/ dE{abui’/g/ dt;e’t.
B? u1

The region of integration for this integral is the union of the two shaded domains in
Figure 5.1} The integral over the darker shaded region of Figure [5.1] is

b 3/9 B’ et
Ji1 = / dE], v/ / dt =—.
82 wy t

Reversal of the order of integration transforms this integral to

B’ (a/1+8)?
1
Ji = /0 dt et / dE], u?.

2
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Under the substitution
Ellab = (a\/ul + 5)2’

the inner integral takes the form

(aVt+B)? t 9,2
/ Ay, = / duy g/ (a2 + aﬁ) _20Tsp 0B
B 0

2 4/ U1 b 2
Thus, it follows that the integral over the dark shaded region in Figure [5.1] is
20/ o}
I =2000/2.8)+ P2, B),

This relation gives the first two terms on the right-hand side of Eq. (5.20)).
The other terms on the right-hand side of Eq. (5.20)) result from evaluation of the
integral over the light shaded region in Figure [5.1

b 3/2 00 e—t 00 1 b 3/2
Ji2 = / dEL,;, u) / dt — = / dt — et/ dEj, uy'”.
,82 B’ t ’ t 52

Input file data for the Madland-Nix model
The process identifier in Section is

Process: Madland-Nix spectrum
This data is in the laboratory frame,

Product Frame: 1lab

The model-dependent data in Section [12.9] contains values of Ery, the average kinetic

energy of the light fission fragment and Fpp, the average kinetic energy of the heavy
fission fragment. These parameters are given by

EFL: Epy,

EFH: Ery
The user must also specify a maximum outgoing energy maxEout for use in Eq. .

The other input data are the values of T}, as a function of incident energy in Eq. (5.9)).

The format for these data is

™: n=n

Interpolation: interpolation flag
with n pairs of entries {E, T,,(F)}. The interpolation flag is one of those for simple lists
as in Section The energies, Err, Erp, E, and T,,(F), must be in the same units
as the energy bins in Sections[12.3.2] and [12.3.3] For example, in MeV units one may have

EFL: 1.029979

EFH: 0.5467297

maxEout: 60

TM: n = 38

Interpolation: 1lin-lin

1.0000000e-11 1.0920640e+00
5.0000010e-01 1.1014830e+00

2.0000000e+01 1.1292690e+00
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5.3 Energy probability density tables

Another form of isotropic probability density data mo(EY,, | E) Eq. in GND is in the
form of tables. The computation of transfer matrices for such data given in the laboratory
frame is discussed here. For data in the center-of-mass frame, this is a special case of
Legendre expansions discussed in Section [§] with Legendre order zero. For given incident
energies E;, the data consist of pairs {Ej,_;, mo(E} ; | Ek)} as in Eq. (3.5). For such tabular
data, computation of the integrals 1.5 in Eq. and Z71, , in Eq. |} depends on the
type of interpolation used between different incident energies. The effects of the unit-base
map Eq. are discussed here. The considerations are the same, whether the unit-base
map is used alone or as a component of interpolation by cumulative points

After the unit-base transformation Eq. (| - the integrals Eqgs. and . take
the form

s = [ A o(EDMBERE) [ By FolF | B (5.25)

and
Sho = [ AEEMENER(E) [ BBy | D, (6520)

g h

In these intergrals é‘\ denotes result of mapping the outgoing energy bin & with the
transformation Eq. . Furthermore, Ej, in Eq. is to be obtained from El’ab
using the inverse unit-base mapping Eq. .

Figure illustrates the effect of the unit-base map Eq. . For incident energies
E = FE;_1 and F = E}, 1-dimensional interpolation is used to produce data at a common
set of unit-base outgoing energies {E’ }. In the left-hand portion of Figure suppose
that probability densities mo(E],,, | E ) are glven at incident energies F = Ej_1 and E=E,
and at unit-base outgoing energles ; and E’ Then for this set of data, the range of
integration over F in Egs. or h requlres both that Fj,_1 < F < Ej and that F
be in the bin &;. The outgomg energy |, is required to be in the bin &} and to satisfy
the constraint E 1 < El’ab < E’

The right- hand portion of Elgure shows a rectangle with vertices at E = FE; 4
and F = Ej and at Ej, = £ ; and E1 L = E;, and data values 7Tg( . | E) are
given at these corners after any required interpolation in outgoing energy. The values of
%g(ﬁl’ab | EY) interior to this rectangle are determined by interpolation. The contribution
of this potion of the data to the transfer matrix is obtained by integrating Eqgs. or

(5.26) over the shaded region in Figure

5.3.1 Input of isotropic energy probability tables
The process identifier in Section [12.3.1]is

Process: 1isotropic energy probability table
This option permits either the center-of-mass or the laboratory frame. For data in the
laboratory frame, the command in Section [12.3.4]is

Product Frame: 1lab
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Figure 5.2: Domains of integration for tabulated probability densities, laboratory frame
on the left and unit base on the right

The data as in Section for tables of isotropic energy probability densities is entered
in the format
EEpPData: n = K
Incident energy interpolation: probability interpolation flag
Outgoing energy interpolation: list interpolation flag
The interpolation flag for incident energy is one those used for probability density tables
in Section and that for outgoing energy is one for simple lists. This information is
followed by K sections of the form
Ein: FE:n=J
with J pairs of values of E/, and ng(E,, | E).
An example with energies in eV of the model-dependent section of the input file for
isotropic energy probability density tables is
EEpPData: n = 4
Incident energy interpolation: 1lin-lin unitbase
Outgoing energy interpolation: flat
Ein: 1.722580000000e+07 : n = 34
0.000000000000e+00 0.000000000000e+00
1.000000000000e-08 0.000000000000e+00
1.778280000000e-08 2.766140000000e-07
3.162280000000e-08 4.918960000000e-07
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5.623410000000e-01 8.396540000000e-01
.000000000000e+00 0.000000000000e+00

[

Ein: 2.000000000000e+07 : n = 38

.000000000000e+00 0.000000000000e+00
.500000000000e-03 0.000000000000e+00
.333710000000e-02 4.877750000000e-14
.371710000000e-02 8.674000000000e-14

N = N O

2.250000000000e+06 4.413810000000e-08

2.750000000000e+06 0.000000000000e+00
Note that for these data it is not clear what should be used as the minimum outgoing
energy. In particular for incident energy Fy = 1.72258 x 107 eV, it is not clear whether
it is more reasonable to set E(/),min =0 or E(g?mm = 1.77828 x 107® eV in the unit-base
interpolation. The merced code uses E = 0, to be consistent with Eq. .

0,min

5.4 General evaporation of delayed fission neutrons

For some fissionable targets, the energy spectra data for delayed fission neutrons is repre-
sented in GND in the form

70(Elap, | E) = g < @E(%Q : (5.27)

For this model, values of © are given as a function of F, and values of g as a function of
x = E, /O(F). In fact, all of the general evaporation data in GND have © constant, and
the merced code requires that © be constant. The isotropic probability density mo(E],, |
E) in Eq. 1' is then independent of E. In this case, the integrals Z}7 in Eq. 1} and
Iﬁ,o in Eq. 1) needed for the transfer matrix become simply products of 1-dimensional
integrals
s = [ B oBMEN(ER(E) [ dEly,o(E}/)
g h
and
ho = [ AECE)ME)(ENE) | dElsa(Fl,/©)Fl,

&y i

5.4.1 Input of data for the general evaporation model

For the general evaporation model, the process identifier in Section is
Process: general evaporation
This data is in the laboratory frame,
Product Frame: 1lab
The model-dependent data in Section consist of pairs {E,O(F)} and of pairs
{z,g(x)} with z = EJ, /©. The format for these data is
Theta: n =n
Interpolation: interpolation flag
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with n pairs of entries {E,©(E)} and
g: n=mn
Interpolation: interpolation flag
with n pairs of entries {x,g(z)}. In both cases, the interpolation flag is one of those for
simple lists as in Section The © parameter is dimensionless, and the units for £
and x must be the same as those for the energy bins. For example, in MeV one may have
Theta: n = 2
Interpolation: 1lin-lin

1.0e-11 1.0
20.0 1.0
g: n =185

Interpolation: 1lin-lin
0.0000000e+00 3.1433980e-01
1.0000000e-02 2.8124280e+00
2.0000000e-02 3.1373560e+00

1.8400000e+00 0.0000000e+00
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6 Uncorrelated energy-angle probability
densities

The simplest form of joint energy-angle probability density data in GND is as tables of
uncorrelated dependence on outgoing energy E’ and direction cosine p,

w(E' 1| B) = mu(u | E)rp(E' | E). (6.1)

The energy E’ and direction cosine p may be in either the laboratory or center-of-mass
frame.

For this model, the energy probability density is always given in the form of tables of
pairs {Ez/',j77TE(Ez{,j | Ez)}

For uncorrelated energy-angle probability densities in the center-of-mass frame

7T(E[:mmucm | E) = 7ru(,“cm | E)WE(Ecl:m | E),

the merced code currently handles only the case of
1
Wu(ucm|E):§ for -1 <pu<1

and for all incident energies E. Furthermore, the values of 7, (pem | E) must be given as
pairs {; j, 7, (i | Ei)}. Such data are treated as Legendre expansions Eq. of order
zero and are processed as described in Section

For data in the laboratory frame

71-(‘Ellabuu’laub ‘ E) = ﬂ-u(lu'lab | E)WE(Ellab ’ E)? (62)

the values of 7, (ap | £) may be given either as pairs {u; ;, 7, (1i,j | Ei)} or as Legendre
coefficients ¢/(E) in

| £) = 3 (045 ) e B)PGpna). (63
1

For angular probability densities of the form of Eq. (6.3]), the merced code converts the data
to Legendre expansions of energy-angle probability densities Eq. (7.1]) using the relation

(B | B) = co(E)rp(E' | E).

These data are processed as in Section [7]
The discussion here proceeds with case of uncorrelated energy-angle probability densi-
ties Egs. (6.2) given in the laboratory coordinate system as tables of pairs {El’ o WE(EZ(’]- |
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E;)} and {p; j, (i | Ei)}. The incident energies E; need not be the same for the two
data sets, but the ranges of incident energy must agree.
For uncorrelated energy-angle probability densities Eq. (6.2) the number-preserving

integral Eq. (2.7)) becomes

i _ /g 4E o(E)M(E)w(E)d(E)

g9

/ dEl,ab 71-E‘(E‘l/ab | E) / dﬂlab Pf(ulab)ﬂ-ﬂ(ulab | E)a (64)
& Mab

and the energy-preserving integral Eq. (2.10]) takes the form
he= [ AP o(E)M(E)u(E)i(E)
g

/g/ dEl/ab 7-‘-E(F}{ab | E)El/ab / d,ulab Pf(/ulab)ﬂ-ﬂ(:ulab | E) (65)
h 1

lab

It is clear from Egs. (6.4)) and (6.5) that one should first evaluate the integrals

U(E) = / dinab Pe(pan) mp(thab | £) (6.6)
Mlab

for the Legendre orders ¢ required. When interpolation of 7, (fuab | E) in puap is piecewise
linear or histogram, the integrand in Eq. is a piecewise polynomial and the integrals
are evaluated exactly using Gaussian quadrature. Currently, the code handles Legendre
order ¢ < 18 in this way. Integrals with higher Legendre order are evaluated using adaptive
quadrature.
For the integrals
VulE) = [ dB el | )

h
and
V() = [ dBlums( i | B) Bl

h

the same geometric considerations apply as for the integrals Eqs. (5.2)) and (5.3)) of tabular
isotropic data mo(EY,, | ) as discussed in Section That is, if unit-base interpolation
Eq. (3.20) is being used, then the integral V, (E) takes the form

VulE) = [ dBfy, me(El, | B),
h

and the range of integration is determined by the geometry of the shaded region in Fig-
ure
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6.1 Input of data for uncorrelated energy-angle probability
densities

The process identifier in Section is

Process: Uncorrelated energy-angle data transfer matrix
These data are in either the laboratory or center-of-mass frame, Section

Product Frame: 1lab
or

Product Frame: CenterOfMass

In the model-dependent data in Section[12.9]angular probability density 7, (x | E) may

be given as a table or as Legendre coefficients ¢,(F) in Eq. . The energy probability
density mg(E' | E) in Eq. is given as a table. All energies must be in the same units
as those used for the energy groups.

6.1.1 Input of angular probability densities

For angular probability densities given as a table, the form is
Angular data: n = K
Incident energy interpolation: probability interpolation flag
Outgoing cosine interpolation: list interpolation flag
The interpolation flag for incident energy is one of those used for probability density tables
in Section [12.2.3] while that for the cosine is for simple lists. This information is followed
by K sections of the form
Ein: F: n=J
with J pairs of values of u and 7, (p | E).
An example of such a table of angular probability densities in the laboratory frame
with energies in MeV is
Angular data: n = 10
Incident energy interpolation: 1lin-lin direct
Outgoing cosine interpolation: 1lin-lin
Ein: 2.82600000e+00 : n = 2
-1 0.5
1 0.5

Ein: 2.00000000e+01: n = 10
-1.00000000e+00 2.86849000e-01
-9.00000000e-01 2.98228000e-01
-6.00000000e-01 3.48724000e-01
-3.00000000e-01 4.08451000e-01
-1.00000000e-01 4.54198000e-01
1.00000000e-01 5.05334000e-01
3.00000000e-01 5.62452000e-01
7.00000000e-01 6.93910000e-01
9.00000000e-01 7.47781000e-01
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1.00000000e+00 7.65990000e-01
In the center-of-mass frame, the data must imply that 7, (gem | E) = 1/2 as in
Angular data: n = 2
Incident energy interpolation: 1lin-1lin direct
Outgoing cosine interpolation: 1lin-lin
Ein: 2.82600000e+00 : n = 2
-1 0.5
10.5
Ein: 20 : n =2
-1 0.5
10.5

For angular probability densities given as Legendre coefficients ¢;(E) in Eq. (6.3), the
format is
Legendre coefficients: n= K
where K is the number of incident energies E. This is followed by the interpolation rule
for simple lists from Section
Interpolation: list interpolation flag
This is followed by K sets of data
Ein: FEp: n=1L;
with Lj, Legendre coefficients ¢¢(Ej) for £ =0, 1, ... , Ly — 1 in Eq. (6.3). These data
must be in the laboratory frame.
An example of such data is
Legendre coefficients: n = 2
Interpolation: 1lin-lin
Ein: 19 : n =2

6.1.2 Input of energy probability densities

The energy probability density table is of the form
EEpPData: n = K
Incident energy interpolation: probability interpolation flag
Outgoing energy interpolation: list interpolation flag
The interpolation flags are those used for probability density tables in Section This
information is followed by K sections of the form
Ein: E: n=J
with J pairs of values of E' and 7ng(E’ | E).
EEpPData: n = 10
Incident energy interpolation: 1lin-1lin unitbase
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Outgoing energy interpolation:

Ein: 2.826000e+00: n = 3
1.000000e-03 0.000000e+00
2.000000e-03 1.000000e+03
3.000000e-03 0.000000e+00

Ein: 2.000000e+01: n = 33

0.000000e+00 0.000000e+00
.000000e-01 1.678010e-02
2.000000e-01 2.383160e-02

[y

1.530000e+01 1.150130e-02
1.560000e+01 9.260950e-03
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7 Legendre expansions of energy-angle
probability densities in the laboratory frame

Another representation of joint energy-angle probability densities w(E’, i | E) in GND is
as a table of the Legendre coefficients my(E’ | E) in the expansion

(B | )= (z+ ;) m(E' | E)Pup) (7.1)

L

Here, E¥ denotes the energy of the incident particle in the laboratory frame. For the
outgoing particle, the energy E’ and direction cosine p may be given in either center-of-
mass or laboratory coordinates. The treatment of laboratory-frame data is discussed in
this section, center-of-mass data in the next. Data given in the laboratory frame are much
easier to deal with because no boost is involved.

This type of data is ordered according to

{EAE" {m(E' | E)}}}- (7.2)

All of the data for the lowest incident energy E is given first, ordered according to out-
going energy E’. For given values of F and E’, the data consist of Legendre coefficients
me(E',| E). Note that for this data format, the number of Legendre coefficients may vary,
depending on the energies F and E'.

The merced code also handles data for Legendre expansions of energy-angle probability
densities in the ENDL format [4],

{0AEAE m(E" | E)}}} (7.3)
That is, the £ = 0 data are given first, ordered according to incident energy E. The data
then consist of pairs {E’, m,(E’,| E)} for given ¢ and E.

7.1 Computation of the transfer matrices for data in the
laboratory frame

The calculation of the transfer matrices for laboratory-frame data proceeds as follows. In
terms of m(E],, | E), the integral Eq. (2.7) for the number-preserving transfer matrix
takes the form

333:/ dEU(E)M(E)w(E)@(E)/ dELy, (Bl | E), (7.4)
& &l

h
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and Eq. (2.10) for the energy-preserving transfer matrix becomes

She= [ ABSEYMEYEUE) [ BBy | BBy (19

g9 h
Computation of the integrals Eqgs. (7.4) and (7.5 depends on the type of interpolation
used with respect to the energy F of the incident particle, and the procedures are exactly
the same as for integration in Egs. (5.2) and (5.3) of the isotropic energy probability

densities mo(E],, | E). Thus, if unit-base interpolation is to be used for m;(Ej,, | E), then
the map Eq. (3.20) converts the integrals Egs. (7.4) and (7.5)) to the form

s = [ ABABMEY(ENNE) [ dBi 7Bl | ) (76)
g h
and
She= [ APABMEWEE) [ B 7B | DBy (1)
g h

In these intergrals EA denotes result of mapping the outgoing energy bin & with the
transformation Eq. Furthermore, E/, in Eq. is to be obtained from E{ab
using the inverse unit-base mapping Eq. .

The geometrical considerations involved in integrating Eqgs. and over the
incident energy bin £; and the mapped outgoing energy bin é\,’l are illustrated in Figure

7.2 Form of the input file for Legendre coefficient data in
the laboratory frame

These data may be input in either of two forms, the format in Eq. from ENDF/B-
VIl with all Legendre coefficients given together at each incident energy F and outgoing
energy E’ or that in Eq. with one Legendre order at a time. For both formats, all
energies must be in the same units as the energy groups.

7.2.1 Input of all Legendre coefficients together

For energy-angle tables in the standard format of Eq. , the Section line in the
input file to identify the data is
Process: Legendre energy-angle data
and the model-dependent data in Section consists of the Legendre coefficients my(E" |
E) in Eq. at incident energies F and outgoing energies F'.
The format for the Legendre coefficient data in Section [12.9] given at K values of F is
Product Frame: 1lab
Legendre data by incident energy: n=K
Incident energy interpolation: probability interpolation flag
Outgoing energy interpolation: list interpolation flag
where the interpolation flag for incident energy is one for probability density tables as in
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Section and that for outgoing energy is for a simple list. These lines are followed
by K sections of the form
Ein: FE: n = J;
for Jy outgoing energies E. For each value of E there is data
Eout: FE':n =1L
with Legendre coefficients 7;(E’ | E) for £ =0, 1, ... , L — 1.
An example of these data with energies in MeV is
Legendre data by incident energy: n = 26
Incident energy interpolation: 1lin-lin cumulativepoints
Outgoing energy interpolation: flat
Ein: 1.140200e+01: n = 2
Eout: 0.000000e+00: n =5
1.000000e+11
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
Eout: 1.000000e-11: n =5
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00

Ein: 2.000000e+01: n 27
Eout: 0.000000e+00: n =5
.179200e-02

.000000e+00

.179200e-06

.000000e+00

.395500e-07

etc.

w o N o Bn

7.2.2 Input of one Legendre coefficient at a time

For data given one Legendre coefficient at a time as in Eq. , the line in Section
of the input file identifying the data is

Process: Legendre EEpP data transfer matrix
The first lines in the data for Section [12.9 are

Product Frame: 1lab

LEEpPData: n =1L
where L is the number of Legendre coefficients, one greater than the order of the Legendre
expansion. The interpolation flags as in Section are

Incident energy interpolation: probability interpolation flag
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Outgoing energy interpolation: list interpolation flag
The interpolation flag for incident energy is one for probability density tables as in Sec-
tion and that for outgoing energy is for a simple list.
The data are then given in L sections, each of the form
order: 1 =/:n=K
where K is the number of incident energies. For each incident energy E’ there is a block

of data

Ein: F
for Ji pairs of values of outgoing energy E’ and Legendre coefficient my(E’ | E). For

n=Jg

energies measured in MeV, these data may look like

LEEpPData:
Incident energy interpolation:
Outgoing energy interpolation:

order:

Ein:
3.
3.
3.

Ein:

Ein:

order:
Ein:

w

order:
Ein:

w

Ein:

= 00 O P W

n 4

1 0: n 10

3.350000000000e+00 :
716500000000e-01 0.
716800000000e-01 2.
717200000000e-01 0.
4.460200000000e+00 :
.238900000000e-01 1.
.115000000000e+00 1.

2.000000000000e+01 :
.699600000000e-02 1
.128500000000e+00 1.

l1=1: n 10

3.350000000000e+00 :
.716500000000e-01 O.
.716800000000e-01 2.
.717200000000e-01 O.

1 3: n 10

3.350000000000e+00 :
.716500000000e-01 O.
.716800000000e-01 2.
.717200000000e-01 O.

2.000000000000e+01 :

lin-1in

n 3

000000000000e+00
857140000000e+04
000000000000e+00
n 2

008970000000e+00
008970000000e+00

n 2

.232820000000e-01

232820000000e-01

n 3

000000000000e+00
690500000000e+04
000000000000e+00

n 3

000000000000e+00
690500000000e+04
000000000000e+00

n = 28

lin-1in unitbase

.699600000000e-02
.283800000000e-02
.868100000000e-02
.452400000000e-02
.036700000000e-02
.120500000000e-01

1.172400000000e-01

-8.646000000000e-03
-3.589400000000e-02
-4.528500000000e-02
-4.921500000000e-02
-5.186400000000e-02

47



7.082900000000e+00 7.783200000000e-02
8.128500000000e+00 1.172400000000e-01
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8 Legendre expansions of energy-angle
probability densities in the center-of-mass frame

Energy-angle probability density data in GND may also be given as Legendre coefficients
for the expansion Eq. (7.1) with outgoing energy E and direction cosine p in the center-
of-mass frame. In this case, the data consists of tables of coefficients 7,(E/, | E) for the
sum

(Bl e | B) = 3 (e " ;) 72(Ely | E)Peljtem) (5.1)
V4

for a set of outgoing energies E.,  at incident energies E. The number of terms in the sum
in Eq. is determined by the data.

The analysis given in this section is also applicable to the case of isotropic energy
probability densities given in the center-of-mass frame. The data then consist only of
values of the m(E.,, | E) term in Eq. (8.1)).

For incident energies E between the tabulated values, the coefficients 7y(E.,, | E) are
obtained by one of the interpolation methods discussed in Section [3.2

For the probability density w(El,,tem | E) in Eq. , the integral Eq. for

computing the number-preserving transfer matrix becomes

i _ /g 4E o(E)M(E)w(E)d(E) / 0B, dtem Po(na) (Bl tem | E), (8.2)

Dh,cm

where Dy, oy is the set of outgoing energies E/ and direction cosines ficm, which are mapped
into & under the boost to the laboratory frame for incident particles with energy E.

Figure illustrates the portion of the region Dy, ., for one incident energy generated
by a range of outgoing energies corresponding to the data

/ / /
1§Ecm§E

cm,j— cm,j*

(8.3)

In this figure the outgoing energy bin & in the laboratory frame is a half annulus centered
at the origin with radii corresponding to the upper and lower boundaries of the energy
bin. The vector Vizans is the velocity of the center of mass with magnitude Vipans as in
Eq. . The range of outgoing center-of-mass energies in Eq. produces the second
half annulus in Figure 8-1, and its contribution to the set D, oy, is the intersection of these
two half annuli and is shaded dark gray. This dark gray set displays the outgoing energies
E! ., in the center-of-mass frame which satisfy Eq. and the direction cosines ficy such
that the energy E of the outgoing particle in the laboratory frame is in the bin &;. In this
figure, the upper limit of £} is indicated by the arc Ej, = EJ, .
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O Vtrans

Figure 8.1: Integration region over E. and ficy for the outgoing energy bin & at a fixed

incident energy for data given at energies E(,, ; ; < FEg,, < Eg, ; in the center-of-mass
frame

8.1 Geometrical considerations

The first question in the analysis of the integral in Eq. is the determination of the
set Dp cm. This requires knowing whether or not the arc for a bin boundary E|, = E|,
intersects an arc E. = Eémd» derived from a data point. For a boost to the laboratory
frame using Newtonian mechanics as in Eq. , this identification is achieved by the
function

GO(E{)im E;

cm?

2
E) = QE{)iH(Eérans + E(/:m) - (Eérans - E/‘(I‘,m)2 - E{)in . (84)

Note that in Gg the dependence on the energy F of the incident particle typically enters
in two ways. For one thing, Ff,, . depends on F as in Eq. . On the other hand, if the
interpolation with respect to incident energy is unit-base or by cumulative points, then
the inversion of the unit-base map Eq. takes the form

Ev/:m = E(/:m,min + (Eém,max - E(/:m,min)Eém' (85)
In linear-linear unit-base interpolation, E’ém is fixed in the interval 0 < Eém < 1, while
By min a0d Egy o, depend on E according to Eq. (3.17) with g given by Eq. (3.14)).

The utility of the function Gy in Eq. (8.5)) depends on the following result.

8.1.1 Assertion
In Figure under a Newtonian boost at fized incident energy E, an arc Ej,, = FE|

bin
representing an edge of an energy bin in the laboratory frame intersects an arc E.,, = const
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generated by data in the center-of-mass frame if and only if

GU(E{)inv E;

cm?

E) > 0. (8.6)

This assertion is proved in Appendix [B]

One application of Assertion is that of finding the incident energies E in &, in
the integral Eq. such that the set Dy, ¢ is non-empty. This may be done by locating
the zeros of Go(E],,, Ely,, E) as a function of E with the edges of the bin & as values of

bin’ ~cm>

E{.. and with E/ as in Eq. (8.5)) for

o o
E., = and E. ., =FE

cm,j—1 cm,j

according to the data.

8.2 Input of Legendre coefficients of energy-angle probabil-
ity densities in the center-of-mass frame

The format for input of the coefficients 7,(E/,, | E) in Eq. is that of Section
with some obvious modifications. For one thing, the data are in the center-of-mass frame
Product Frame: CenterOfMass
The other difference is that information on particle masses is required by the boost to
the laboratory frame
Projectile’s mass: my;
Target’s mass: Myarg
Product’s mass: my,
Reaction’s Q value: ()
The values of these quantities must be in the same units as the energy bin boundaries.
The code computes the mass of the residual from the ) value and the masses of the
other particles. If the input file also contains the line
Residual’s mass: Miyes
the code compares this value with the mass it computed, printing a warning message if
they are significantly different.
Currently, the boost for this type of data is only implemented using Newtonian me-
chanics.

8.3 Input of isotropic energy probability densities in the
center-of-mass frame

The format for isotropic energy probability density data given in the center-of-mass frame
is the same as that for laboratory-frame data in Section [5.3.1] except that the line
Product Frame: 1lab
is replaced by
Product Frame: CenterOfMass
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9 Joint energy-angle probability density tables

It is also possible to give energy-angle probability densities as tables in GND. These prob-
ability tables must be in the laboratory coordinate system. The ENDL [4] and ENDF/B-
VIl [7] forms of these tables differ slightly, and merced supports both formats. The

ENDF/B-VII format is described first.
One format for tables of values of 7(E],, wab | E) is as arrays

{Ev {Nlab7 {Ellabv 7[-(Eillab7 HMab | E)}}} (91)

The data for the lowest incident energy E are given first, and data for a given incident
energy are ordered by increasing direction cosine pj,p. For fixed F and pupap,, the data
consist of pairs {Ej,,,7(E],,, tab | E)} for values of the energy Ej,, of the outgoing
particle. The normalization of the data m(E] ., iia | E) is such that for each incident
energy F the total probability is

o) 1
/ dEl/ab / d,ulabﬂ-(El/am:quab | E) =1
0 1

The ENDL energy-angle probability density data tables are given in the form of the
product

7r(Ejl/abalfblatb ’ E) = 7r,U‘(Mlab ’ E)WE(El/ab ‘ Enu’lab>7 (92)

in which 7g(E],, | E, pap) is normalized so that

oo
/ dEllab 7-‘-E(El/ab | Ea Mlab) =1
0

for each of the tabulated values of E and pyap-
In the merced code energy-angle probability density tables in the format of Eq. (9.1)
are converted to the format of Eq. (9.2]) via the formulas

0
ﬂ—ﬂ(:u*lab | E) = /O dEllabF(El/abaﬂlab | E)

and
7"-(Ejllabwulab ‘ E)

T (pab | E)
The rest of the discussion of energy-angle probability density tables is therefore in terms
of the form of the data in Eq. . Tbus, the discussion is in terms of the angular
probability density 7, (tab | £) and the outgoing energy conditional probability density
TE(Ela, | B fab)-

71.E(lal,ab ’ E, Mlab) =
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With the correlated energy-angle probability density (9.2)) the number-preserving in-

tegral (2.7)) is

iy = [ apeBMEY(DE) [ dm,

h

/ dpunat, Po(tiab)mu(pan | E)Te(Ely, | E, pab),  (9.3)
Hlab

and the energy-preserving integral (2.10) becomes
o= [ AEGEMENEGE) [ dEi, B
Ey &,
/ diab Pr(tmab)mu(pan | E)Te(Ely | E, ap)- (9.4)
Hlab

The method used by merced to evaluate the integrals (9.3) and (9.4) is to first compute
the Legendre coefficients

1
ﬂf(El/ab ‘ E) = / dﬂlab Pf(ﬂ’lab)ﬂﬂ(ulab ‘ E)TFE(El/ab ‘ Ea Mlab)- (95)
-1
The coding for the integration of (7.4) and (7.5)) is then applied to obtain the transfer

matrix.

9.1 Input of 7(E|,,, tuab | E) the form of a table, Eq. (9.1)

For tables of the energy-angle probability density 7(E},, , fuap | ) in the format Eq. ,
the identification line in Section [12.9]is
Process: ENDF Double differential EMuEpP data
These data are always in the laboratory frame,
Product Frame: 1lab
The first lines in the data for Section give the number K of incident energies along
with the interpolation rules
EMuEpPData: n = K
Incident energy interpolation: probability interpolation flag
Outgoing cosine interpolation: probability interpolation flag
Outgoing energy interpolation: list interpolation flag
The flags for interpolation with respect to incident energy E and direction cosine pi,), are
those for probability density tables in Section and that for outgoing energy FE’ is
one for simple lists.
For each incident energy E there is a data section of the form
Ein: F: n =N
indicating that data are given for N values of .. The block of data corresponding to a
value of py,1, is of the form
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mu: Hlab:
followed by J pairs of values of outgoing energy E| , and probability density w(EJ,,,, tiab |

E).
An example of such data with energy in MeV is

EMuEpPData:

n

n

J

18

Incident energy interpolation:
Outgoing cosine interpolation:

lin-1lin unitbase
lin-1in unibase

Outgoing energy interpolation: 1in-lin
Ein: 1.748830e+00: n = 21
mu: -1.000000e+00: n = 15

1.092990e-03 0.000000e+00
1.093000e-03 7.406740e-01
3.278900e-03 1.166140e+00
7.650800e-03 1.466540e+00
1.202300e-02 1.585880e+00
2.076600e-02 1.610940e+00
2.951000e-02 1.546240e+00
5.574100e-02 1.071950e+00
7.104300e-02 7.097100e-01
8.197300e-02 4.021720e-01
9.071600e-02 1.795810e-01
9.508800e-02 9.526480e-02
9.946000e-02 2.867760e-02
1.016500e-01 4.692750e-03
1.016510e-01 0.000000e+00
Ein: 2.000000e+01: n = 21
mu: -1.000000e+00: n = 76
4.606790e-02 0.000000e+00
4.606800e-02 3.837140e-02
9.213400e-02 4.393050e-02
1.842700e-01 4.977660e-02
2.764100e-01 4.806820e-02
3.685400e-01 4.385540e-02
6.449500e-01 2.695920e-02
7.370900e-01 2.255450e-02
etc.

9.2 Input of 7(E|,,, tuab | £) as a product, Eq. (9.2

For tables of the energy-angle probability density m(E],,, tab | £) given as the product in
Eq. (9.2), the identification line in Section is

Process: Double differential EMuEpP data transfer matrix
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These data are always in the laboratory frame,
Product Frame: 1lab
The model-dependent portion of the input file in Section [12.9] contains a section for
the angular probability density 7, (uap | £) and another for the conditional probability
density ﬂ—E(El/ab ’ E, Mlab)-
The section for angular probability density starts with the lines
Angular data: n=K
Incident energy interpolation: probability interpolation flag
Outgoing cosine interpolation: list interpolation flag
where K is the number of incident energies . The flag for interpolation with respect to
incident energy is one of those for probability density tables in Section and that for
the direction cosine py,1, is one of those for simple lists. There follows K blocks of data,
one for each incident energy
Ein: £F: n =N
indicating that data are given for N pairs of values of a1, and 7, (pap | E).
The section for conditional probability density of outgoing energy 7 (E/, | E, tiab)
gives the number K of incident energies along with the interpolation rules
EMuEpPData: n = K
Incident energy interpolation: probability interpolation flag
Outgoing cosine interpolation: probability interpolation flag
Outgoing energy interpolation: list interpolation flag
The flags for interpolation with respect to incident energy E and direction cosine py,1, are
those for probability density tables in Section and that for outgoing energy F is
one of those for simple lists.
For each incident energy FE there is a data section of the form
Ein: F: n =N
indicating that data are given for N values of .. The block of data corresponding to a
value of pyap is of the form
mu: fpp: 0 = J
followed by J pairs of values of outgoing energy E and probability density 7g(E], |
E, :ulab)'
An example of this type of data with energy in MeV is given by
Angular data: n = 13
Incident energy interpolation: 1lin-1lin unitbase
Outgoing cosine interpolation: 1lin-lin
Ein: 7.78148000e+00: n =5
9.99788143e-01 5.88016882e+01
9.99841107e-01 1.03998708e+03
9.99894071e-01 1.70086214e+03
9.99947036e-01 2.60922780e+03
1.00000000e+00 2.70023193e+04

Ein: 2.00000000e+02: n =5
-1.00000000e+00 3.26136085e-01
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-5.00000000e-01 3.82892835e-01
0.00000000e+00 4.64096868e-01
5.00000000e-01 5.89499334e-01
1.00000000e+00 8.00885838e-01
EMuEpPData: n = 13
Incident energy interpolation: 1lin-1lin unitbase
Outgoing cosine interpolation: 1lin-lin unitbase
Outgoing energy interpolation: 1in-lin
Ein: 7.78148000e+00: n =5
mu: 9.99788143e-01: n =4
.35390141e-03 1.62759930e+05
.35697064e-03 1.62877493e+05
.35697074e-03 1.62877496e+05
.36004196e-03 1.62892892e+05
mu: 9.99841107e-01: n = 16
.30884914e-03 9.56657064e+03
2.32094195e-03 9.99310479e+03
etc.
Ein: 2.00000000e+02: n =5
mu: -1.00000000e+00: =n = 501
.00000000e-18 5.38736174e-10
.00563208e-17 1.70842412e-09
.91126417e-17 2.35524717e-09
.81689625e-17 2.85931206e-09
.72252834e-17 3.28696542e-09

N NN NN

WNRP P -

mu: 1.00000000e+00: n = 993
.00000000e-18 2.19383712e-10
7.55831305e-18 6.03138181e-10

[y

1.32751551e+01 1.88436981e-03
1.38015128e+01 1.90038969e-03
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10 Formulas for double-differential energy-angle
data

This section explains the coding used to treat two representations by formula for double-
differential energy-angle data in the GND library, the Kalbach-Mann formula and the
phase-space model. The Kalbach-Mann model is described first, because it is used so
often in GND.

10.1 The Kalbach-Mann model for double-differential data

In the Kalbach-Mann representation [12] the double differential probability density is of
the form
T(Eemy tem | B) = 75 (Eery | E)Tp(ptem | B, E), (10.1)

where FE is the energy of the incident particle in laboratory coordinates and E.  and
lem are the energy and cosine of the outgoing particle in center-of-mass coordinates. The
values of the probability density 7g(FE.,, | F) for outgoing energy E.  are given as a table
with normalization

/ dE 7TE ém|E):1.

In Eq. (10.1)) the function 7, (ptem | B, E) is an exponential in fiem depending on param-
eters a and r [12],

1
T (fem | E. . E)= a[cosh(a,ucm) + rsinh(apem)]- (10.2)

The value of r in Eq. depends on the incident and outgoing energies F and E! and
is given in a data table. The formula Eq. represents a pre-equilibrium model, with
r = 0 representing complete equilibrium and r» = 1 no equilibrium at all. It is therefore
always true that

0<r<1.

The value of C' in Eq. ((10.2)) is chosen to ensure the normalization

1
/ dlu’CIn 71-M(:u’CHl | cm?E) =L

That is, take

- QSinha‘

a
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10.1.1 The Kalbach-Mann a parameter

The values of the parameter a in Eq. (10.2) may be given as a table depending on the

incident energy E and on E. , the center-of-mass kinetic energy of the outgoing particle.

It is more common, however, to use the formula for a as a function of F as found in the
references [12] and [7]. The details are repeated here for the sake of completeness.
Some special notation is used in this subsection. The reaction is of the form

A+a—C— B+, (10.3)
where

A: the target with mass mtarg, assumed to be at rest in the laboratory frame,
the incident particle with mass my;,
the compound nucleus,

the residual nucleus with mass Mmyes,

-~ T Q=

the emitted particle with mass my,.
Several energies are needed, all measured in MeV,

E,ap :  energy of the incident particle in the laboratory frame,
E4cm @ energy of the incident particle in the center-of-mass frame,
Ejcm:  energy of the target in the center-of-mass frame,

EaA,cm : Ea,cm + EA,cm = mtargEa,lab/(mtarg =+ myi),
Epem . energy of the outgoing particle in the center-of-mass frame,

EvBem : (mres + myo)-Eb,cm/myo-

Note that the quantity Ejp cm is the total kinetic energy of B and b if the breakup of C
is a discrete 2-body reaction with the excitation level of B unspecified.

For a reaction with several outgoing particles, b in Eq. is the particle corre-
sponding to the current data, and B is the residual following the emission of b from the
compound nucleus C. Thus, for the

Kr(n,np)""Br

reaction, one uses
B = "®Kr

in the computation of a(E, Ejp ¢ ) with Kalbach-Mann data for the outgoing neutron, while
B ="Br
with outgoing proton data. Analogously, use

B = BKr
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in the computation of a(E, Ep ¢, ) with Kalbach-Mann neutron data for the
BKr(n,2n) Kr

reaction.
For massive incident particles, the value of a(E, Ep ¢ny) is given by the expression

a(E, Epem) = C1X1 + C2 X3 + C3Mymyp X5 (10.4)

with terms explained below.
The coefficients in Eq. (10.4) are

C1=0.04MeV™!, Cy=18x10"MeV™3, (C3=6.7x10""MeV 4.

The values of X; and X3 in Eq. (10.4) depend on the energies S, and Sj of the capture
and breakup reactions in Eq. (10.3). For the target define

Z 4 : number of protons in the target nucleus,
N4 : number of neutrons in the target nucleus,
Apx: Zg+ Ny.

Corresponding Z¢, N¢o, and Ac¢ are defined for the compound nucleus C' and Zg, Np,
and Ap for the residual nucleus B. For the capture reaction, S, is taken as

_ 7.2 2
Su = 15.68(Ac — Ay) — 28,07 (e —Zo)” _ (WNa—Za)7y
AC’ AA

18.56(A%% — A%*) + 33.22 (UVC —Zc)?  (Na— ZA)2> -

4/3 4/3
A AY
72 A VARA
0.717 | =& — =4 ) 1 1.211 <C - A) —1I,. (10.5
<Azz3 Az/3> Ao Ay) Tl 1)

Here, I, is the breakup energy for the incident particle as given in Table 10.1. The energy
Sp corresponding to the second reaction in Eq. is obtained from Eq. with Z4,
N, Ay, and I, replaced, respectively by Zg, N, Ap, and I,.

The quantities X7 and X3 in Eq. are obtained by setting

E, = Eoacm + Sas Ey, = Eyg.cm + Sb,
Ej = 130 MeV, Ey3 = 41 MeV,

Ry = min(E,, Ey), R3 = min(E,, E3),
X1 = RiEy/E,, X3 = R3Ey/E,.

Finally the values M, for the incident particle and my for the outgoing particle in the
last term of Eq. are given in Table 10.2. Note that M, is not defined for incident
tritons or for incident helium-3 nuclei, so that the Kalbach-Mann model is not applicable
when the incident energy of such particles is so large that E, > FE;3.
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Table 10.1: Breakup energies for incident and outgoing particles in MeV

particle I, or I
n 0
P 0
d 2.22
t 8.48
3He 7.72
« 28.3

Table 10.2: Values of M, and my, in Eq. (10.4))

particle M, my
n 1 1/2
p 1 1
d 1 1
t — 1
3He — 1
« 0 2

10.1.2 Photo-nuclear reactions

When Kalbach-Mann data are given for photo-nuclear reactions, the parameter a(E, Ep ¢ )
in Eq. and the angular probability density m,(pem | Eiy, E) in Eq. (10.2) are
modified as in the paper [13].

One begins by computing a,(E, Eycm) in Eq. using a neutron as incident par-
ticle. Then, for the incident photon one takes

E .
a(E,Eyem) = an(E, Epem)y/ S min (4,max (1, %)) i (10.6)

Here, m,, is the mass of the neutron in MeV.
For incident photons the angular probability density takes the form

o | B B) = 5 (1714 s ) exp {oven)]

10.1.3 Interpolation of Kalbach-Mann data

In the GND library, the Kalbach-Mann data are given as a table of the probability density
mg(El., | E) of outgoing energy E.  for an incident particle with energy F, along with
a table of values of the parameter r in Eq. (10.2)) as a function of E and E/ . It is also
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permitted to include a table of values a(E, Ep ) to be used in place of the expression in
Eq. .

Because mg(E/,, | E) is a probability density, it is to be interpolated with respect
to E by one of the methods of Section [3.2l The interpolated values of r, however, must
maintain the physical constraints that 0 < r < 1, so the Kalbach-Mann r parameter is
interpolated by the unscaled methods of Section [3.3] If the values of a are also given as a
table, they are also interpolated as in Section

For unit-base interpolation the method is as follows. The energy probability density
mg(El, | E) is first mapped to unit base as defined in equations Egs. and ,
so that R

7Bl | B) = (Bl e — Bl auin) 2 (Bl | E) (10.7)

cm,max

for 0 < Eém < 1. The scale factor in Eq. 1' is chosen so as to normalize the function
Te(Eew | E),

1
| Bt mo(BLy 1 B) =1,
0
The values of 7 (E’,, | E) are interpolated linearly with respect to E.
For the values of the parameter r, the energy of the outgoing particle to is mapped
0 < E/,, <1 using Eq. (8.5) in the form of

/ !
E, . Ecm - Ecm,min
om g - F
cm,max cm,min

Because of the restriction that 0 < r < 1, the parameter r is mapped according to

?( E(,‘,m Y

E)=r(E!

cm)

E). (10.8)
With these transformations, the number-preserving integral Eq. (2.7)) takes the form

i _ /g 4E o (E)M(E)uw(E)d(E) /E B, 7p (Bl | B)

/
cm

/ dptesn Po(jran) 7 (ttemn | Bl E), (10.9)

and the energy-preserving integral Eq. becomes
o= [ ABAEIMENEE) [ aBL 7 | E)
/ dptem Pr(piab) T (pem | Eoms E)Elyy,- (10.10)
The subscripts on u serve to emphasize the facts that the argument py,p, of the Legendre

polynomial Py(puap) in Egs. (10.9) and (10.10)) is the direction cosine of the outgoing par-
ticle in laboratory coordinates, while the integration variable pi.p, is the direction cosine in
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center-of-mass coordinates. Specifically, E],, depends on E and ficy according to equation
Eq. , and py,p is given by Eq. .

Because the energy probability density mp(FE., | E) data are given in the center-of-
mass frame, the identification of the region of integration over Eém and pem in Egs.
and involves the geometric considerations presented for tabular center-of-mass data
in Section @ For a given incident energy F in bin &4, the regions of integration over

Eém and fie, in Egs. () and ({10.10) depend on how the domains for data interpolation
E’ < By < B, ; intersect the & outgoing laboratory energy bin. The situation for

cm,j—1
a fixed incident energy F is illustrated in Figure [8.1 The half annulus

/ ! !
Ecm,j—l < Ecm < E

cm,j

is derived from the Kalbach-Mann data. The region of integration over piey, and E, for
fixed incident energy F is the intersection of these two half annuli, and it is shaded dark

gray in Figure 8]

10.1.4 The input file for the Kalbach-Mann model

The data identifier in Section [[2.3.1] for the Kalbach-Mann model is
Process: Kalbach spectrum
and the data are always in the center-of-mass frame
Product Frame: Center0OfMass
Currently, only a Newtonian boost to the laboratory frame is implemented.
The masses of the particles a, A, C, b, and B in the reaction Eq. are input in
Section of the input file
Projectile’s mass: my;
Target’s mass: Myarg
Compound’s mass: mg¢
Product’s mass: My,
Residual’s mass: Myeg
The units used for these masses are arbitrary, but they must be the same for all particles.
The number of protons Z4 and the atomic number A 4 of the target are needed for the
computation of S, in Eq. . This information is entered into the input file as

ZA4 =1000Z4 + Au,

from which A4, Z4, and the number of neutrons Ny = Aj — Z4 are easily computed.
Corresponding numbers ZA, for the projectile and ZA;, for the emitted particle are also
given. The numbers ZA¢ for the compound nucleus and ZAp for the residual may be
calculated using

ZAc = ZA4 + ZA,,
ZAp = ZAc — ZA,.

This section of the input file is therefore
Projectile’s ZA: ZA,
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Target’s ZA: ZA4
Product’s ZA: ZA,

The remainder of the input file consists of tables of 7g(E.,, | F) and the parameter r
in Eq. as functions of E and E. . There may also be a table of values of a to be
used in place of the expression Eq. (10.4)).

The format for the probability density mg(E.,, | E) is

Kalbach probabilities: n= K

Incident energy interpolation: probability interpolation flag

Outgoing energy interpolation: list interpolation flag
followed by K blocks of the form

Ein: E: n=J
with J pairs of values of E/, and mg(E/,, | E). The flag for interpolation with respect to
incident energy E is one of those for probability densities in Section while that for
the outgoing energy is one for simple lists.

The table for the r parameter is of the form

Kalbach r parameter: n =K

Incident energy interpolation: unscaled interpolation flag

Outgoing energy interpolation: list interpolation flag
followed by K blocks of the form

Ein: E: n=J
with J pairs of values of E/ , and r(E/,, E). The flag for interpolation with respect to
incident energy E is one of those for unscaled Kalbach-Mann data in Section while
that for the outgoing energy is one for simple lists.

The format for the Kalbach-Mann a parameter is the same as that for r, with “r”
replaced by “a”. The tables for ng(E.,, | E), r, and a must be given at the same incident
energies, and at each incident energy E, the ranges of outgoing energies E' must also
agree.

An example of the content of Section [12.9] of the input file for Kalbach-Mann data is
as follows. All energies are in MeV.

Product Frame: centerOfMass

# masses

Projectile’s mass: 1.008665
Target’s mass: 56.935394

Compound’s mass: 57.933276
Product’s mass: 1.008665

Residual’s mass: 56.935394

# ZA numbers

Projectile’s ZA: 1

Target’s ZA: 26057

Product’s ZA: 1

# Kalbach-Mann probability data
Kalbach probabilities: n = 12
Incident energy interpolation: 1lin-1lin unitbase
Outgoing energy interpolation: flat
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Ein:

7.781480e+00:

n 2

0.000000e+00 1.000000e+06

[y

Ein:

N Wk NWwe o

Ein:

N W R NWe O

1.

.000000e+00
.473426e-03
.437994e-03
.367130e-03
.473426e-02
.437994e-02
.367130e-02

.000000e+00
.473426e-03
.437994e-03
.367130e-03
.473426e-02
.437994e-02
.367130e-02

154184e+01 1.

1.
# Kalbach-Mann r
Kalbach r parameter:

.000000e-06 0.000000e+00

7.800000e+00: n 7

7.375605e+00
1.472617e+01
3.676034e+01
5.717426e+01
8.186549e+00
5.948511e+00
1.000000e-30

2.000000e+01: n = 53
2.063824e-03
3.887721e-03
9.245874e-03
1.805939e-02
3.554576e-02
8.408804e-02
1.261293e-01

604784e-03
203298e+01 1.000000e-30
data

n 12

Incident energy interpolation:
Outgoing energy interpolation:

Ein:

7.781480e+00:

n 2

0.000000e+00 0.000000e+00

[

Ein:

N Wk NWRe o

Ein:

N Wk O

.000000e-06 0.000000e+00

7.800000e+00: n =7
.000000e+00 4.272290e-02
.473426e-03 2.992310e-02
.437994e-03 1.833870e-02
.367130e-03 1.427320e-02
.473426e-02 1.829320e-02
.437994e-02 1.611740e-02
.367130e-02 1.590910e-02

2.000000e+01: n = 53

.000000e+00 7.037570e-02
.473426e-03 4.957320e-02
.437994e-03 3.056740e-02
.367130e-03 2.555550e-02
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1.473426e-02 1.908500e-02

1.154184e+01 9.548000e-01
1.203298e+01 9.656400e-01

10.2 The n-body phase space model

The n-body phase space model gives the probability density for the energy of an outgoing
particle in center-of-mass coordinates. The formula is derived from the volume in phase
space occupied by the particles, subject to the constraints of conservation of energy and
momentum. The model uses Newtonian mechanics.

In the ENDF/B-VII manual [7] there are two scenarios for this model: (1) inelastic
collision followed by break-up of the excited residual, and (2) break-up induced by the
collision. In the first case, the n-body phase space model treats only the particles emitted
in the break-up of the excited residual, not the one from the initial collision. The total
kinetic energy E* of the outgoing particles treated by the model therefore depends on the
scenario.

In the case of break-up following an inelastic collision, the analysis is in the frame in
which the residual from the inelastic collision is stationary. The total kinetic energy of the
outgoing particles involved is then

B = Qres;
where @, is the energy of the break-up of the excited residual. In this case, the reference
frame for the model is that in which the residual nucleus is stationary after the initial
inelastic collision. The merced code currently does not implement this scenario, because
this is a 2-step reaction.

For the break-up of a compound nucleus following the collision of a projectile with
a stationary target in the laboratory frame, the total kinetic energy E* of the outgoing
particles in the center-of-mass frame is the sum of two components, the () of the reaction
plus the energy of the initial collision in the center-of-mass frame. For an incident particle
of mass m; and energy F in the laboratory frame hitting a stationary target of mass myarg,
this collision energy in the center-of-mass frame is

mtargE
Myi + Mtarg

Consequently, in this scenario the total center-of-mass kinetic energy for all outgoing

particles is

mtargE

E*=Q+ (10.11)

Myi + Miarg '
The details of the n-body phase space model are as follows. Consider a particular

outgoing particle, and suppose that its mass is my,. Then conservation of energy and

momentum implies that the maximum kinetic energy of this particle in the center-of-mass

frame is given by

(M — myo) E*

10.12
e (10.12)

Emax =
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where M; is the total mass of the outgoing particles covered by the n-body phase space
model.

Suppose that n is the number of particles resulting from the break-up reaction. For an
outgoing particle with mass my,, let Fpax be as in Eq. . Then in the n-body phase
space model, the energy probability density that this outgoing particle will have energy
El, with 0 < E! | < Epax is given by

7TCm(E(,:m | E) = Cn\/%(EmaX - E'/zm)(3n—8)/2‘ (1013)

Note that this probability density is isotropic in the center-of-mass frame. Furthermore,
the relation Eq. (|10.13)) was derived using Newtonian mechanics.
The normalization constant C), in Eq. (10.13)) is best represented in terms of the beta

function . (@)0(3)
_ _ I'a)T(B
Ba,ﬂz/dtt‘lll—tﬁl:. 10.14
(@.8) = [ a7 -t = R (1014)
With this notation, it is seen that
1 3 3n—6
— =B|(= Erax P02, 10.1
Cy, <2’ 2 ) : (10.15)

10.2.1 Geometry of the n-body phase space model

The construction of Figure made use of the fact that the tabular data required the
consideration of ranges of energy E.  of the outgoing particle between the tabulated
values,

Eipnj-1 < Egy < Ey

cm,j*

(10.16)

Here, the limiting values Ef,, ;_; and E},, ; depend on the energy F of the incident particle
according to the principles of unit-base interpolation in Eq. .

For the n-body phase space model, however, the range of center-of-mass energies of
the outgoing particle is

0 < E.. < Enax, (10.17)

where Enax is as in Eq. (10.12). That is, for the n-body phase space the annular ring
Eq. (10.16)) in Figure 8.1 is replaced by the interior of the semicircle Eq. (10.17]).

10.2.2 Input file for the n-body phase space model

The data identifier in Section for the n-body phase space model is
Process: phase space spectrum
and the data are always in the center-of-mass frame
Product Frame: CenterOfMass
Currently, only a Newtonian boost to the laboratory frame is implemented.
In the model-dependent Section of the input file, the computation of E* in
Eq. requires the reaction’s @) value, as well as the masses my; of the projectile
and Mmyare of the target. The units used for the masses are arbitrary, but the same units
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must be used for all particles. The @) value must be in the same units as the energy bins.
This information is input using the commands
Q value: @
Projectile’s mass: my;
Target’s mass: Myarg
For the calculation of F.x in Eq. , the mass my, is needed, along with the
total mass M; of the outgoing particles covered by the n-body phase space model. This
information is input using
Product’s mass: my,
Total mass: M;
The units used for these masses must be the same as is used for the other particles.
Finally, the probability density in Eq. requires the number of particles n in the
model, and this is given by
Number of particles: n
A sample Section [12.9 of the input file for the n-body phase space model is
Product Frame: CenterOfMass
Q value: -2.225002
Projectile’s mass: 1.008665
Target’s mass: 2.014102
Product’s mass: 1.008665
Total mass: 3.0246030
Number of particles: 3
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11 Data for incident gammas

The merced code calculates cross sections and the integrals in Eqs. (2.7) and (2.10]) for
computation of the transfer matrix for coherent scattering and Compton scattering. Pho-
toemission, pair production, and triplet production are handled by fudge.

11.1 Coherent scattering

This reaction is the result of interaction of the incident photon with all of the electrons
in the target atom and sometimes called whole-atom scattering. There is essentially no
change in energy between the outgoing and incident photons. In GND instead of the energy
FE of the incident photon, the data are given in terms of x, where z is

10N 11—

In Eq. (11.1) X is the wave length of the incident photon given in A. Thus, in terms of the
incident energy F, the value of z is

E 1= puap
= —/—. 11.2
v ch 2 ( )
In merced the values of x are scaled by ch, to convert to units of energy.
The angular differential cross section oo (up | E) takes the form
3o
oc(pan | B) = “2L (14 i) {[Fi (&) + Fr(@)? + Fi(2)*} (11.3)

8

where the parameter o7 is the classical Thompson scattering cross section. In Eq.
Fr(x) is the coherent form factor, and it is a function of z in Eq. The real anomalous
form factor Fr(FE), and the imaginary anomalous form factor Fj(FE) are given in terms of
the incident energy E. The units of o¢(uap | E) are barns per cosine. See the reference [7]
for more information.

The reaction cross section is computed using

1
o(E) = /_1 dpnab oc(tab | E). (11.4)

Because the energy is assumed to be unchanged, E,, = E, and because the gamma mul-
tiplicity is 1, the formula Eq. for the kernel K (EJ,,, fiap | E) for coherent scattering
becomes

K(Efap,, rab | E) = oc(puab | E)w(E)d(Ep,y, — E). (11.5)
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Figure 11.1: Domain of integration for whole-atom scattering

For photons it is customary to use the energy-preserving transfer matrices Eq. (2.11))
derived from the integrals Eq. (2.10), so details are given only for the evaluation of

Eq. (2.10). From Eq. (11.5)) it is seen that

gh,¢ /
k)
&

9

dE w(E)p(E) /5, dEy,, / dpnab Pe(piab) o (tmap | E) 6(Ely, — E) Eiy,.
h Hlab

(11.6)
Because both the incident particles and the outgoing particles are photons, the outgoing
energy groups &, are the same as the incident energy groups £;. Therefore, an integration
over B, in Eq. (11.6)) gives the result that

Zohe=0 for h#g

and
99.6 :/s dEw(E)af(E)E/ dpmab Pr(pab)oc(pan | E). (11.7)

g Hlab

The domain of integration for Eq. is shown in Figure m The curves for
x = xj_1 and x = x; are obtained from Eq. , and for z;_1 < 2 < x; the region of
integration is bounded by these two curves and lies within the £; energy bin. This region
is shaded gray in Figure

11.1.1 A programming detail

Because of the /1T — pa, singularity in Eq. (11.2)), the default method for evaluating
integrals with respect to p,p in this section is adaptive quadrature based on first-order
Gaussian quadrature for

b
/ dpab F(thab)v/1 — fiiab- (11.8)

a

This method is used for integration over py,p, in Eqs. (11.4) and ((11.7]).
The default method for integration over incident energy E in Eq. (11.7) is second-order
adaptive Gaussian quadrature.

69



11.1.2 The input file for coherent scattering

For coherent scattering, the reaction identifier in Section is
Process: coherent scattering
and the data are always in the laboratory frame
Product Frame: 1lab
The quadrature methods with respect to pa, and F in Eq. may be set indepen-
dently using the commands of Section The defaults are
mu quadrature method: square root
Ein quadrature method: adaptive
The quadrature method specified for ., also applies to the computation of the cross
section in Eq. .
In GND the values of z in Eq. are given in units of A_l, and the merced code
converts = to energy using the factor ch. This conversion must be to the units used for

the energy bin boundaries in Sections |12.3.2| and |12.3.3l The conversion factor from A~
to energy is set as described in Section
The value of the Thompson scattering cross section o7 in Eq. specified as dis-
cussed in Section 12.7.2
Section of the input file contains the information required for calculation of the
differential cross section in Eq. (11.3). The values of the coherent form factor Fp(x) are
input using
Form factor: n =n
Interpolation: list interpolation flag
followed by n pairs of values of x and Fr(x). The interpolation flag is one for simple lists
as in Section 12.2.3
The real anomalous form factor Fr(F) and imaginary anomalous form factor F7(E)
are input analogously
anomalous real form factor: n =n
Interpolation: list interpolation flag
followed by n pairs of values of E and Fr(F), and
anomalous imaginary form factor: n =n
Interpolation: list interpolation flag
followed by n pairs of values of E and Fi(E).

An input file for coherent scattering with = values to be converted from A toeVis
as follows.

Process: coherent scattering

Product Frame: 1lab

inverseWavelLengthToEnergyFactor: 12398.4190576

ThompsonScattering: 0.6652448

# Data section

Form factor: n = 1272

Interpolation: 1lin-lin
0.000000000000e+00 8.000000000000e+00
1.000000000000e-03 8.000000000000e+00
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5.000000000000e-03 7.997400000000e+00
6.250000000000e-03 7.995640000000e+00
7.187500000000e-03 7.994550000000e+00

1.000000000000e+09 7.999700000000e-29
Anomalous real form factor: n = 253
Interpolation: 1lin-lin

1.000000000000e+00 -8.001506000000e+00

3.000000000000e+00 -8.012308000000e+00
8.367019000000e+00 -7.916407000000e+00
9.
9.

300337000000e+00 -7.564924000000e+00
624912000000e+00 -7.096145000000e+00

1.000000000000e+07 -4.100212000000e-03
Anomalous imaginary form factor: n = 255
Interpolation: 1lin-lin

1.000000000000e+00 0.000000000000e+00
3.000000000000e+00 0.000000000000e+00
9.030040000000e+00 0.000000000000e+00
9.871915000000e+00 0.000000000000e+00
9.913590000000e+00 3.647675000000e-01
9.920512000000e+00 4.548976000000e-01

1.000000000000e+07 3.311053000000e-07

11.2 Compton scattering

This reaction is also called incoherent scattering, and it is the scattering of a photon by
an individual bound electron. See the reference [7]. The data in GND give the values of
the scattering factor Sg(z) for discrete values of the parameter z, defined in Eq.
or, equivalently, in Eq. (|11.2]).

The angular differential cross section for Compton scattering, o (pap | E), depends on
the ratio, k, of the energy, F, of the incident photon to the rest mass, m., of the electron,

—— (11.9)

In terms of £ and x, the Compton differential cross section is

3UTSF({L’)
81+ k(1 — prian)]?

K2 (1 — puan)?
1+ A(1 — pab)

or(pap | E) = 1+ i, + (11.10)

Here, op is again the Thompson scattering coefficient, and the units of o7(uap | E) are
barns per unit cosine. In Eq. (11.10]) the scattering factor Sg(x) accounts for the deviation
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from the Klein-Nishina formula due to the fact that the electrons are bound. Just as for
coherent scattering, the cross section for Compton scattering is given by

1
o(E) :/ dpuap o1 (pan | E). (11.11)

-1

The calculation in merced of the energy Ej ;. of the outgoing photon from Compton
scattering is actually inconsistent. On the one hand, the formula Eq. (11.10)) for the differ-
ential cross section takes into account the fact that the scattering is from bound electrons.
For the computation of E,;, however, the approximation is made that the electron is ini-
tially free and stationary. This is a discrete two-body reaction, and conservation of energy
and momentum yields the result that

E

1 + E(l — Mlab) ’
Therefore, for Compton scattering the kernel K (E|, , ab | E) in Eq. (2.2) takes the form

B, = (11.12)

E
K (Blaps t1ab | E) = w(E)or(pay | )0 (Ellab s g p— b)> : (11.13)
a

Upon inserting the kernel Eq. (11.13) into Eq. (2.10), the computation of energy-
preserving transfer matrices for Compton scattering requires evaluation of the integrals

gn,
&

dEw(E)/g dE{ab/ dyuab Po(pitab) o1 (1 | E)de(E)
b Hiab

g9

E
S| B, ——— | E,. (11.14
( lab 1 + /ﬁ:(l _ ,U/lab)) lab ( )
After integrating over Ej , , it is found that
~ Py(pan)or(man | E)
en = dE Ew(E)¢¢(E) / dpiran ) (11.15)
ot /59 Hlab * 1+ ’%(1 - ,Ulab)

As in coherent scattering, the default quadrature method for integration with respect to
tap in Eqgs. (11.11)) and ((11.15) is first-order Gaussian quadrature for the weighted integral
Eq. .

Because of the relation Eq. between the energies of the incident and outgoing
photons, the range of integration in Eq. has an extra degree of complexity in
comparison with Eq. . In particular, the presence of the d-function in Eq.
constrains E and puap so that £, is in the & energy bin. Figure shows the geometry

in the case of down-scattering by one energy group, & = 5;_1. In Figure the curves
delimiting the &, were obtained by rewriting the energy condition Eq. (11.12) in the form

— Ellab

1- (1 - lulab)Ellab/me
and taking the top and bottom of the & energy bin as values of Ej,,. The range of
integration in Eq. is the overlap of the three regions (1) that determined by the
interval z; < x < x;4; of scattering factor data values, (2) the incident energy bin E in
&y, and (3) the outgoing energy bin E/, in &} .

E
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Figure 11.2: Domain of integration for Compton scattering

11.2.1 The input file for Compton scattering

The reaction identifier in Section for Compton scattering is
Process: Compton scattering
and the data is always in the laboratory frame
Product Frame: 1lab
This default quadrature methods with respect to pj,p and E in Eq. are
mu quadrature method: square root
Ein quadrature method: adaptive
The quadrature method specified for ., also applies to the computation of the cross
section in Eq. . It is possible to override these choices as explained in Section m
As in coherent scattering, the values of x used for Compton scattering in GND are in
units of Afl, so these are converted to energy units as in Section This conversion
must be to the units used for the energy bin boundaries in Sections [12.3.2] and [12.3.3]
Specification of the Thompson scattering cross section o in Eq. is as in Sec-
tion The value m, of the rest mass of the electron used in Eq. is set as in
Section and it must be given in the units used for the energy bin boundaries.
Section of the input file contains the value of the scattering factor Sp(x) for
various values of . The format is
ScatteringFactorData: n =n
Interpolation: list interpolation flag
followed by n pairs of values of z and Sr(z). The interpolation flag is one for simple lists
as in Section 12.2.3
An input file for Compton scattering with units of x to be converted from A toev
is as follows.
Process: Compton scattering
Product Frame: 1lab
inverseWaveLengthToEnergyFactor: 12398.4190576
ThompsonScattering: 0.6652448
Electron mass: 511000
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ScatteringFactorData:

Interpolation:
.000000000000e+00
.000000000000e-07
.059602649007e-07
.126760563380e-07
.163636363636e-07

.000000000000e+09

n

lin-1in

_ B, B P, O

= 453

.000000000000e+00
.100000000000e-12
.235033551160e-12
.396548303908e-12
.489454545455e-12

.000000000000e+00
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12 Usage of merced

The command to run merced is

merced [-inputOption] InputFile
The input options are described in Section below. Most of them may be specified
either in the input file or on the command line, and command line options override those
given in the input file. For example, to get output with 9 significant figures, the command
line could be

getTransferMatrix -datafield precision 9 InputFile
Alternatively, one may insert the line

datafield_precision: 9
into the input file. Note the presence of the colon in this line. The format for identification
of data in the input file is

data identifier: value

For most types of data, the units of energy are arbitrary, but they must be consistent.

In particular, rest masses of particles must be in the same units as the energy bins. As
mentioned in the individual sections on the data, some models require that energies be
given in MeV.

12.1 Output file

The default name of the output file is utfil. It may only be changed on the command
line, and the option to do so is
-output OutputFile

12.2 Form of the input file

The first line of the input file must be

xndfgenTransferMatrix: version 1.0
This line is followed by information common to all data models. The file closes with data
specific to the particular data model. Blank lines are ignored.

12.2.1 Comments

Comments may be included in the input file in either if two forms.
Comment: This comment is printed to the output file.
# On a line, anything after a pound sign is ignored.
For example, the input file usually contains a comment identifying the particles involved
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in the reaction, e.g.,
Comment: nl + C12 --> nl + C12 outgoing data for nl

12.2.2 Parallel computing

The merced code may be compiled to run in parallel if OpenMP is available on your
computer. In fact, the Makefile uses OpenMP as a default. To obtain serial code, compile
using the command
make VERSION=SERIAL
For the parallel code, the number of threads is set to n by the line
num_threads: n
in the input file. The default is n = 0, which causes the computer to choose the number
of threads. If the specified n is larger than the number of available threads, then the code
runs on the threads available.
The parallel code may be forced to run in serial mode by the command line option
-num_threads 1
or by inclusion of
num threads: 1
in the input file.

12.2.3 Interpolation flags

The identifiers for the standard interpolation methods given in Section are

flat for histograms

lin-1in for linear-linear

lin-log for linear-log

log-lin for log-linear

log-1log for log-log
The identifiers are incorporated in different ways into the interpolation flags for simple
lists such as reaction cross sections, for probability densities, and for the Kalbach-Mann
r and a parameters. The complete identifiers for the interpolation of the various types of
tabulated data are as follows.

Interpolation flags for simple lists

For simple lists of data such as {E, M} for particle multiplicity M at incident energy E,
the interpolation flags are
Interpolation: identifier
with one of the identifiers above. For example, the command
Interpolation: 1lin-lin
specifies linear-linear interpolation.
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Interpolation flags for probability densities

For probability density tables
{z,y,7(y | )}, (12.1)

the interpolation method with respect to x as discussed in Section is identified by
x interpolation: identifier interpolation-flag

where the identifier is one of those for simple lists and the interpolation flag here is one of
direct for direct interpolation with extrapolation
unitbase for unit-base interpolation
cumulativepoints for interpolation by cumulative points

Thus, a table of probability densities of outgoing energies 7(E’ | E) may be marked
Incident energy interpolation: 1lin-lin cumulativepoints

to indicate that interpolation with respect to incident energy E is to be done using linear-

linear cumulative points as in Section

The method for interpolation of the data in Eq. with respect to y is specified by

y interpolation: identifier

with an identifier as in a simple list. For example, the command
Outgoing energy interpolation: flat

specifies histogram interpolation with respect to the energy of the outgoing particle.

Interpolation flags for unscaled interpolation of Kalbach-Mann data

The methods of interpolation of tables for the Kalbach-Mann parameters r(E’, E) and
a(E', E) with respect to the energy E of the incident particle are discussed in Section
The options for interpolation flags are

Incident energy interpolation: identifier unscaleddirect

Incident energy interpolation: identifier unscaledunitbase

Incident energy interpolation: identifier unscaledcumulativepoints
where the identifier is one of those for simple lists. For example, the command denoting
linear-linear unscaled unit-base interpolation with respect to incident energy is

Incident energy interpolation: 1lin-1lin unscaledunitbase

The method for interpolation of tables of Kalbach-Mann r and a parameters with

respect to outgoing energy F is specified by

Outgoing energy interpolation: identifier
with an identifier as in a simple list. For example, the comand

Outgoing energy interpolation: flat
specifies histogram interpolation with respect to the energy of the outgoing particle.

12.3 Information used by all data models

The following information is required, but the order is arbitrary.
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12.3.1 The data model

Identification of the data model.
Process: Identifier of the type of data
These identifiers are specified in the previous sections.

12.3.2 Incident energy groups

The boundaries of the incident energy groups.
Projectile’s group boundaries: n =n
This is followed by the n values the incident energy bin boundaries. Thus, in units of eV
this section may take the form
Projectile’s group boundaries: n = 88
1.306800000000e-03 2.090800000000e-02 1.306800000000e-01
3.345300000000e-01 1.176100000000e+00 2.090800000000e+00

2.000000000000e+07

12.3.3 Outgoing energy groups

The boundaries of the outgoing energy groups.
Product’s group boundaries: n =n
This is followed by the n values the outgoing energy bin boundaries. The units must be
the same as for the incident energy groups. A sample input given in eV is
Product’s group boundaries: n = 88
1.306800000000e-03 2.090800000000e-02 1.306800000000e-01
3.345300000000e-01 1.176100000000e+00 2.090800000000e+00

2.000000000000e+07

12.3.4 Frames of reference

The energy E of the incident particle must be given in the laboratory frame, as indicated
by the command

Projectile Frame: 1lab
For the outgoing particle, the energy E’ and direction cosine p may be given in the
laboratory frame with

Product Frame: 1lab
or the center-of-mass frame as

Product Frame: CenterOfMass

12.3.5 Relativistic kinetics

For discrete 2-body reactions, the code may use either Newtonian or relativistic mechanics
in its computations. The command to control this option is
kinetics: Newtonian
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or
kinetics: relativistic
The default is Newtonian except when the emitted particle is a gamma.

12.3.6 Approximate flux
The Legendre coefficients @(E) used as weights in the integrals Eqs. 1) and 1)

Fluxes: n =n

Interpolation: interpolation flag
Here, n is the number of incident energies F, and the interpolation flag is one of those
for simple lists, Section Note that because of the scaling performed in Egs.
and , the units of ¢y(F) are arbitrary, but barns are most common. The computed
transfer matrix is unchanged if @(E) is multiplied by a constant.

For each incident energy, the input file has a block specifying the Legendre coefficients
given as
Ein: FE: n=n

and @(E) forn=0,1,...,n—1. The incident energy F must be in the same units as
the energy groups. The number of Legendre coefficients given here need not be consistent
with the Legendre order L of the computed transfer matrix as specified in Section [12.4.1
If n — 1 < L, then the merced code sets

¢o(E) = ¢n_1(E) forl=n,n+1,..., L.

A sample input with F in eV and with all Legendre coefficients the same is
Fluxes: n = 2
Interpolation: 1lin-lin
Ein: 0: n=1
8.500000000000e+01
Ein: 2.100000000000e+07: n =1
8.500000000000e+01

12.3.7 Reaction cross section

As explained in Section the cross sections for coherent photon scattering and Compton
scattering are computed from the data. Reaction cross sections are required for all other
data models.

Cross section: n =n

Interpolation: interpolation flag
Here, n is the number of pairs {F,c(E)}, and the interpolation flag is one of those for
simple lists, Section [[2.2.3] This is followed by n pairs of incident energy E and reaction
cross section o(FE).

A sample of such data with energies in MeV is given by
Cross section: n = 22
Interpolation: 1lin-lin
7.78148000e+00 0.00000000e+00

79



7.80000000e+00 4.40157000e-04
8.00000000e+00 1.13781000e-02
8.50000000e+00 6.96097100e-02

2.00000000e+01 9.17094100e-01

12.3.8 Multiplicity

The multiplicity of the outgoing particle must be given if it is different from 1. The format
is

Multiplicity: n =n

Interpolation: interpolation flag
followed by n pairs {E, M(FE)}. The interpolation flag is one of those for simple lists,
Section The units of incident energy E must be the same as for the energy groups.
For example, with E in MeV, an (n,2n) reaction would typically have

Multiplicity: =n = 2

Interpolation: flat

0.0 2.0

20.0 2.0

12.3.9 Model weight

The model weight w,(E) is used in the formation of the reaction kernel IC.(E',u | E)
in Eq. and is discussed in Section 2| Its value is usually 1 over the entire range of
incident energies in the cross section data. If this is not the case, then the model weight
is input as

Weight: n =n

Interpolation: flat
followed by n pairs {E,w(FE)}. For example, the weight

(B) 0 for0< E <6,
w g
1 for 6 < FE <20,

may be specified using the input
Weight: n =3
Interpolation: flat
0.0 0.0
6.0 1.0
20.0 1.0

12.4 Optional flags, output information

The following options control the output of merced. All of them may also be input as
command line options.
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12.4.1 Legendre order of the output

The Legendre order of the matrices Eqgs. and computed by merced is set by
the command

outputLegendreOrder: n = L
The default is L = 3.

12.4.2 Numerical precision of the output

The number of significant figures for the output data is set by
datafield_precision: n =n
The default is n = 8.

12.4.3 Conservation flag

This flag determines whether the merced code computes integrals Eq. for the number-
conserving transfer matrix, integrals Eq. for the energy-conserving matrix, or both.
The options are

Conserve: number

for the integrals Eq. (2.7)

Conserve: energy
for the integrals Eq.
Conserve: both
for the both integrals. The default is both for most types of data.

12.4.4 Consistency check

If the integrals Eq. for the number-preserving transfer matrix are computed, it is
possible to check the consistency as in Eq. . With the option
check_row_sum: true
both sides of Eq. are printed, along with their differences and relative differences.
This information is not printed if the option is false. The default is false.
To scale the integrals Eq. so as to enforce the identity Eq. , use the option
scale_rows: true
In this case, the integrals Eq. are also scaled. The default is true, scale the integrals.

12.5 Optional inputs, quadrature methods

For the integrals Egs. and and their equivalents in the center-of-mass frame,
the quadrature methods may be set by commands of the form

Variable quadrature method: Method
The ‘Variable’ in this line is any of the following.

Ein for integrals with respect to incident energy F,

Eout for integrals with respect to outgoing energy Ej,, or Ei,

mu for integrals with respect to direction cosine pan, of fem-
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- Omission of this parameter gives the same quadrature method for all integrals.
The options for the ‘Method’ in the command to set the quadrature method are
adaptive for adaptive 2nd-order Gaussian quadrature,
square root for adaptive 1st-order Gaussian quadrature with weight /1 — pu,
Gauss?2 for non-adaptive 2nd-order Gaussian quadrature,
Gauss4 for non-adaptive 4th-order Gaussian quadrature,
Gauss6 for non-adaptive 6th-order Gaussian quadrature.
The default for most data models is
quadrature method: adaptive
to use adaptive 2nd-order Gaussian quadrature for all integrals. The exceptions are
mu quadrature method: square root
for the integrals over direction cosine py,, with data for coherent scattering and Compton
scattering. The non-adaptive options are primarily used in debugging.

12.6 Optional inputs, numerical tolerances

The user may reset the tolerances for convergence of the adaptive quadrature and for
determination of the equality of two floating-point numbers.

12.6.1 Convergence of adaptive quadrature

The adaptive quadrature routine produces an estimate Z of the integral, along with an
estimate ez of the error. The process of successive subdivision stops when

lez| < €q + €| Z|-

The absolute quadrature tolerance is set by the command
abs_quad_tol: ¢,

The default is ¢, = 1.0e-8. To set the relative quadrature tolerance, use
quad_tol: €,

The default is €, = 1.0e-4.

There is also a limit on the total number of intervals used in adaptive quadrature

max_divisions: n = n

If this limit is exceeded, the adaptive quadrature routine returns the current estimate and

prints a warning that this result may be inaccurate.

12.6.2 Near equality of floating-point numbers

In comparisons of floating-point numbers x; and x5, the code treats them as essentially
equal if
|x1 — z2| < g + O min(|z1], |z2]).

Here, the absolute tolerance J, is set by
abs_tol: ¢,
The default value is d, = 2.0e-14 and is appropriate when energies are measured in MeV.
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It should be scaled accordingly, when other energy units are used. The relative tolerance
o, 18 set using

E_tol: ¢,
The default value is 6, = 1.0e-9.

12.7 Physical constants

The coding for coherent photon scattering and Compton scattering discussed in Section
requires the values of several physical constants. These are input as follows.

12.7.1 Conversion from A ' to energy

In order to convert the energy of photons from inverse wavelength to energy, multiply by
ch. This parameter is set by the command
inverseWaveLengthToEnergyFactor: ch

12.7.2 Thompson scattering cross section

The Thompson scattering cross section op in Egs. (11.3]) and (11.10)) is set by
ThompsonScattering: or

The default value is o = 0.6652448 barns.

12.7.3 Electron rest mass

The rest mass m. of the electron in Eq. (11.9)) is set by the command
electron mass: Mg

12.7.4 Neutron rest mass

The rest mass of the neutron m,, is used in Eq. by the Kalbach-Mann model of

photo-nuclear reactions. Its units are MeV, and its value is set by the command
m_neutron: my,

Its default value is m,, = 939.565653471 MeV.

12.8 Errors and warning messages

These options control the printing of informational messages, warnings, and fatal errors.
To set which messages are printed, use the command

message_level: n =n
The effect of this option is:

0 print all messages,
message_level = ¢ 1 print only warnings and errors,

2 print only severe errors; these cause exits anyway.
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The default value is 0, print all messages.
It is also possible to turn off all messages with the command
skip_logging: true
The default value is false.

12.9 Model-dependent information

The remainder of the input file consists of data required by the model.
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A Relativistic 2-body problems

In this appendix, relativistic 2-body mechanics is examined from the point of view of
computational physics. That is, the subtraction nearly equal numbers is avoided as much
as is possible. The analysis starts with a collision of an incident particle with a stationary
target. This determines the mapping between the laboratory frame and the center-of-mass
frame. The appendix closes with a discussion of emission after the reaction.

As is customary in discussions of relativity, the units are such that the speed of light
has the value ¢ = 1.

A.1 Initial collision

For this appendix, E is the total energy of a system and p its total momentum. Thus,
for a particle with rest mass mg and kinetic energy T, it follows that £ = mo + 1. The
convention ¢ = 1 implies that the data must be such that particle rest masses and kinetic
energies must be given in the same units. The analysis makes repeated use of the invariance
under Lorentz transformations of the quantity

So = E* — p?. (A1)

If the system is a single particle in a frame in which the particle is stationary, then
So = mg. Consequently, for a single particle in any frame Eq. (A.1]) takes the form

mg = (mo +T)* — p?, (A.2)
or
p* = 2moT + T (A.3)

When it is desired to solve Eq. (A.3) for T corresponding to a known value of p?, it is
recommended to use the formula

pQ
mo + \/m% +p2.

The relation Eq. (A.4)) is computationally more reliable than the more obvious solution of
the quadratic equation Eq. (A.3))

T = —mg + /mé + p2.

Consider the application of Eq. (A.1)) to the system consisting of a moving incident
particle and a target at rest in the laboratory frame. Suppose that the incident particle

T= (A.4)

85



has rest mass m; and kinetic energy 7Tj 1ap, and let m; be the rest mass of the target. Then
it follows from Eq. (A.3)) that the initial laboratory-frame momentum is given by

Piiab = 2miT1ab + T o (A.5)

Consequently, for the system of consisting of the two particles in the laboratory frame,
the energy-momentum invariant is

S = (my +mi + Tijan)® — CmiTypan + Tap)s
This expression simplifies to
S = (m; +m)* + 2my T} 1ap,.- (A.6)

The value of S must be the same when this system of two particles is considered in
the center-of-mass frame. Denote the center-of-mass kinetic energy of the incident particle
by T} cm and its momentum by p; cm. Similarly, let the target have center-of-mass kinetic
energy T} cm, and its momentum is —p; ¢m. The energy-momentum invariant for the system
is therefore

S = (mz + Tli,cm + my + T;f,cm)za (A7)

the square of the total energy of the system in the center-of-mass frame. By using Eq. (A.2)
on each of the particles, it is possible to rewrite this as

2
S = (\/m2 + Phewm + /13 + Vo)

Upon solving this equation for picm, it is found that

2
) [S = (m? 4+ m)]” — 4m?m]

An expression for p?’cm in terms of the laboratory incident kinetic energy Tj 1,1, is obtained
by substituting in Eq. (A.8) the value of S given by Eq. (A.6]),

o mi@miTiay + T (A.9)
Piem (me +mi)? + 2my T jap, '

It follows from Eq. (A.3) that this equation may also be written as

2..2
2 My D5 lab

Picm = (mt + mi)Q + thﬂ,lab'

A.2 Mapping between frames

Consider a coordinate system in which the momentum p; 1,1, of the incident particle is in
the direction of the first spatial axis. The boost from the laboratory to the center-of-mass
frame then takes the form

(Ecma pcm)T = R(Elaba plab)T
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with the matrix

coshy —sinhy 0 O
__|—=sinhx coshxy 0 0
R= 0 0 1 0 (A.10)
0 0 01
Upon applying the rotation Eq. (A.10)) to the target, it is found that
my + CZjt,CIn my
_|pi,cm‘ _ 0
0 =R 0
0 0
It follows that
sinh y = M (A.11)
my
By using Eq. (A.9)), one may conclude that
\/ 2m; Ty pap, + T,
sinh y = (A.12)

Note that except for incident gammas, 7; 15 is much smaller than the rest mass m;, so
that x is a small, positive number.

In the next section of this appendix, for 2-body problems the center-of-mass energy and
momentum of the emitted particle and residual are determined. In order to boost these
4-vectors to the laboratory frame, one may use the inverse of the matrix R in Eq. ,
so that

(Bab, p1ab)” = R~ (Eem, Pem)” (A.13)
with
cosh y sinhy
sinh y cosh x

00

_ 0 0
R'= 0 01 0 (A.14)

0 0 01

A.2.1 Incident photons

When the incident particle is a photon, the boost from the center-of-mass frame to the
laboratory frame must be determined relativistically, because the mass of the incident
particle is zero but its momentum is nonzero.

In this case, Eq. (A.5)) simplifies to

Ditab] = Ti labs

and Eq. (A.12)) becomes

T 1ab
\/mi + 2miT; pan

87

sinh y =



It follows that
my + 15 1an

\/mi + 2mi T 1,

cosh y =

A.3 Outgoing particles

Denote by m,. the rest mass of the emitted particle and 7, ¢, its kinetic energy in the
center-of-mass frame. The convention in GND is that the energy ) of the reaction is
specified by the data, and the rest mass mp of the residual is calculated from

mr = m¢ + (m; —me) — Q. (A.15)

Let Trcm be the kinetic energy of the residual in the center-of-mass frame. In terms of
these variables, the energy-momentum invariant for the system is the square of the total
energy

S = (me + Te,cm +mp + TR,Cm)27

with the same value of S as in Eq. (A.7). The argument leading to Eq. (A.8) shows that
the momentum pe ¢, of the emitted particle in the center-of-mass frame has magnitude
given by
2
9 (S — (m% +m2)]” — dmEm?

Peem — 48 : (A16)

It is not a good idea to use Eq. ({A.16]) in a computation, because of its subtraction of
nearly equal numbers. It is therefore desirable to do some algebraic manipulation in order
to mitigate this problem as much as possible. As a first step, Eq. (A.16)) is rewritten in
the form

4Spg7cm =[S—(mr+ me)2] (S — (mg — me)g] . (A.17)

In this expression, the subtraction of nearly equal numbers is confined to the first factor
on the right-hand side. For photon emission the two factors are identical. An analysis of
photon emission later, because it offers some simplifications.

By using the expression for S in Eq. , one obtains the relation

S — (mr+me)* = (my +mi)?* — (mp +me)? + 2mi T jan.
In terms of the energy @ of the discrete 2-body reaction and the parameter
My = my +mp +m; + me, (A.18)

it follows that
S — (mg +me)? = MpQ + 2my T 1ap.-

Consequently, it is seen that Eq. (A.16)) may be replaced by

M- 2my T M 2my T 4
pg,cm:( 7Q + 2my T 1ab ) ( ng-i- ML jab + mRme)' (A.19)
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Remark. It is clear from Eq. (A.19) that for endothermic reactions (@ < 0), the
threshold occurs when the incident particle has kinetic energy

—M7Q
Tijan = .

2mt

In Eq. (A.19) there is subtraction of nearly equal numbers when the kinetic energy
T 1ab of the incident particle is just above the threshold in endothermic reactions. That
operation is unavoidable in the analysis of nuclear reactions.

Now that pgycm has been obtained in Eq. (} one may use Eq. lb to determine
the kinetic energy of the emitted particle in the center-of-mass frame as

2
Pe,cm

Me + \/ mg + pg,cm

A.3.1 The boost to the laboratory frame

Te,cm =

(A.20)

It is often desired to determine the kinetic energy 7 1,5, and momentum p ja1, of the emitted
particle in the laboratory frame for given direction cosine picp in the center-of-mass frame.
It is possible to use the boost Eq. to determine pe 1ap as follows. Recall that the
form of Eq. is determined by the requirement that the first axis of the coordinate
system was chosen parallel to p; 1an. Consequently, one has

Pel,cm = Ncm|pe,cm‘-
If the orientation of the coordinate system is such that
Pe3,cm = 0 and Pe2,cm >0,

then
Pe2,cm = ‘pe,cm| V 1- Mgm'

The momentum components of the boost Eq. (A.13)) then take the form

Del,lab = (me + Te,cm) sinh X + Mcm‘pe,cm‘ cosh X

Pe21ab = ‘pe,cm|Ma

Pe3,lab = 0.

The magnitude of the momentum in the laboratory frame is

_ 2 2 2
|pe,lab’ - \/peLlab + pe2,1ab + peB,lab’

If |pe 1ab| = 0, the direction cosine p,p in the laboratory frame is undetermined. Otherwise,

it is given by
_ DPellab

Hlab = .
|pe,lab ‘

The kinetic energy T, ja1, is calculated from [pe jap| by using Eq. (A.4]).
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A.3.2 Photon emission

When the emitted particle is a photon, because m. = 0, Eqs. (A.19)) and (A.20) take the
simpler form

B _ - MrQ + 2myT; 1ab
e,cm — +e,cm — ecm| — .
) ) ) 2\/§

For given direction cosine picy, in the center-of-mass frame, the energy component of the
boost Eq. (A.13)) gives the Doppler shift

Eelab = Eeem (cosh x + plem sinh x) .

The first component of the momentum of the photon in the laboratory frame is
Pel lab = Feem (sinh x + ptem cosh x)

so the direction cosine is

sinh x + ptem cosh x
cosh x + ftem sinh y

Hlab =
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B Proof of Assertion 8.1.1]

It is proved in this appendix that for a Newtonian boost, for the function Gy defined in
Eq. , it is true that arcs El’ab = Fpin and E. = const in Figure intersect if and
only if GO(EbiIU Eém, E) > 0.

The clearest way to prove this assertion is to argue four cases directly:

Go(Bbins Em, ) 20 and - Efpang + Ey > Eiyy, (B.1)
Go(Bhins B, ) 20 and - Efpang + Egy < Eiyy, (B.2)
Go(El,,, B, E) <0 and FE{,.+ F.,> Ei, (B.3)
GO(E{)imE(,;ma E) <0 and Eiirans + Eém < Elloin‘ (B.4)

In these inequalities Ef,, is as defined in Eq. (4.7).
A geometric condition for the intersection of the two arcs is presented first. It is then
shown that this geometric condition is equivalent to the non-negativity of Gj.

B.1 An equivalent geometric condition

The geometric condition is that for given values of E}, , Ef  and E, the arcs Ej,, = EJ.
and E! = const in Figure intersect if and only if

2 2
(\/Egrans—\/Egm) < Bl < (\/Egranﬁ Ezm) . (B.5)

For the purposes of this argument, it is convenient to use units of mass such that the
mass of the outgoing particle is my, = 2. Thus, its speed in the center-of-mass frame is
V.. = \/E.,. The arcs in Figure|8.1|may be viewed either as curves of constant energy or
constant speed. For given energy E of the incident particle, the speed Viyans = v/ Efans Of
the center of mass is determined. In terms of the speeds with Vi, = /EJ ., the condition

Eq. (B.5) is equivalent to
2 2 2
‘/t%ans + ‘/;/m - 2‘/trans‘/;;/m < Vb/in < Vﬁans + V;:/m + QWYHHS‘/C/m' (B6)

For emission in the forward direction, the speed of the outgoing particle in the labo-
ratory frame is

/ /
‘/lab = ‘/trans + V:;ma

so that its energy in the laboratory frame is

2 2
Vi,ab = V:c%ans + VZm + 2‘/trans‘/c/m~
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In backward emission, the speed of the outgoing particle in the laboratory frame is

! !
‘/Iab - “/trans - ‘/cm

)

and its energy in the laboratory frame is
2 2
Vi;,b = Vﬁans + V;;/m - 2‘/trans‘/c/m-

It follows that if condition Eq. is true, then there exists a center-of-mass direction
cosine fem with —1 < ey < 1 for which the emitted particle has the desired laboratory
energy
Vl;inz - ‘/t%ans + V;:/m2 + 2Mcm‘/trans‘/c,m-

The two arcs Ej,, = E{. and E[, = const intersect at this value of e . It is seen that if
the geometric condition Eq. is satisfied, then the arcs E/,, = E|. and E[ = const
do intersect.

It is now shown that if Eq. (B.6) is false, then then arcs E, = E{, and E., = const
do not intersect. One way for E to be false is that

Win > Virans + V- (B.7)

In this case, forward emission has insufficient energy in the laboratory frame, and the arc
E!,, = const in Figure is entirely enclosed within the arc Ef,, = Ef. .
It
Viin < ‘Vtrans - Vc/m| ; (B.8)

there are two more ways for Eq. to be false, depending on whether
Vim < Virans (B.9)

or
Vo > Virans.- (B.10)

Under the conditions in Eq. , backward emission in the center-of-mass frame

boosts to forward emission in the laboratory frame. The condition Eq. (B.8) implies that

Vl;in < V:crans - V;:/ma

so that the arc Ej,, = E}, is completely to the left of the arc E, = const in Figure
(In fact, one pair of such arcs is shown in Figure [8.1])

The final way for Eq. to be false is that conditions Eqs. (B.8) and (B.10]) be valid.

In this case, backward emission in the center-of-mass frame produces backward emission

in the laboratory frame with
Vb/in < Vclm - Vtrans'

In this case, the arc E, = Ej. is completely contained within the arc E[ = const
in Figure This finishes the proof of the assertion that the arcs Ej, = Ej. and
E!,, = const in Figure intersect if ans only if Eq. (B.5) is true.
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B.2 Proof of the assertion

Consider the case Eq. (B.1) above. That is, suppose that

GO(EI/Jin?E(/:m7E) Z 0 (Bll)
and
Eérans + E(/:m Z El/)in‘ (B]-Q)

It is now shown that these two inequalities lead to the geometric condition Eq. (B.5)) for
intersection of the two arcs. The inequality Eq. (B.11)) may be rewritten in the form

4EémE1/:rans - (Eérans + Eérn - E{)in)2 > 0.

Because of the fact that EY,, ¢
to obtain the relation

/ / / /
2 EémEérans > Etrans + Ecm - Ebin?

which may be rearranged as
2
E{)in > <\/ Et/;rans Y Eém) :

The first of the inequalities Eq. (B.5)) is now verified.
The second inequality Eq. (B.5)) follows trivially from the assumption Eq. (B.12)),

rans + E{:m S Eérans + E(/:m + 2 \/ E(/:mEtlzrans'

The other three cases may be analyzed in a similar fashion.

+E/,,—E[,, > 0,it is possible to take positive square roots

/ !
Eyin < E;
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