

TSUNAMI

Sensitivity/Uncertainty Tools in SCALE Code System

- TSUNAMI-1D, TSUNAMI-2D, TSUNAMI-3D Sequences: perform 1D, 2D or 3D forward and adjoint transport calculations; compute data sensitivities for response; compute response uncertainty
- TSAR: S/U calculations for reactivity responses (eigenvalue differences) using results from TSUNAMI-1D, 2D, 3D
- TSUNAMI-IP: Perform similarity analysis with S/U methods for multiple systems and responses
- TSURFER: Generalized linear least squares consolidation of benchmark experiments and design calculations to provide computational bias and uncertainty; adjustment in nuclear data
- JAVAPENO: Graphical Display of S/U Results

Impact of Evaluated Data on Multigroup Data

Evaluated data processed into generic multigroup

$$\begin{cases} \Gamma^{(j)} \rbrace \rightarrow x^{(j)}(E) \rightarrow \alpha_g^{(j)} \equiv \frac{\left\langle x^{(j)}(E)W(E) \right\rangle}{\left\langle W(E) \right\rangle} \\ \text{evaluated} & \text{processed} & \text{generic} \\ \text{data} & \text{data} & \text{multigroup data} \end{cases}$$

$$\left\{\Delta\Gamma^{(j)}\right\} \rightarrow \Delta x^{(j)}(E) \rightarrow \Delta \alpha_g^{(j)} \Rightarrow E(\Delta \alpha_g^2) \equiv \mathbf{C}_{\alpha\alpha} \stackrel{\text{covariance}}{\text{data}}$$

Problem-specific (self-shielded) multigroup data

$$\sigma_{g}^{(j)} = \frac{\left\langle x^{(j)}(E) \phi_{W}(E) \right\rangle}{\left\langle \phi_{W}(E) \right\rangle} \qquad \phi_{W}(E) = \frac{W(E)}{\sum_{i} N^{(i)} x_{i}^{(i)}(E)}$$

NR approximation

Typical TSUNAMI Automated Computation Sequence

TSUNAMI Provides "Complete" Sensitivity Coefficient for Nuclear Data

<u>explicit</u> effect on response perturbation; <u>implicit</u> effect from self-shielding perturbation

$$S_{\mathrm{R},\alpha^{(x)}}^{[com]} = \frac{\alpha^{(x)}}{\mathrm{R}} \frac{d\mathrm{R}(\sigma^{(1)}(\alpha^{(x)}), \sigma^{(2)}(\alpha^{(x)}), \dots)}{d\alpha^{(x)}}$$

$$\frac{\sigma^{(x)}}{R} \frac{\partial R}{\partial \sigma^{(x)}} + \sum_{j} \left(\frac{\sigma^{(j)}}{R} \frac{\partial R}{\partial \sigma^{(j)}} \right) \times \left(\frac{\alpha^{(x)}}{\sigma^{(j)}} \frac{\partial \sigma^{(j)}}{\partial \alpha^{(x)}} \right)$$
explicit
implicit

$$S_{\mathrm{R},\alpha^{(x)}}^{[com]} = S_{\mathrm{R},\sigma_x} + \sum_{j} S_{\mathrm{R},\sigma^{(j)}} S_{\sigma^{(j)},\alpha^{(x)}}$$

Explicit vs Implicit Sensitivity for H

• Perturbation in $\sigma^{(H)}$ elastic will

- 1) change k_{eff} due to impact of H moderation
- 2) change self-shielded $\sigma^{(U238)} \rightarrow$ perturbation in $\sigma^{(U238)}$ causes implicit change in k_{eff}

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

TSUNAMI-3D Code Sequence

Monte Carlo Model for S/U Analysis of Spent-Fuel Cask

Sensitivity Coefficient for H Elastic

$$Var(k) \equiv S^{T}C_{\alpha\alpha}S$$
 $\underline{complete}$
 $\underline{sensitivity}$
 $\underline{covariance}$

TSUNAMI-IP Code Module

Similarity Analysis to Select Benchmark Experiments for Validation

²³⁹Pu Fission Sensitivity Profile

correlation coefficient for responses k_m and k_n

$$c_k^{(m,n)} = \frac{S_{k_m}^T C_{\alpha\alpha} S_{k_n}}{\sqrt{Var(k_m) Var(k_m)}}$$

System Similarity Coefficients:

 $C_k = 0$ no similarity between experiment and design application

 $C_k = 1$ experiment and application have identical sensitivities

TSAR Code Module

S/U Analysis for Reactivity Responses in 1D, 2D, 3D Geometries

Example: Coolant Void Reactivity in Advanced Candu Reactor

Void Reactivity	St. Dev.
-0.002	49.8%

TSURFER Code Module

Generalized Least-Squares Consolidation of Calculated and Experimental Results

- adjust data to minimize differences in computed and measured integral experiments, using sensitivities and covariances
- propagates data adjustments to obtain application's bias and uncertainty

Application = projected CVR for ACR Bundle

Experiment = **ZED-2** critical facility

Parameter	Prior	Adjusted		
k (novoid)	1.2491	1.2479		
std (novoid)	± 0.0067	± 0.0033		
k (void)	1.2458	1.2445		
std (void)	± 0.0077	± 0.0037		
CVR, pcm	-212.1	-218.9		
σ_{CVR} , pcm	± 92.8	± 37.9		

SCALE Covariance Library

- S/U applications depend on having reasonable estimates for data covariances
- Omitted uncertainties treated as zero!
 - Under estimates response uncertainty
 - Skews data adjustments and similarity analysis
- SCALE-6 has cov data for >300 materials based on:
 - High fidelity evaluations from ENDF/B and JENDL
 - Recent high fidelity evaluations by LANL
 - Approximate values from "low fidelity" project
- Lo-Fi covariances were generated by
 - "integral method" in thermal & resonance range [ORNL]
 - nuclear model techniques in fast [BNL,LANL]

Sources of Covariance Data in SCALE-6

Source	Materials	
ENDF/B-VII.0	Gd ^{152-158,160} Th ²³² Tc ⁹⁹ Ir ^{191,193}	
Pre-released ENDF/B-VII	U ^{233,235,238} Pu ²³⁹ Li ⁶	
ENDF/B-VI (or Lo-Fi ?)	Na ²³ Si ²⁸⁻²⁹ Sc ⁴⁵ V ⁵¹ Cr ^{50,52-54} Mn ⁵⁵ Fe ^{54,56-58} Ni ^{58,60-62,64} Cu ^{63,65} Y ⁸⁹ Nb ⁹³ In ^(nat) Re ^{185,187} Au ¹⁹⁷ Pb ²⁰⁶⁻²⁰⁸ Bi ²⁰⁹ Am ²⁴¹	
JENDL	Pu ²⁴⁰⁻²⁴¹	
LANL Hi-Fi	H ¹⁻³ He ³⁻⁴ Li ⁷ Be ⁹ B ¹⁰⁻¹¹ C ¹² N ¹⁴⁻¹⁵ O ¹⁶⁻¹⁷ F ¹⁹	
Lo-Fi	>200 materials	

Thermal Cross Sections

Nuclide	ENDF/B-VII	Integral ^(*)	difference
Cd-113	2.06E+4	2.06E+4 ± 1.9%	0%
Xe-135	2.63E+6	2.65E+6 ± 4.1%	-0.7%
Sm-149	4.02E+4	4.01E+4 ± 1.5%	0.2%
Np-237	1.81E+2	1.76E+2 ± 1.6%	-2.8%

Resonance Integrals

Nuclide	ENDF/B-VII	Integral ^(*)	difference
Cd-113	3.92E+2	3.90E+2 ± 10.3%	0.5%
Xe-135	7.65E+6	7.60E+3 ± 6.6%	0.7%
Sm-149	4.02E+4	4.01E+4 ± 5.9%	0.2%
Np-237	6.60E+2	6.40E+2 ± 7.8 %	3.0%

(*) Atlas of Neutron Resonances, S. F. Mughabghab

Integral Approximation For Covariance Matrix

covariance matrix $C_{\sigma\sigma}^{(rel)} \sim V \, \tilde{R}$ assumed correlation matrix

Groups in Thermal Range: E < 0.5 eV

$$V \sim \frac{\text{Var}(\sigma_{2200})}{\sigma_{2200}^2}$$
 $\tilde{\mathbf{R}} \sim [1]$ (full correlation)

• Groups in Epithermal Range: Εε (0.5 eV, 5.0 keV)

$$V \sim \frac{\text{Var(RI)}}{\left(\text{RI}\right)^2}$$

$$\frac{\tilde{R} \sim \begin{bmatrix} 1 \end{bmatrix} \text{ (full correlation)}}{OR}$$

$$\frac{OR}{\begin{bmatrix} 1 & 1 & 0 & \dots \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ \vdots & 0 & & & \end{bmatrix}} \text{ (tri-diagonal)}$$

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Example of Uncertainties in SCALE-6

SUMMARY

- TSUNAMI package in SCALE provides S/U methods for criticality safety and reactor physics applications
- Sensitivities are calculated by 1D, 2D, 3D transport methods, and include explicit + implicit effects
- Similarity analysis is used to select benchmark experiments to validate a design application
- Adjustment module combines integral experiments with calculations to reduce response uncertainty
- SCALE-6 has covariance data for >300 nuclides based on high-fidelity plus approximate uncertainties from the "lo-fi" work of BNL, LANL, ORNL, and ANL

