

Dosimetry User's Perspective on Covariance Needs

Presentation to: Workshop on Neutron Cross Section Covariances

At: Port Jefferson, NY On: June 24-29, 2008

Session 1: User's Perspective

P. J. Griffin

June 24, 2008

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

Sandia National Laboratories

Outline

- Scope of dosimetry applications
- Major dosimetry concerns
- Details of dosimetry needs
- Balance of dosimetry needs
- Path forward

Application Priorities

- Important Dosimetry Applications
 - Neutron spectrum adjustment
 - Fluence monitors
 - Material identification
 - Secondary gamma environments

- Methods
 - Iterative, e.g. SAND-II, GRAVEL
 - Least squares, e.g. LSL-M2, STAY'SL
 - Maximum entropy, e.g. MAXED
 - Bacchus-Gilbert, e.g. UFO
- How important are cross section covariance matrices?
 - Answer varies with specific application
 - Previous REAL-80/84 series of comparison indicates this is very important
- How important is trial spectrum
 - Recent work suggests it can be very important
 - So, what about covariance for trial spectrum?

Why has ENDF/B-VII abandon us? Walled us out?

18/04 2007-227 @ INKCINCT Cartoons www.inkcinct.com.au

CSE

- You took away almost <u>ALL</u> of our covariance data
 - Dosimetry reactions of interest to us were generally eliminated
 - Even the <u>standard</u> reactions that we use have a covariance only over a restricted energy range
- We need to tell users why we do not use/recommend ENDF/B-VII data
 - Telling them we recommend use of the ENDF/B-VI dosimetry cross section, which is the same as the ENDF/B-VII values, starts a very confusing dialog
 Sandia National Laboratories

CSEWG Rating of Older ENDF/B-VI Covariance Data

- CSEWG followed a rigorous process for evaluating older data
- Problem is the results of the rating:
 - We clearly do not want wrong/bad data
 - But we do not want NO data either
- Maybe the bar was set too high
 - Suggest <u>accepting</u> yellow and green ratings and only <u>eliminating</u> red rated reactions
 - It is understood that an over-estimate of the uncertainty can be almost as bad as an under-estimate

What is our real request?

- We are not, in general, requesting smaller uncertainties – just an estimate of the current uncertainty.
 - All covariance data does not have to be of "<u>standard</u>" quality. There is a role for "<u>reference</u>" quality data.
 - The covariance must be consistent with the actual cross section – and not an independent quantity. "<u>controlled</u>" quality data is not useful.
- Why even give us the cross section data if you really have no estimate of the uncertainty?
 - If you have an "expert judgment" we will even go with that but we can not use data with unstated uncertainty.
 - Dosimetry users can not be trusted to provide this "expert judgment". The evaluator or evaluation community must provide this.

Covariance for ²³⁵**U Fission Spectrum**

Motivation

- Good covariance data has only been published for ²⁵²Cf. ²³⁵U covariance will drive the *a priori* spectrum covariance
- Two parameter Watt fission representation inadequate. Replacement will also be used in updated radiation transport calculations

• Deficiency

 For 2-parameter shape (highly correlated) a single good threshold sensor can result in an unrealistically small *posteriori* uncertainty for high energy spectrum tail.

Request

 Covariance for ²³⁵U fast fission neutron spectrum of similar detail (not necessarily accuracy) as in ²⁵²Cf spontaneous fission.
 Sandia National Laboratories

- Motivation
 - Cd is used as a cover for activation foils
 - It moves the dosimeter response above thermal energy region

Deficiency

- Systematic offsets in spectrum adjustments are seen in epi-Cadmium region
- Is this an issue with the Cd cross section here? the a priori spectrum/uncertainty? a biased adjustment process for covers?

Request

 Uncertainty/covariance data so that we can evaluate where the cause of the adjustment problem

- ^{nat}Gd is now being used as a foil cover
 - Not as good a cover for shifting energy response, but it avoids ES&H issues associated with ^{nat}Cd
 - New ENDF/B-VII cross sections are now available, and has high/fast energy (> 1 keV) covariance data for total, elastic, and (n,γ) reactions.
 - Analysis of cover correction with uncertainty is pending.
 - » What do we do for covariance/uncertainty for energies < 10 keV.</p>

Treatment of Activation Measurements

- How important is this covariance?
 - Still under investigation
 - New applications are developing a refined approach that will be used to test importance
 - Uncertainty contributions:
 - » HPGe efficiency calibration curve
 - » Energy of gamma line read
 - » Multiple reactions from same foil
 - » Multiple readings on different counters
 - » Sampling uncertainty
 - » Summing corrections
 - » Detector design e.g. dead oxide layer for low energy photons, sensitive detector volume
 - Correlation between bare and covered cross sections is important
 - » Treat as two/three uncorrelated reactions; B4C covered; Cd-B4C covered; bare-Cd-B4C covered

PKA Recoil Uncertainty for Si, GaAs, and Fe

- Motivation
 - Standards require uncertainty for exposure metrics
 - » Fe dpa for PWR/LWR material embrittlement
 - » Si displacement kerma for electronic device gain degradation
 - » GaAs for displacement kerma and damage deviation due to FP recombination in clusters
- Deficiency
 - Cross section uncertainty for all reactions in Si, Fe, Ga, and As
 - Recoil spectrum definition File 5/6 and uncertainty
- Request
 - Cross section covariance data for these materials
 - Reaction-dependent recoil particle energy uncertainty maybe covariance File 35
 - Sufficiency of File 35 format not clear need data for theses materials to look at impact

- Attach to ENDF File 1 data the relative abundance for isotope
 - Critically important for ⁵⁸Fe, an important dosimetry reaction, where the abundance has varied significantly over the years – and users have no idea how to combine the abundance they assume in their activation analysis with that used for the cross section evaluation
- Link to state-of-the-art decay data (gamma decay energies, photon yield, and branching ratios)
 - Independent of cross section, so it can be provided by dosimetry community in separate document
 Sandia National Laboratories

Dosimetry Need – ~ 1-MeV Response Sensor

- Motivation
 - Fast neutron (0.1 3 MeV) damage dominates many damage mechanisms. This energy does not have good, easy-to-read dosimetry reactions.
- Deficiency
 - Current inadequate sensors:
 ²³⁷Np(n,f), ⁹³Nb(n,n'), ¹⁰³Rh(n,n'), ¹¹⁵In(n,n'), Si transistor gain degradation
- Request
 - Cross sections for alternate candidate
 reactions

Additional Need: 58Ni(n,p)^{58m}Co BR Uncertainty

- Motivation
 - ⁵⁸Ni(n,p)⁵⁸Co reaction is an important monitor foil for research reactors. It has a high energy sensitivity (> 3-MeV) that makes it idea.
- Deficiency
 - The reading of this foil must be delayed due to decay of ⁵⁸Ni(n,p)^{58m}Co product
- Request
 - Energy-dependent branching ratios for this reaction to the ground and metastable state – and uncertainty in the bracnhing ratio
 - » Hetrick personal communication currently used for this early-reading, but no uncertainty data is available.

Dosimetry Need – High Energy Cross Sections

- Motivation
 - Fusion community needs improved dosimetry for material damage. Simulators (IFMIF) have neutron components up to ~60 MeV

Deficiency

- Need high fidelity cross sections and covariance data in this range
- Highly correlated smooth cross sections provide little sensitivity for spectrum adjustments

Request

Candidate reactions have been identified. Covariance data required.

- Diagonal covariance matrices have been accepted – but with great reluctance.
- Too large of a cross section uncertainty will permit the spectrum adjustment to be driven by the *a priori* spectrum.
 - a priori spectrum uncertainties and covariance are much more poorly known/defined
- Chi-squared per degree-of-freedom is an important metric in the spectrum adjustment. Poor covariance estimates defeat the value of this metric.

Role for Low Fidelity Covariance Data

- Low fidelity effort focuses on use of parametric variation in nuclear physics models, e.g. EMPIRE
 - Calculation-only approach not sufficient for dosimetry purposes
 - Experimental data must play a role
 - Covariance we use <u>must</u> be related to the cross section used – not appended to a different evaluation that had different development roles – ASTM E1018
 - Uncertainty in physics models not just parametric variation – needs to be incorporated
 - » E.g. Issue with Watt fission spectrum in LEPRICON methodology

- Types of expanded considerations:
 - Cross reaction
 - Cross material
- Need:
 - Not clear, we need some sensitivity studies here

• Status:

- Expanded covariance for reactions and recoil spectrum are believed to be more important, at this time, for most dosimetry applications.
- A simultaneous fitting of important dosimetry reactions is desired, i.e. GLUCS-like

Application 2: Material Identification, Secondary Gamma Environments

- Uncertainties for prompt gamma emission data
 - Energies and yield
 - Reference data now available and used in latest ENDF/B-VI Rel. 8 cross sections.
 - » recent IAEA PGNA work and their Frankle-Reedy and Budapest data

- Address covariance for ENDF/B-VII cross sections
 - ?? Include dosimetry sub-library
 - ?? Add in covariance matrices that should be usable by the dosimetry community even if they do not have extensive parameter variations of the supporting nuclear model calculations
- Continue with current cross section evaluation community emphasis on covariance matrices for all quantities

Maybe this dialog will act as a map for both communities

Are we too greedy in our request?

Dosimetry users are making significant requests from cross section community. Do we have a balanced perspective?

• We may be demanding, but we do have a balanced approach

Spectrum Adjustment Refinements in Current Use

- Detailed a priori spectrum with structure
- Iterative unfolds that:
 - preserve this a priori structure smooth adjustment, not trial spectrum
 - MC perturbation of trial spectrum to obtain uncertainty metric
- Cover treatment, beyond attenuation
- Covariance for *a priori* calculated spectrum

Cover Treatment

- We have moved past a simple exponential attenuation model
 - Use energy-dependent adjoint response
 - Captures self-shielding when a thick cover is used
- Issue with cover-to-cover thickness variation from dosimetry suppliers
 - Now use specific thickness measurements
- Perturbation of free field spectrum by cover is addressed
 - No foil stacking in B₄C covers
 - Single B₄C covers per irradiation with monitor foil
 - Even monitor foil perturbation is an issue Sandia National Laboratories

Cover Correction Factors

Self-shielding on ¹⁹⁷Au(n,γ)

Effect of B₄C+Cd for reactions

Self-shielding on reactions

Covariance in a priori Spectrum

Use fission, $1/E^{\alpha}$, and Maxwellian components coupled with transitional regions as determined by fit to *a priori* spectrum

Fast Burst Reactor

ACRR PbB Bucket 1.E+02 1.E+01 Relative fluence per unit lethargy 1.E+00 1.E-01 1.E-02 1.E-03 1.E-04 Total neutron fluence thermal neutrons fission neutrons 1.E-05 epithermal neutrons 1.E-06 1.E-09 1.E-06 1.E-03 1.E+00 1.E+03

Neutron Energy (MeV)

Simultaneous Spectrum Adjustment: Neutron Spectrum

Simultaneous spectrum adjustment:

- fast burst reactor cavity
- pool-type reactor cavity
- pool-type reactor in PbB bucket

Simultaneous Spectrum Adjustment: Activities

Simultaneous spectrum adjustment:

- fast burst reactor cavity
- pool-type reactor cavity
- pool-type reactor in PbB bucket

Covariance in a priori Spectrum

Example of constructed *a priori* spectrum covariance matrices

Fast Burst Reactor

ACRR PbB Bucket

- High quality cross sections with covariance for reactions used
- Fission spectrum covariance to assist *a* priori spectrum covariance
- Cd covariance matrices
- Recoil spectrum covariance matrices for Si, Ga, As, Fe
- High energy dosimetry reaction covariance matrices

Questions???

Example Double Ratios of Activation Foils

