Workshop on Neutron Cross Section Covariances Port Jefferson, June 24-27, 2008

Extension of EMPIRE

to Covariances in the Resonance Region

Young-Sik Cho^{*,a}, R. Arcilla^b, M. Herman^b, S.F. Mughabghab^b, P. Obložinský^b, Young-Ouk Lee^a

^aNuclear Data Evaluation Lab., KAERI, Daejeon, Korea

^bNational Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000

*Presenting author: yscho@kaeri.re.kr

BROOKHAVEN

The resonance module in EMPIRE automates most of the evaluation procedures:

Graphical analysis of resonance energies - helps to determine the upper boundary of the resolved resonance region.

Plot of the Porter-Thomas distribution helps to determine the average resonance parameters such as a level spacing and neutron strength functions for s- and p-waves

Comparison of cross sections with experimental data and ENDF/B-VII.0.

Resonance module

Extends capabilities of the code system EMPIRE to provide the ENDF-6 formatted data in the resolved and the unresolved resonance region (MF=2) using information collected in the

	1	1				
			Import:		Output:	
ZA:	25055	MA	1: 2525	Reload	E	NDF
		wave	p-wave	d-wave	Carnula	stive plot
SF:	4.20	e-04	3.10e-05	0.00e+00	Porter-Thomas analysis	
Gg:	750	00	400.00	0.00		
D:	2420	.00	spin cut-off :	2.63	Total	ENDF/8-V
Bes	Besolved region				Scattering	JENDL-3.3
Emmox : 111760		111760	R' 1 450		Capture	⊒ JEFF-3.1
Ge0_cut:		Get_cut:		Resonance parameters		
Une	esolve	l region			Atlas of Neut	ron Resonances
a 14	p.:	6.88	gPower :	2.5	# AL	
Ema	c ± 1	125948.992	energies:	30	F PTANAL	
a 6	nergy (lependent D	and neutron wid	th for s-wave	# WRIJURR # RECENT	
10	needly o	lependent D	and gamma widt	th for p-wave		

Atlas of Neutron Resonances recently published by Mughabahab, 2006.

The resonance module:

- Reads data from the electronic version of the Atlas
- Makes statistically justified guesses for unknown parameters
- Uses average resonance properties to construct unresolved resonance region
- Allows manual adjustment of parameters, their uncertainties, energy ranges, average quantities
- Creates ENDF-6 files MF = 2 and MF = 32

Determination of covariances:

- Uncertainties compiled in the Atlas used as a basis
- * Missing uncertainties are estimated
- Correlations between resonance parameters can be introduced
- Ensuring consistency between uncertainties assigned to parameters for the first few resonances and experimental uncertainties for the thermal cross sections

Preliminary covariance estimations for 55Mn and 90Zr

- Uncertainties on the first resonances (including bound states) adjusted to reproduce thermal capture uncertainty
- No correlations between neutron and capture widths assumed
- No correlations among different resonances

$n \pm 55Mn$ ⁵⁵Mn(n,γ) ĩ 10.0 Polating Standard Day VL 2006 Three covariance estimates/evaluations are available 'Low-fidelity' (2008) 'High-fidelity' (ORNL 2008) Present work (BNL/KAERI 2008) Thermal Region: ~0.4% is honored by Low-fi and

- BNL but considered too optimistic by Oak Ridge
- Resolved Resonance Region:
 - Low-fi in 0.1 eV 5 keV is based on the
 - resonance integral uncertainty BNL/KAERI estimate honors thermal uncertainty
 - mplying reduction of RRR uncer
 - Low-fi above 5 keV is based on the statistical

$n + {}^{90}7r$

- Semi-magic nucleus (N=50) => verv low capture cross section (20 mb at thermal) => high experimental uncertainty (20.7%) Uncertainties in RRR lower than in thermal region
- Large uncertainties assigned to the radiative and neutron width of the bound level
- Recent measurement (A. Lone, Chalk River) suggests even lower thermal cross section => reevaluation of cross sections and uncertainties recommended